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Abstract

We develop a model of bank lending under cognitive frictions. Banks face cognitive

costs when screening borrowers and optimally choose the precision of noisy signals

about borrower quality. Higher attention costs reduce signal precision, distorting loan

allocation: banks with pessimistic priors under-lend, while those with optimistic priors

over-lend. Our closed-form characterization links information-processing frictions to

systematic credit misallocation. Regulatory capital constraints limit risk-taking but

also weaken banks’ incentives to acquire information. This interaction can further

reduce precision: a phenomenon we call “risk parity by ignorance.” The framework

shows how cognitive costs and capital regulation jointly affect credit allocation and

underscores the need to balance prudential limits with informational efficiency.

Keywords: Bank lending; Cognitive frictions; Credit allocation; Rational inattention; Cap-

ital regulation.

JEL Classification: D83; G21; G28; D80.

1 Introduction

How do cognitive constraints and information-processing limitations shape bank lending,

interact with capital regulation, and affect financial stability? Banks demonstrably do not

operate with perfect foresight or limitless analytical bandwidth. Whether managing complex

structured products prior to the 2008 financial crisis or handling relationship-based SME

lending today, loan officers routinely process thousands of heterogeneous signals under tight

deadlines and regulatory scrutiny. Campbell et al. (2019) provide evidence that spikes in

loan-officer workloads or timing around weekends systematically degrade the interpretation
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of soft information, leading to poorer loan outcomes. Wang (2020) shows that the median

loan officer believes they screen three times more information than their actual capacity

allows, and Gao et al. (2018) document that loan officers experience regular distractions

that impair decision quality. Yet, standard banking theories typically assume lenders face

constraints primarily arising from moral hazard (e.g., Holmström & Tirole, 1997) or costly

auditing (e.g., Diamond, 1984; Townsend, 1979), largely overlooking intrinsic cognitive or

informational limitations. This disconnect matters: misallocated credit due to misjudgment

or information overload can significantly destabilize financial systems, as illustrated by the

Global Financial Crisis.

Rational inattention (RI), pioneered by Sims (2003), provides a parsimonious framework

to analyze these information-processing limits.1 Agents optimally choose how much infor-

mation to acquire, balancing the benefits of better decisions against cognitive or monetary

costs. RI has notably influenced macroeconomics (Maćkowiak & Wiederholt, 2009) and as-

set pricing (Miao & Su, 2023; Huang & Liu, 2007), and has recently been applied to macro

credit-cycle modeling (Gemmi, 2024). However, while recent studies have applied RI to

asset pricing and macroeconomic settings, the micro-level interaction between banks’ cog-

nitive constraints and capital regulation remains unexplored, leaving critical policy-relevant

questions unanswered.

This paper integrates rational inattention into a micro-level loan-choice framework to

analyze its interaction with regulatory capital requirements. We embed rational inattention

into a canonical two-asset model to study how attention costs distort borrower screening,

credit allocation, and the efficacy of capital regulation. Specifically, we address three key

questions: (i) How do attention costs influence banks’ screening precision? (ii) Under what

conditions do cognitive frictions lead to systematic over-lending or under-lending relative

to an optimal benchmark? (iii) How does capital regulation interact with banks’ cognitive

constraints, and what are the resulting regulatory design implications?

We make four main contributions. First, we incorporate rational inattention into a stan-

dard loan-choice framework in which a bank optimally selects the risk profile of its loan

portfolio by choosing the precision of borrower-specific signals. This explicitly models how

cognitive costs affect screening decisions. Second, we show that higher attention costs re-

duce signal precision, distorting loan allocation; banks with pessimistic priors under-lend,

while those with optimistic priors over-lend. The economic mechanism is intuitive: when

precise information is costly, banks rely more heavily on their prior beliefs, amplifying ini-

tial biases. Third, we explicitly analyze the interaction of cognitive frictions and regulatory

1For a comprehensive survey of RI applications, including portfolio under-diversification, price stickiness,
and political information choice, see Maćkowiak et al. (2023).
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capital constraints. We show that capital requirements act as a blunt substitute for atten-

tion: they curb excessive risk-taking but simultaneously weaken banks’ incentives to acquire

precise borrower information. Once capital requirements bind and the marginal benefit of

distinguishing among borrowers falls, banks may achieve compliance by reducing information

processing, a phenomenon we label risk parity by ignorance. That is, rather than repricing or

resizing loans, banks cut back on screening precision and allow the capital rule to drive credit

allocation. Thus, capital regulation and information regulation emerge as complements: ef-

fective policy must simultaneously manage capital buffers and cognitive constraints. Fourth,

we outline policy tools that internalize these cognitive frictions, including regulatory capi-

tal surcharges tied to screening precision, simplified disclosure requirements, and targeted

RegTech investment.

Our results also relate to classic insights in corporate finance. Myers (1977) shows how

debt overhang can lead to underinvestment, while Jensen and Meckling (1976) argue that

equityholders may overinvest due to risk-shifting incentives. Unlike traditional agency-based

explanations focusing on incentive misalignments, our model highlights purely cognitive

drivers of these distortions, offering regulators novel angles to address systemic inefficiencies.

Our findings resonate with recent advances in understanding the economic implications

of cognitive limitations. Gabaix & Laibson (2022) demonstrate how cognitive constraints

(manifested as noisy simulations of future outcomes) lead to systematic behavioral biases

such as hyperbolic discounting and myopia; similarly, our model shows how cognitive con-

straints in banks induce systematic biases in lending decisions. Bordalo et al. (2018) high-

light how diagnostic expectations arising from cognitive heuristics create excess volatility

and predictable reversals in credit cycles; our RI framework provides complementary evi-

dence, linking banks’ screening precision directly to these cognitive mechanisms. Addition-

ally, Caplin & Dean (2015) demonstrate that seemingly irrational decisions can rationally

result from costly information acquisition, reinforcing our model’s rational foundations for

cognitive constraints. Although our paper is theoretical, the explicit testable predictions and

numerical illustrations provided establish a clear foundation for future empirical validation.

A growing empirical literature finds that binding capital requirements alter banks’ port-

folios and, at times, weaken credit discipline, though it stops short of measuring information

acquisition itself. For instance, Gopalakrishnan et al. (2021) show that after the adoption

of Basel II risk-weighted capital rules, U.S. banks curtailed lending to lower-rated firms and

reallocated credit toward safer exposures. Behn et al. (2022) document that German banks

using the Basel IRB approach systematically reported lower probability of default, reducing

capital charges without improving realized loan performance. Bank of England balance-sheet

analysis (Haldane, 2013) shows that large banks’ average risk weights fell by roughly half,

3



from over 70% in 1993 to below 40% in 2011, despite rising leverage, a pattern consistent

with regulatory arbitrage rather than deeper screening. None of these studies provides direct

evidence on banks’ incentives to acquire borrower-specific information; yet their findings are

consistent with our model’s prediction that binding capital constraints reduce the marginal

value of screening and encourage mechanical compliance strategies. This gap highlights

an opportunity for new empirical work, guided by the testable implications we derive, to

measure how capital regulation interacts with banks’ information-acquisition choices and to

quantify the resulting credit allocation distortions.

The remainder of the paper proceeds as follows. Section 2 lays out the model environment

and derives the bank’s optimal signal precision. Section 3 shows how rational inattention

contributes to credit misallocation. Section 4 examines its interaction with capital regulation.

Section 5 presents the regulatory and managerial implications that flow from our results.

Finally, Section 6 offers testable empirical implications and concludes.

2 The Model

2.1 Economic environment

Consider a risk-neutral bank that faces a continuum of infinitesimal borrowers indexed by

i ∈ [0, 1].2 The bank allocates a unit mass of loanable funds between a safe and a risky

technology. For readability, we suppress the index i in what follows; all random variables

should be understood as referring to a generic borrower. Payoffs per unit are

• Safe loan: deterministic return Rs.

• Risky loan: Rh with probability p ∈ (0, 1) and Rℓ with probability 1 − p, where

Rℓ < Rs < Rh.

The true default probability p is borrower-specific and unknown ex-ante. The bank’s prior

belief is

p ∼ N
(
µ0, τ

−1
0

)
, (1)

where µ0 is the prior mean and τ0 > 0 is the prior precision (i.e., inverse of the prior variance).

Let α = 1 denote the bank extending a risky loan, and α = 0 denote the bank investing

in the safe asset. Before choosing α ∈ {0, 1}, the bank may acquire a noisy signal about

borrower quality:

s = p+ ε, ε ∼ N
(
0, σ2

)
, (2)

2Key model symbols are defined in Table B1.
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where σ2 > 0 is the noise variance (signal precision σ−2). Signal draws {si} are independent

across borrowers. Lower variance yields a sharper signal but incurs an attention cost

C
(
σ−2

)
=

γ

2σ2
, γ > 0, (3)

where γ is the cost parameter. This quadratic cost is the second-order Taylor approximation

to the standard entropy-based (mutual-information) cost around the prior; the entropy spec-

ification itself is used in canonical RI models (e.g. Sims, 2003; Matějka & McKay, 2015).3

Therefore, the approximation preserves the same micro-foundations while keeping the model

tractable.

2.2 Posterior belief

Upon observing s, the bank updates its belief via Bayes’ rule:

p | s ∼ N
(
µ(σ2), (τ0 + σ−2)−1

)
, (4)

with posterior mean given by the usual precision-weighted average:

µ(σ2) =
τ0 µ0 + σ−2 s

τ0 + σ−2
. (5)

Conditional expected return from the risky loan, therefore, equals

E[πr | s] = µ(σ2)Rh +
(
1− µ(σ2)

)
Rℓ. (6)

The bank allocates share α(s) to the risky loan whenever the conditional expectation exceeds

Rs. Because the signal is Gaussian, the threshold is linear in s.

2.3 Value of information

Before the noise level σ2 is chosen, the bank anticipates how the signal will affect its lending

decision.

Decision rule. After observing a signal s, the bank compares the posterior expected payoff

from the risky loan, with a certain payoff from the safe loan. Thus, the bank invests in the

3Replacing the quadratic approximation with the exact Sims (2003) mutual-information cost leaves all of
the paper’s qualitative results and comparative-static conclusions unchanged. The quadratic form is adopted
solely because it yields closed-form expressions for the optimal precision; the full entropy cost produces a
transcendental first-order condition that must be solved numerically.

5



risky loan if the following holds:

µ(σ2)(Rh −Rℓ) +Rℓ ≥ Rs. (7)

The bank is indifferent when (7) holds with equality. Define the break-even success probability

ξ :=
Rs −Rℓ

Rh −Rℓ

∈ (0, 1), (8)

i.e. the borrower success rate that makes the risky and safe loans yield the same expected

payoff under perfect information. Inequality (7) can therefore be rewritten as µ(σ2) ≥ ξ.

Because µ(σ2) is linear in s, this condition defines a unique signal cut-off s∗(σ2): 4

s ≥ s∗(σ2) =⇒ α(s) = 1, s < s∗(σ2) =⇒ α(s) = 0.

In words, if the realized signal exceeds the cut-off, the bank classifies that borrower as

“risky” and extends a risky loan (α(s) = 1); otherwise, it extends the safe loan (α(s) = 0).

Standardizing the cut-off. Under the prior and signal-noise assumptions, we have

s ∼ N
(
µ0, τ

−1
0 + σ2

)
. (9)

Write Σ2 := τ−1
0 + σ2 and define the z-score of the cut-off,

Z(σ2) :=
s∗(σ2)− µ0

Σ
. (10)

Then Pr[s ≥ s∗(σ2)] = 1−Φ
(
Z(σ2)

)
, where Φ(·) is the standard-normal cdf and ϕ(·) its pdf.

Expected gain from information We call the prior pessimistic when µ0 < ξ (the prior

mean lies below the break-even success probability) and optimistic when µ0 > ξ (the prior

mean lies above the break-even success probability).

Without information, a pessimistic bank holds the safe asset (which yields the constant

return Rs), whereas an optimistic bank chooses the risky asset (with expected return µ0Rh+

(1− µ0)Rℓ).

Information is valuable only if it reverses that prior decision: it must raise the posterior

success probability above ξ for a pessimistic bank, or push it below ξ for an optimistic one.

4The closed-form expression for s∗(σ2) is derived in Appendix A.1.
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Because

Pr
[
s ≥ s∗(σ2)

]
= 1− Φ

(
Z(σ2)

)
, Pr

[
s ≤ s∗(σ2)

]
= Φ

(
Z(σ2)

)
,

a signal strong enough to trigger the switch arrives with probability 1 − Φ(Z) under a

pessimistic prior and Φ(Z) under an optimistic prior, where the z-score Z(σ2) is defined

in (10).

The resulting expected monetary gain is

f(σ2) = (Rh −Rℓ)


∫ ∞

s∗(σ2)

[
µ(σ2)− ξ

]
ϕΣ(s) ds, if µ0 < ξ (pessimistic prior),∫ s∗(σ2)

−∞

[
ξ − µ(σ2)

]
ϕΣ(s) ds, if µ0 > ξ (optimistic prior).

(11)

Here ϕΣ(·) is the normal density of the signal s ∼ N (µ0,Σ
2).

• Pessimistic prior (µ0 < ξ): only signals above the cut-off (s ≥ s∗) matter, because

they lift the posterior success probability above ξ and justify switching to the risky

loan.

• Optimistic prior (µ0 > ξ): only signals below the cut-off (s ≤ s∗) matter, because

they push the posterior success probability below ξ and induce a switch to the safe

loan.

• Multiplying by Rh −Rℓ converts that probability gain (or loss avoided) into expected

monetary terms.

From Eq. (11), it is straightforward to show that f ′(σ2) < 0 and f ′′(σ2) > 0. Intuitively,

as the noise variance σ2 falls, the signal becomes more informative and the expected monetary

gain from information acquisition increases, although at a decreasing rate due to diminishing

returns. Conversely, as σ2 approaches infinity, the signal degenerates into pure noise and

f(σ2) approaches zero.

Precision choice. The bank trades this benefit against the quadratic attention cost:

max
σ2>0

V (σ2) = f(σ2)− γ

2σ2
. (12)

Because f(σ2) is strictly decreasing and the cost term is strictly convex, V (σ2) is concave and

the first-order condition f ′(σ2∗) + γ/(2σ4∗) = 0 pins down a unique optimal precision σ−2∗.
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Proposition 1 (Optimal precision). Let V (σ2) = f(σ2) − γ/(2σ2), with f ′(σ2) < 0 and

f ′′(σ2) > 0. Then

V (σ2) is strictly concave on (0,∞) and admits a unique maximizer σ2∗ > 0 characterized by

V ′(σ2∗) = f ′(σ2∗) +
γ

2σ4∗ = 0. (13)

The optimal variance can be written

σ2∗ =
[

γ
− 2f ′(σ2∗)

]1/2
, f ′(σ2∗) < 0, (14)

and it is strictly increasing in the attention-cost parameter:

dσ2∗

dγ
=

σ2∗

2γ
> 0. (15)

Proof. See Appendix A.2.

This result captures a simple trade-off: greater signal precision improves lending decisions

but becomes increasingly costly to acquire. The optimal noise level σ2∗ balances these

marginal benefits and costs. As attention costs γ rise, the bank rationally chooses to acquire

less precise signals, foreshadowing the distortions in credit allocation we explore next.

3 Cognitive Frictions and Credit Allocation

From state-contingent to aggregate lending shares. For any chosen noise level σ2

the bank lends to the risky project whenever the signal exceeds the cutoff s∗(σ2) derived in

Appendix A. Hence, the ex-ante (aggregate) share of funds channeled to risky loans is

α∗(σ2) = Pr
[
s ≥ s∗(σ2)

]
= 1− Φ

(
Z(σ2)

)
. (16)

where Z(σ2) is the standardized cutoff defined in (10).5

Break-even success probability. A borrower with true success probability p is indifferent

between the risky project and the safe project when the expected payoffs from both projects

5Because the bank faces a continuum of independent, infinitesimal borrowers (with a unit mass of 1),
the strong law of large numbers implies that the realized fraction of projects with s ≥ s∗(σ2) equals the
probability of that event. We therefore treat this probability as the aggregate share of funds channeled to
risky loans.
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are equal. Recall from Section 2.3 that this occurs when p = ξ, where

ξ =
Rs −Rℓ

Rh −Rℓ

∈ (0, 1).

Hence, under perfect information, the bank lends risky if and only if p ≥ ξ, and safe otherwise.

First-best risky-loan share. Under perfect information (σ2 → 0), the bank lends risky

exactly when p ≥ ξ, where ξ is the break-even threshold above. With a Gaussian prior

p ∼ N (µ0, τ
−1
0 ), the corresponding first-best risky-loan share is6

αFB = 1− Φ
(
(ξ − µ0) τ

1/2
0

)
. (17)

Misallocation metric. To quantify how attention costs distort lending, define the misal-

location metric as:

∆(γ) :=
∣∣α∗(σ2∗(γ))− αFB

∣∣, (18)

i.e. the absolute deviation of the realized risky-loan share from the first-best benchmark,

evaluated at the optimal variance σ2∗(γ) obtained in Proposition 1.

We can then prove the following proposition.

Proposition 2 (Credit misallocation under rational inattention). The model yields two key

results:

(a) Misallocation effect. The misallocation gap

∆(γ) =
∣∣∣α∗(σ2∗(γ)

)
− αFB

∣∣∣
is strictly increasing in the attention-cost parameter:

∂∆(γ)

∂γ
> 0 (for all γ > 0). (19)

(b) Allocation bias and corner limits. Exactly one of the following two cases obtains:

Pessimistic prior: If µ0 < ξ, then α∗(σ2∗(γ)
)
< αFB for every γ > 0. There exists

a finite γh ∈ (0,∞) with α∗(σ2∗(γh)
)
= 0; for γ > γh the bank makes no risky

loans.

6Throughout, “first-best” refers to the bank’s private full-information optimum. A planner who internal-
izes systemic risk might choose a different allocation; analyzing that is beyond this paper.
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Optimistic prior: If µ0 > ξ, then α∗(σ2∗(γ)
)
> αFB for every γ > 0. The over-

lending gap widens monotonically, and

lim
γ→∞

α∗(σ2∗(γ)
)
= 1.

Proof. See Appendix A.3.

Higher attention costs make precise signals expensive, causing the bank to rely on in-

creasingly noisy information. If the bank’s prior belief is pessimistic (expecting borrowers to

have a low probability of success), it already leans towards under-lending to risky projects.

Noisier signals amplify this caution, pushing lending even further below the first-best allo-

cation. Conversely, if the bank’s prior is optimistic, noisier signals exacerbate its tendency

to over-lend. In the limit, as attention becomes prohibitively costly, the bank disregards the

noisy signals entirely and simply follows its prior belief—allocating either zero or all funds to

risky loans. Thus, increasing information frictions always drive the bank’s lending decisions

away from the first-best benchmark, never closer.

These results echo classic insights from the corporate finance literature. In particular,

our finding that pessimistic priors combined with high attention costs lead to excessive

caution mirrors the underinvestment problem highlighted by Myers (1977). Likewise, when

optimistic priors drive over-lending in the presence of noisy signals, the pattern resembles the

risk-shifting behavior discussed by Jensen and Meckling (1976). However, our model departs

from these agency-based explanations by attributing distortions not to conflicting incentives

but to cognitive limitations in processing information. This alternative mechanism suggests

that improving the informational environment, rather than solely aligning incentives, may

be key to correcting inefficiencies in capital allocation.

Figure 1 illustrates Proposition 2 with plausible parameter values: the pessimistic bank

retreats from risk as signals become noisy, whereas the optimistic bank eventually allocates

its entire portfolio to the risky project.

Table 1 reports the parameter values used in these numerical illustrations.

4 Capital Regulation and Cognitive Frictions

Banks rarely allocate assets in a vacuum: minimum-capital rules restrict their ability to

expand risk-weighted exposures. We introduce a simple Basel-style leverage constraint and

show how it interacts with attention costs.
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Table 1: Parameter Values Used in Numerical Figures
Symbol Value Description Empirical Plausibility /

Source
Rs 1.03 Gross annual return on a safe loan

(approx. 3% yield).
Short-term, senior-secured
corporate loans typically
yield 2–4%.

Rh 1.10 Gross return on a successful risky
loan (10%).

Reflects upper-end SME
lending rates, which average
5–8% for established firms
but 10–12% for smaller
or less-rated borrowers
(OECD 2024).

Rℓ 0 Zero recovery in default
(stylized).†

Convention in theoreti-
cal banking models (e.g.,
Acharya & Naqvi 2012;
Holmström & Tirole 1997).

ξ 0.30 Break-even success probability:
(Rs −Rℓ)/(Rh −Rℓ).

Mechanical from returns;
30% intuitive for high-yield
lending.

µ0 0.20 / 0.40 / 0.60 Prior means for borrower success. S&P default studies: an-
nual success 80–95%; lower
values used illustratively to
show under-/over-lending
extremes.

τ0 100 / 4 Prior precision: high (σ ≈ 0.10)
vs. low (σ ≈ 0.50).

Reflects borrower trans-
parency (new vs. repeat).

γ 0.30 Attention-cost scale parameter. Chosen to produce clear
comparative statics. Re-
sults qualitatively un-
changed for any γ > 0.

σ2 Varied Noise variance (i.e., inverse of sig-
nal precision).

Swept to illustrate compar-
ative statics in Figure 1.

αmax Varied (0.0–1.0) Implied ceiling on risky-loan
share (Figure 2).

Ranges from no constraint
(1.0) to total ban (0.0). De-
rived from the capital re-
quirement.

†Average recovery on senior secured loans is typically 30–50% (Moody’s 2023). We set Rℓ = 0 for

tractability; allowing partial recovery would shift the break-even probabilities but not alter comparative

static insights.
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Figure 1: Signal precision and risky-loan allocation. The plot shows the ex-ante
share of funds channeled to the risky technology, α∗(σ2), as a function of the noise variance
σ2 (log scale). Parameter values are: safe return Rs = 1.03, risky up-state Rh = 1.10,
risky down-state Rℓ = 0, break-even success probability ξ = (Rs − Rℓ)/(Rh − Rℓ) = 0.30,
and prior precision τ0 = 100 (implying a prior standard deviation of 0.10). We consider
two representative beliefs about borrower success: a pessimistic prior (µ0 = 0.20 < ξ)
and an optimistic prior (µ0 = 0.40 > ξ). Lower σ2 corresponds to higher information
precision. Consistent with Proposition 2, noisier signals (larger σ2) push the pessimistic
bank toward zero lending, whereas the optimistic bank converges toward universal lending.
The parameters lie in plausible ranges for large-firm default probabilities and typical loan
spreads and are chosen purely for illustration.

4.1 Regulatory set-up

Let the bank hold fixed equity K > 0. Equity is set prior to the lending period and typically

adjusted only infrequently due to issuance costs, disclosure lags, and regulatory approvals.

Empirically, when facing short-term capital pressures, banks typically adjust by reducing

risk-weighted assets rather than raising new equity. For example, Gropp et al. (2019) exploit

the 2011 EBA capital exercise and find that treated banks improved their capital ratios by

reducing risk-weighted assets by an average of 16 percentage points, rather than by increasing

equity, consistent with debt-overhang frictions. Similarly, Memmel and Raupach (2010) show

that although liability-side adjustments are more potent, asset-side adjustments occur more

quickly. We therefore treat K as fixed within our decision horizon and focus on the bank’s

dual choice of (i) the risky-loan share α and (ii) screening precision σ−2.7

7This setup is equivalent to a two-stage game: Stage 0 (reporting date), the bank sets equity K based
on last period’s information; Stage 1, it observes new borrower signals and allocates loans. Nevertheless, for
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Denote by α∗(σ2) ∈ [0, 1] the aggregate share of funds invested in the risky loan (defined

in Section 3). Risk-weighted assets (RWA) are

RWA = wα∗ + w̄ (1− α∗), 0 < w̄ < w ≤ 1, (20)

where w and w̄ are Basel risk weights on the risky and safe loans, respectively.8

The bank is compliant if its capital ratio exceeds θ ∈ (0, 1):

K

RWA
≥ θ ⇐⇒ α∗ ≤ αmax :=

K/θ − w̄

w − w̄
. (21)

We assume K/θ > w̄, so αmax ∈ (0, 1]. When (21) binds, the bank faces an upper bound

on its risky-loan share. The capital requirement in (21) thus imposes an implied ceiling on

the bank’s risky-loan share, αmax, henceforth referred to as the implied ceiling. When this

implied ceiling binds, the bank faces a strict upper limit on risky exposures; otherwise, it

behaves as in the baseline model.

4.2 Optimal behavior with the constraint

Define the capital-adjusted signal threshold s†(σ2) as follows:

• Slack constraint (α∗(σ2) ≤ αmax). The bank’s desired risky-loan share already satis-

fies the capital requirement, so no tightening is needed: set

s†(σ2) = s∗(σ2).

• Binding constraint (α∗(σ2) > αmax). Choose the smallest threshold s†(σ2) > s∗(σ2)

such that

Pr
[
s ≥ s†(σ2)

]
= αmax.

Increasing the cut-off from s∗ to s† lowers the aggregate risky-loan share from α∗ down

to the regulatory ceiling αmax.

completeness, we show in Online Appendix C that even with gradual equity adjustment, the model yields
qualitatively similar predictions, as capital remains sticky over typical decision horizons relevant to quarterly
stress tests or internal credit cycles.

8Setting w̄ = 0 and w = 1 reproduces a simple leverage ratio; any 0 < w̄ < w captures differential
weighting under Basel III.
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Hence, if the constraint is slack, s† = s∗; if binding, s† is chosen such that Pr[s ≥ s†] = αmax.

The capital-constrained lending rule is therefore

α̃(s;σ2) = 1
{
s ≥ s†(σ2)

}
. (22)

Here α̃(s;σ2) takes the values 0 or 1 at the borrower level. Taking expectations over the

continuum of borrowers gives the aggregate risky-loan share

α̃∗(σ2) = E
[
α̃(s;σ2)

]
= Pr

[
s ≥ s†(σ2)

]
= min

{
α∗(σ2), αmax

}
. (23)

Expected gain under the capital constraint. For a given signal noise level σ2, let

fc(σ
2) := (Rh −Rℓ)



∫ s†(σ2)

s∗(σ2)

[
µ(σ2)− ξ

]
ϕΣ(s) ds, if µ0 < ξ (pessimistic prior),∫ s∗(σ2)

−∞

[
ξ − µ(σ2)

]
ϕΣ(s) ds, if µ0 > ξ (optimistic prior).

(24)

represent the expected monetary benefit of the signal when the capital requirement is in

place, where the integration limits s∗(σ2) and s†(σ2) are the baseline and capital-constrained

cut-offs defined earlier.

Equation (24) gives the expected monetary gain from information once the capital re-

quirement is in place. For a pessimistic prior, it is the upper band s∗ ≤ s ≤ s† that matters;

for an optimistic prior the relevant region remains the lower tail s ≤ s∗ because the capital

requirement truncates only the upper tail. Signals above s† are “cut off” by the capital cap

and therefore add no marginal value, while signals below s∗ leave the bank in the safe project

by construction.

Precision choice under the capital constraint. The bank selects the signal noise level

to maximize its net value

Vc(σ
2) = fc(σ

2) − γ

2σ2
, σ2 > 0. (25)

Here Vc(σ
2) represents the expected monetary payoff from lending, net of attention costs,

when the capital requirement may restrict the risky-loan share. Because fc(σ
2) ≤ f(σ2)

and inherits the same concavity properties until the capital constraint binds, the first-order

condition is

f ′
c

(
σ2∗
c

)
+

γ

2σ4∗
c

= 0, (26)

which yields a unique optimum satisfying σ2∗
c ≥ σ2∗.
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Proposition 3 (Capital constraint and optimal precision). Let α∗(σ2) = 1−Φ
(
Z(σ2)

)
denote

the unconstrained risky-loan share. Then:

(i) Slack constraint. If α∗(σ2∗) ≤ αmax, the capital constraint does not bind, and the

optimal noise level satisfies

σ2∗
c = σ2∗,

so all baseline results carry over unchanged.

(ii) Binding constraint. If α∗(σ2∗) > αmax, the capital constraint binds and the first-order

condition (26) implies

σ2∗
c > σ2∗;

that is, the bank acquires strictly less information than in the unconstrained benchmark.

(iii) Effect on misallocation.

• Optimistic prior (µ0 > ξ). When the cap binds, it reduces the over-lending gap

but also weakens information acquisition, so the net effect on misallocation is

non-monotone in γ.

• Pessimistic prior (µ0 < ξ). The cap binds only if the ceiling is set so low that

αmax < α∗(σ2∗). When this happens, it trims the positive-gain region [s∗, s†], fur-

ther increasing under-lending and worsening misallocation; otherwise, the capital

constraint is slack, and the baseline results are obtained.

Proof. See Appendix A.4.

Figure 2 illustrates how an implied ceiling affects credit allocation for a fixed attention

cost.9 The figure plots the misallocation bias,

∆̃ = α∗
c − αFB,

where α∗
c denotes the aggregate share of funds allocated to risky loans after applying the

implied ceiling αmax (this coincides with the unconstrained share α∗ whenever the ceiling is

slack). The bias is positive for over-lending and negative for under-lending.

The bias declines as the ceiling tightens from very loose levels, reaches zero when the ceil-

ing matches the bank’s first-best share, and becomes negative once the capital requirement

9Figure 2 uses a more optimistic and precise prior (µ0 = 0.60, τ0 = 100) to reflect a repeat borrower and
isolate the effect of capital constraints. Figure 1 instead employs a less optimistic, diffuse prior (µ0 = 0.40,
τ0 = 4) to emphasize how attention costs distort decisions under borrower uncertainty. These differences do
not affect the results and are chosen solely to clarify distinct comparative statics.
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Figure 2: Implied ceilings and credit misallocation. The plot shows the misallocation
bias ∆̃ = α∗

c − αFB as a function of the implied ceiling αmax, which reflects the maximum
risky-loan share permitted by the capital requirement. Parameter values follow Figure 1,
except for the prior and attention cost: optimistic prior µ0 = 0.60 > ξ, prior precision τ0 = 4
(standard deviation = 0.50), and attention cost γ = 0.30. These imply an unconstrained
risky-loan share of 0.62 and a first-best share αFB = 0.30. When the implied ceiling is loose
(αmax ≳ 0.62), the capital constraint is slack and over-lending persists (∆̃ > 0). Tightening
the ceiling initially reduces the bias, but once αmax falls below αFB, the capital requirement
induces under-lending (∆̃ < 0).

forces lending below that benchmark. Hence, a single regulatory tool can either improve or

worsen allocation depending on how tightly it is set, consistent with Proposition 3.

The minimum capital requirement acts as a blunt substitute for attention. When the bank

is optimistic (µ0 > ξ), it would like to expand its risky portfolio beyond the implied ceiling

αmax. Once the ceiling binds, very high signals no longer translate into larger exposures,

so the marginal value of precision falls, and the bank rationally opts for noisier signals:

σ2∗
c > σ2∗. Whenever compliance is achieved by relaxing screening effort rather than by

repricing or resizing individual loans, we refer to this mechanism as risk parity by ignorance.

As the ceiling tightens (or attention costs rise), precision is dialed back further; in the

extreme, information acquisition can be crowded out altogether, leaving the bank compliant

yet uninformed.

With a pessimistic prior (µ0 < ξ), the capital constraint is typically slack. If the

regulator sets an exceptionally tight ceiling such that it does bind, the cap further suppresses

the already low risky-loan share and weakens screening incentives, thereby exacerbating

under-lending.

The key takeaway is that capital regulation and information regulation are complements :
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a capital requirement can curb tail risk, but only at the cost of weaker screening incentives.

Policies that both lower attention costs (e.g. via RegTech adoption) and set appropriate

capital buffers are therefore more effective than relying on either tool in isolation, as discussed

in Section 5.

5 Regulatory and Managerial Implications

Our results have direct and meaningful implications for regulatory frameworks and man-

agerial policy design. Below, we detail specific policy recommendations derived from our

model, emphasizing practical strategies for regulators and financial institutions to mitigate

cognitive-driven credit misallocation.

5.1 Supervisory design: Stress-tests for cognition

Regulators currently quantify risks using standardized market and liquidity metrics and rou-

tinely assess banks’ governance, internal controls, and operational resilience under Pillar 2.

Our model suggests extending this approach by explicitly incorporating banks’ cognitive

processing capacity, captured by the attention-cost parameter γ. While γ itself is latent,

supervisors can proxy it using readily available indicators such as loan-officer workloads,

audit-trail data on review times, employee turnover in risk-assessment units, IT investment

per loan officer, or the frequency of monitoring disruptions. Banks identified as having ele-

vated cognitive frictions could then face enhanced Pillar 2 capital surcharges or be required

to meet minimum staffing ratios in risk-assessment teams or to deploy certified underwriting-

technology upgrades to restore screening precision. As highlighted in Section 4, stress tests

should also explicitly model the interaction between capital constraints and cognitive capac-

ity to comprehensively assess bank resilience.

5.2 Capital incentives for precision

Our analysis indicates that capital constraints, while curbing excessive risk-taking, may in-

advertently weaken banks’ incentives for precise borrower screening (see Proposition 3(ii)).

Regulators should therefore introduce a precision-linked capital adjustment : banks demon-

strating consistently superior screening accuracy (measured by out-of-sample prediction per-

formance relative to peers) would receive lower capital charges or reduced risk-weight floors.

This incentive structure directly counteracts the informational disincentive created by bind-

ing capital constraints, encouraging continued investment in advanced screening technologies

and cognitive infrastructure. Unlike the enhanced Pillar 2 surcharges proposed in Section 5.1,
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which act as penalties on banks with high cognitive frictions, the precision-linked capital ad-

justment functions as a positive incentive, granting lower capital requirements to banks that

demonstrate superior screening accuracy.

5.3 Calibrating capital requirements

While Section 5.2 outlines one possible incentive tool (precision-linked adjustments), the

broader calibration challenge is to design capital requirements that balance financial stabil-

ity with robust information acquisition. Regulators should design the architecture of capital

standards to strike a balance between prudential safety and information-acquisition incen-

tives. As Section 4 demonstrates, overly stringent capital limits can lead banks to rationally

choose lower screening precision, creating a trade-off between financial stability and infor-

mational efficiency. One way to operationalize this principle is the precision-linked capital

adjustment described in Section 5.2, which rewards banks that demonstrate superior screen-

ing accuracy by lowering their capital charges. More generally, calibration might include

differentiated capital requirements based on banks’ demonstrable information-processing ef-

ficiency, thereby harmonizing prudential regulation with incentives for cognitive investment.

5.4 RegTech and fintech adoption

Beyond capital levers, regulators and banks can also address cognitive frictions through

technological innovation. Emerging technologies such as cloud-based machine learning plat-

forms for data extraction and credit scoring materially lower banks’ information-processing

costs and thus the attention-cost parameter γ. A lower γ raises the optimal signal preci-

sion, improving lending decisions (see Proposition 1). Regulators can accelerate adoption

by creating public–private sandboxes and by enabling secure, anonymized sharing of super-

visory data with approved technology providers. Such initiatives foster innovation, enhance

screening precision, and complement capital regulation by allowing banks to meet prudential

requirements without sacrificing informational quality.

5.5 Managerial attention dashboards

Banks should enhance risk governance by explicitly tracking screening precision and cognitive

load through an attention dashboard. Relevant indicators include model predictive accuracy,

override rates, analyst workloads, average time spent per credit file, backlog volume, system

response latency, IT investment per analyst, and staff turnover in credit-assessment teams.

These metrics can serve as real-time proxies for cognitive frictions. For example, unusually

18



short review times may signal rushed screening under overload, while excessive review times

may indicate system inefficiencies or decision fatigue. Similarly, rising override rates might

reflect reduced model trust or inconsistency in judgment, whereas persistently low override

rates could indicate disengagement or insufficient time for manual evaluation. Breaches of

internal thresholds, such as persistent backlogs or declining model accuracy, should prompt

governance-level reviews and corrective actions such as hiring staff, deploying RegTech, or

adjusting workflows. Dashboards should be reviewed monthly, with real-time alerts available

for critical deviations to support proactive cognitive risk management.

5.6 Disclosure simplification

Complex regulatory reporting burdens banks’ limited cognitive resources. Simplifying regu-

latory disclosures, standardizing reporting templates, and harmonizing borrower information

requirements (such as standardized ESG disclosures) could significantly reduce sector-wide

attention costs (γ). Streamlined disclosures, aligned with frameworks such as the Bank of

England’s Strong and Simple initiative (Bank of England PRA , 2022), would enable banks to

allocate cognitive resources more effectively, complementing capital regulation by indirectly

fostering improved credit screening precision.

6 Discussion

6.1 Testable Implications

Our model yields several testable empirical implications. Banks facing higher cognitive load,

proxied by loan officer backlogs or spikes, analyst turnover, or lower IT investments, should

exhibit weaker screening precision.

Moreover, conditional on observable borrower risk, higher attention costs tend to amplify

deviations from benchmark lending allocations. These benchmarks can be constructed using

publicly available default probabilities or external rating-agency default statistics.

Following a tightening of risk-weighted capital ratios, the misallocation gap (the difference

between actual and benchmark risky-loan shares) should initially shrink, reflecting improved

alignment. However, if the constraint becomes too tight, this gap may widen again, indicating

renewed misallocation due to diminished screening incentives.

Finally, banks that comply with capital requirements by reducing information acquisition

rather than raising equity are likely to experience higher default rates on newly originated

loans in the one- to three-year period following the change, compared to peers who main-

tained high screening precision or strengthened capital buffers.
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6.2 Conclusion

We develop a tractable model demonstrating how cognitive frictions, modeled via rational

inattention, reshape banks’ risk-taking and credit allocation decisions, explicitly incorporat-

ing the influence of regulatory capital requirements. Our framework embeds these frictions

into a micro-level borrower-screening model of bank lending and analyzes their interaction

with capital regulation, highlighting the implications for banks’ screening precision and credit

outcomes.

Our framework shows that cognitive limitations can systematically distort credit alloca-

tion, leading to under-lending or over-lending depending on banks’ prior beliefs. We also find

that while capital regulation is essential for curbing excessive risk-taking, it may uninten-

tionally weaken banks’ incentives to acquire borrower-specific information, creating a tension

between limiting systemic risk and preserving information-based screening efficiency. Bind-

ing capital constraints can give rise to what we term “risk parity by ignorance,” whereby

banks comply mechanically with the implied ceiling on risky-loan share by substantially

weakening their screening precision and, in the extreme, eliminating it altogether.

For policymakers, these insights suggest that traditional regulatory tools such as capital

ratios and liquidity buffers should be carefully calibrated to preserve screening incentives.

Explicitly incorporating cognitive constraints into supervisory frameworks can enhance reg-

ulatory effectiveness. Investments in technologies such as FinTech and RegTech, which lower

information-processing costs, offer dual benefits: improving credit allocation and reducing

systemic risk.

As discussed in Section 6.1, future empirical research could operationalize these predic-

tions using granular loan-level data.

While advances in artificial intelligence and machine learning promise to reduce informa-

tion frictions, cognitive constraints are likely to persist in legacy systems and slower-moving

institutions. Understanding how attention limitations interact with technological change

remains an important area for future research. A promising avenue is to develop a dynamic

model in which attention costs adapt endogenously, reflecting changes in technology or reg-

ulatory conditions, and enabling richer policy trade-offs over time. Ultimately, our model

offers a structured foundation for integrating cognitive dimensions into modern banking

theory, regulatory design, and empirical analysis.
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Appendix A: Technical Proofs

A.1 Cut-off Signal s∗(σ2)

The bank lends to the risky project whenever the posterior expected payoff exceeds the safe

payoff:

µ(σ2)(Rh −Rℓ) +Rℓ ≥ Rs. (27)

Write ∆R := Rh −Rℓ and define the break-even success probability

ξ :=
Rs −Rℓ

∆R
∈ (0, 1).

Posterior mean as a linear function of the signal. With a normal prior p ∼ N (µ0, τ
−1
0 )

and signal s = p+ ε, ε ∼ N (0, σ2), the posterior mean is

µ(σ2) = µ0 + κ(σ2)
[
s− µ0

]
, κ(σ2) :=

σ−2

τ0 + σ−2
=

1

1 + τ0σ2
∈ (0, 1). (28)

Solving for the signal cut-off. Substituting the linear form of µ(σ2) into the lending

inequality and solving for s yields the unique cut-off:

s∗(σ2) = µ0 +
ξ − µ0

κ(σ2)
= µ0 + (ξ − µ0)

(
1 + τ0σ

2
)
= ξ + τ0σ

2 (ξ − µ0). (29)

Standardized form. Because s ∼ N
(
µ0, τ

−1
0 + σ2

)
, the z-score of the cut-off used in the

main text is

Z(σ2) =
s∗(σ2)− µ0√

τ−1
0 + σ2

.

Expression (29) guarantees a strictly increasing cut-off in σ2: a noisier signal (larger σ2)

requires a higher realization s to justify lending to the risky project.

A.2 Proof of Proposition 1

The objective is V (σ2) = f(σ2)− γ/(2σ2) with f ′(σ2) < 0 and f ′′(σ2) > 0. The derivative is

V ′(σ2) = f ′(σ2) +
γ

2σ4
.

Since f ′(σ2) is strictly increasing and γ/(2σ4) is strictly decreasing, V ′(σ2) crosses zero

exactly once, implying a unique maximizer σ2∗ > 0. Solving V ′(σ2∗) = 0 yields the stated

expression for σ2∗.
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Differentiating the first-order condition with respect to γ gives

[
f ′′(σ2∗) + 3γ

2σ5∗

]dσ2∗

dγ
+

1

2σ4∗ = 0. (30)

Because the bracketed term is positive, we obtain dσ2∗/dγ = σ2∗/(2γ) > 0, completing the

proof.

A.3 Proof of Proposition 2

Let σ2∗(γ) be the optimal variance. Recall that Z(γ) =
s∗
(
σ2∗(γ)

)
− µ0√

τ−1
0 + σ2∗(γ)

with s∗(σ2) =

ξ + τ0(ξ − µ0)σ
2. The ex-ante risky-loan share is α∗(γ) = 1− Φ

(
Z(γ)

)
.

Part (a). From Proposition 1, dσ2∗/dγ = σ2∗/(2γ) > 0. Differentiate Z:

∂Z

∂σ2
= (ξ − µ0)

τ
3/2
0

2
√
1 + τ0σ2

,
dZ

dγ
=

∂Z

∂σ2

dσ2∗

dγ
. (31)

Hence sign
(
dZ/dγ

)
= sign(ξ−µ0). Because α

∗ ′(γ) = −ϕ
(
Z(γ)

)
dZ/dγ and ϕ > 0, we obtain

signα∗ ′ = − sign(ξ − µ0). For every γ > 0 the difference x(γ) = α∗(γ) − αFB retains this

constant sign, so ∆′(γ) = |x′(γ)| = |α∗ ′(γ)| > 0.

Part (b). If µ0 < ξ then α∗ ′(γ) < 0 for all γ and α∗ ↓ 0 as γ → ∞; continuity yields a

unique γh with α∗(γh) = 0. If µ0 > ξ the derivative is positive and α∗ ↑ 1 as γ → ∞.

A.4 Proof of Proposition 3

Recall the unconstrained value function V (σ2) = f(σ2)− γ/(2σ2) with first-order condition

f ′(σ2∗) + γ/(2σ4∗) = 0. Under the capital requirement, the objective becomes Vc(σ
2) =

fc(σ
2)− γ/(2σ2) where

fc(σ
2) = (Rh −Rℓ)

∫ s†(σ2)

s∗(σ2)

[
µ(σ2)− ξ

]
ϕΣ(s) ds, (32)

and the upper limit s†(σ2) satisfies Pr[s ≥ s†] = αmax. Define the first-order condition under

the capital requirement as

f ′
c(σ

2∗
c ) +

γ

2σ4∗
c

= 0. (33)

Part (i): Slack constraint (α∗ ≤ αmax). If the capital constraint is not binding at

s†(σ2∗) = s∗(σ2∗) and hence fc(σ
2) = f(σ2) on a neighborhood of σ2∗. Equation (33) reduces
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to the unconstrained first-order condition, yielding σ2∗
c = σ2∗. Part (i) follows.

Part (ii): Binding constraint (α∗ > αmax). When the capital constraint binds, s†(σ2)

is finite and strictly larger than s∗(σ2). Differentiating (32) gives

f ′
c(σ

2) = f ′(σ2)− (Rh −Rℓ)
[
µ(σ2)− ξ

]
ϕΣ

(
s†(σ2)

) ∂s†

∂σ2
. (34)

where the second term is non-negative because ∂s†/∂σ2 > 0. Hence f ′
c(σ

2) ≥ f ′(σ2) for every

σ2, with strict inequality when the cap is binding. Since f ′(σ2) < 0, f ′
c is closer to zero than

f ′. The term γ/(2σ4) in (33) is unchanged, so the root of the equation shifts to the right:

σ2∗
c > σ2∗,

establishing part (ii).

Part (iii): Effect on misallocation

• Optimistic prior (µ0 > ξ). Unconstrained lending already exceeds the first-best share

αFB. Imposing the capital requirement lowers the risky-loan share toward αmax (mit-

igating over-lending), but the rise in σ2∗
c weakens screening precision, which increases

misallocation. The net effect on |α̃∗ − αFB| is therefore non-monotone in γ.

• Pessimistic prior (µ0 < ξ). The capital requirement binds only if the regulator chooses

an implied ceiling tighter than the bank’s unconstrained risky-loan share, αmax <

α∗(σ2∗). When this happens, the positive-gain region [s∗, s†] is truncated, so fc(σ
2) <

f(σ2) and the first-order condition again shifts rightward. Hence σ2∗
c > σ2∗, the bank

acquires less information, and the under-lending gap widens. If instead αmax ≥ α∗(σ2∗),

the capital constraint is slack, σ2∗
c = σ2∗, and the baseline allocation obtains.
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Appendix B: Glossary of Symbols

Table B1: Glossary of Key Symbols

Symbol Meaning / Role

p Borrower’s true success probability (latent)

µ0 Bank’s prior mean belief about p

τ0 Bank’s prior precision (inverse of prior variance)

s Noisy signal about borrower quality: s = p+ ε

ε Signal noise: ε ∼ N (0, σ2)

σ2 Variance of signal noise (i.e., inverse of signal precision

σ−2)

γ Attention-cost parameter (higher γ implies costlier pre-

cision)

C(σ−2) Cognitive cost of acquiring signal precision: C = γ
2σ2

µ(σ2) Posterior mean of p after observing s

Rs Return on the safe loan

Rh Return on risky loan if successful

Rℓ Return on risky loan if failed

ξ Break-even success probability: ξ = Rs−Rℓ

Rh−Rℓ

s∗(σ2) Signal threshold for lending to risky project

s†(σ2) Adjusted signal threshold to enforce capital require-

ment: Pr[s ≥ s†] = αmax

Z(σ2) Standardized cut-off: Z = s∗−µ0√
τ−1
0 +σ2

α(s) Lending rule: 1 if s ≥ s∗, else 0

α∗(σ2) Aggregate risky-loan share (equals Pr[s ≥ s∗])

αFB First-best risky-loan share under perfect information

αmax Implied ceiling on risky-loan share (derived from the

capital requirement)

∆(γ) Misallocation gap:
∣∣α∗ − αFB

∣∣
f(σ2) Expected gain from information (unconstrained case)

fc(σ
2) Expected gain from information under minimum capital

requirement

V (σ2) Net benefit of information: V = f(σ2)− C(σ−2)

Vc(σ
2) Constrained net benefit: Vc = fc(σ

2)− C(σ−2)
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Online Appendix C: Slow Equity Adjustment and Asset-

Side Compliance

This appendix shows formally that when new equity arrives with a lag and incurs issuance

costs, a bank that suddenly breaches its capital ratio can regain compliance only by adjusting

its risky-loan share αt in the current period. Equity issuance affects the constraint no earlier

than the next period, so it becomes a secondary (future) adjustment margin.

C.1 Dynamic set-up

Time is discrete, t = 0, 1, 2, . . . . At the start of period t, the bank holds equity Kt and

chooses

(αt, ∆Kt) ∈ [0, 1]× [0,∞),

where

• αt = fraction of the loan book invested in the risky technology this period;

• ∆Kt = equity announced for issuance at date t (shares sold today, proceeds received

at t+1).

Timing within period t.

Stage 1: The bank observes its beginning-of-period equity Kt and the current shock (e.g.

a change in risk weights or asset values).

Stage 2: It selects (αt,∆Kt).

Lending profits Π(αt, σ
−2) are realized during the period. The function Π is strictly

increasing in expected return and already incorporates the attention cost analyzed in the

main text, so no additional derivations are required here.

Stage 3: If the bank’s capital ratio at the end of period t violates the regulatory floor θ,

it pays a supervisory penalty ϕ > 0.

Stage 4: The equity issue settles: Kt+1 = Kt +∆Kt (new shares are now on the balance

sheet).

Capital-ratio constraint (end of period t). Risk-weighted assets after lending are

RWAt = wαt + w̄ (1− αt), 0 < w̄ < w ≤ 1,
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so the regulatory ratio equals Kt/RWAt. Define

αmax
t (Kt) := max

{
α ∈ [0, 1] :

Kt

wα + w̄(1− α)
≥ θ

}
.

In closed form,

αmax
t (Kt) = min

{
1, max

{
0, Kt/θ−w̄

w−w̄

}}
.

If αt > αmax
t (Kt) the penalty ϕ is incurred.

Equity-issuance cost. Announcing ∆Kt ≥ 0 shares costs

Ψ(∆Kt) = η
2
(∆Kt)

2, η > 0,

with no proceeds until t+1.

Objective. The bank maximizes discounted profit

Vt(Kt) = max
αt,∆Kt

{
Π(αt, σ

−2)−Ψ(∆Kt)− ϕ1{αt > αmax
t (Kt)}︸ ︷︷ ︸

period-t profit net of costs

+ β Vt+1

(
Kt +∆Kt

)}
,

where β ∈ (0, 1) is the bank’s discount factor. Negative signs appear in front of Ψ and ϕ

because they reduce profit; this is therefore an unconstrained maximization problem.10

C.2 The optimal adjustment rule

Lemma 1 (Instantaneous asset-side compliance). Define

αmax
t (Kt) = max

{
α ∈ [0, 1] :

Kt

wα + w̄(1− α)
≥ θ

}
.

If the penalty ϕ is large enough that violating the constraint is never optimal, then the bank’s

optimal risky-loan share is α∗t = αmax
t (Kt).

Proof. Any αt > αmax
t (Kt) triggers the penalty ϕ. Because ϕ dominates the incremental

lending profit by assumption, such choices are strictly dominated. Among the penalty-free

choices [0, αmax
t (Kt)], Π is increasing in αt, so the bank attains its maximum at αmax

t (Kt).

10The one-period lending payoff Π(αt, σ
−2) is strictly increasing in the risky share αt (all else equal) and

already incorporates the endogenous information cost analyzed in Sections 2–4 of the main text.
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Lemma 2 (Optimal equity issuance). Given α∗t, the optimal equity issue solves

η∆K∗
t = β

∂Vt+1

∂K
(Kt +∆K∗

t), with ∆K∗
t ≥ 0.

Proof. Substituting α∗t from Lemma 1 into the objective removes the penalty term. The

maximization over ∆Kt reduces to

max
∆Kt≥0

{
−Ψ(∆Kt) + βVt+1(Kt +∆Kt)

}
.

Ψ is strictly convex and differentiable; Vt+1 is strictly concave inK (equity relaxes tomorrow’s

constraint). The Kuhn–Tucker conditions yield

η∆K∗
t − β ∂KVt+1 = 0, ∆K∗

t ≥ 0,

which gives the stated first-order condition.

Proposition 4 (Asset-side adjustment is always required). In any period when the capital

ratio is violated at the start, the bank must set αt no higher than αmax
t (Kt) to regain com-

pliance. Equity issuance ∆K∗
t can never restore the ratio within the same period because the

proceeds arrive with a lag.

Proof. Equity issued at date t is added to K only at t+1, so it cannot affect the end-of-

period-t capital ratio. By Lemma 1, the only available control that changes the ratio today

is αt. Therefore, the bank must choose α∗t = αmax
t (Kt) to avoid the penalty ϕ.

Corollary 1 (When does equity issuance occur?). The bank sets ∆K∗
t = 0 unless

β
∂Vt+1

∂K
(Kt) > 0.

Issuance is therefore purely forward-looking: it occurs only when the discounted marginal

value of additional equity in future periods exceeds the marginal issuance cost η∆Kt. Whether

that happens is irrelevant for Propositions 2–3 in the main text, which describe period-t mis-

allocation; those results depend solely on the instantaneously chosen α∗t.

Proof. Set ∆Kt = 0 in Lemma 2. If the right-hand side is non-positive, the Kuhn–Tucker

complementarity implies the optimum is ∆K∗
t = 0. Issuance arises only if the marginal

continuation benefit is strictly positive.
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C.3 Implications

Proposition 4 establishes that regardless of the level of issuance cost η, the lag in settlement

forces the bank to meet today’s capital requirement by adjusting its risky-loan share αt. Equity

issuance is, at best, a secondary tool for easing future constraints; Corollary 1 shows it

activates only when the discounted marginal benefit outweighs the cost.

Hence, the fixed-equity assumption in Sections 2–4 of the main text is without loss of

generality for analyzing same-period lending behavior and misallocation. All comparative-

static results carry over unchanged.
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