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Abstract. We study the value of and the demand for instrumentally-valuable

information in a simple decision environment where signals are transparently

biased. We observe remarkable sophistication in information aggregation and

acquisition. A majority of our subjects (63%) made unbiased reports even when

faced with biased signals and the few subjects who made biased reports were

split between under- and over-correcting for the signal bias. When allowed to

buy pairs of opposite or similarly biased information sources, subjects actively

shopped for diverse information at personal costs, and their demand for diverse

information reacted rationally to its value and cost. Subjects who were worse at

aggregating information, were more likely to purchase diverse signals, perhaps

in an attempt to make their inference problem easier. Our results advocate for

greater transparency in media bias, so that individuals can choose the right

portfolio of information to make better choices.
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In the 2020 Gallup poll, 83 percent of Americans recognized “a great deal”

or “a fair amount” of political bias in news coverage, a number that has risen

steadily over the last 20 years.1 Media sources with contradictory biases can

create completely different impressions of what actually happened through the

selective omission of details and the choice of words. As an example of media

bias, Gentzkow and Shapiro [2006] discuss the media coverage of the firefight in

the Iraqi city of Samarra on December 2, 2003. Fox News, a conservative US

based news channel, began its story with the following paragraph:

In one of the deadliest reported firefights in Iraq since the fall of

Saddam Hussein’s regime, US forces killed at least 54 Iraqis and

captured eight others while fending simultaneous convoy ambushes

Sunday in the northern city of Samarra.

And the English-language website of the Qatar-based Al Jazeera (AlJazeera.net)

began its report on the same incident with:

The US military has vowed to continue aggressive tactics after say-

ing it killed 54 Iraqis following an ambush, but commanders admit-

ted they had no proof to back up their claims. The only corpses

at Samarra’s hospital were those of civilians, including two elderly

Iranian visitors and a child.

The last two US elections have further increased the focus on media bias in the

coverage of political issues and candidates. Donald Trump, who served as the

45th president of the United States, routinely claimed that liberal media bias

was undermining his political campaign.2 The 44th president, Barrack Obama,

1See the report here.
2For example, Trump commented “If the disgusting and corrupt media covered me honestly
and didn’t put false meaning into the words I say, I would be beating Hillary by 20%,”
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has expressed similar views about the bias of conservative news sources.3 The

media bias extends to the coverage of financial news: Niessner and So [2018] find

that a financial news story is approximately 22 percent more likely to be covered

if it is negative, creating an overall negative media bias in financial news coverage.

Readers who exclusively access media sources that share identical bias would

only get an incomplete account of the whole reality. As creatures that often

make quick judgments based on heuristic-driven biases4, for example hot hand

bias (marquis de Laplace [1840]), Gambler’s Fallacy (Chen et al. [2016a]), law

of small numbers (Rabin [2002]) and base rate neglect (Kahneman and Tversky

[1973]) to name a few, how do we acquire and aggregate instrumental information

when information sources are transparently biased? Do biased sources lead to

severe and systematic errors? Do we diversify information sources when we have

access to a market for information? This paper uses experimental methods to

find an answer.

We immerse subjects in a controlled environment of selective information-

omission to compare the accuracy of their opinions under diverse versus biased

information sources. Every round, subjects are asked to guess an objective state,

the average of seven i.i.d random draws from the simple uniform distribution

{1,2,3,..100}. To incentivize subjects, more accurate guesses earned a higher ex-

pected payment. In our first two treatments, subjects were randomly shown only

three of the seven random draws as signals beforehand. We call signals between

51-100 high and those between 1-50 low. The bias in observed signals is extreme

when all three observed signals are high, thus creating a high-bias, or when all

three observed signals are low, creating a low-bias. This is similar to exclusively

3Obama has commented “If I watch Fox News, I wouldn’t vote for me.”
4Psychology studies have long proposed a dual-process model for two modes of information-
processing: a “fast, associative” one “based on low-effort heuristics”, and a “slow, rule based”
one that relies on “high-effort systematic reasoning” (Kunda [1990]).
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accessing media sources that share the same reporting bias on an issue with bipo-

lar political divide. Instead, if the observed signals are a mix of high and low,

then we will describe the signals as diverse. Our data-generating process is simple

and the bias of observed signals is completely transparent to subjects.

In the Baseline treatment (called No Colors treatment), the subjects do not

have any information about the unobserved signals, other than knowing that they

are equally likely to be any number between {1,2,3,..100}. Given the observed

three signals were randomly chosen from the seven draws, subjects might assume

that their observed sample is “representative” of the seven draws and over-infer

from it. If subjects ignored the information from the unobserved signals and

simply calculated the average of the three observed signals (sample-average),

their reports would be biased towards the polarity of extreme signals. Instead

if they fell for the Gambler’s fallacy, inferring mistakenly that observing three

low (or high) signals increases the likelihood of the unobserved signals being of

the opposite polarity, their reports would be biased in the opposite direction of

the extremity of their signals. Contrary to our prior expectations, we find that

subjects are remarkably accurate in adjusting their opinions for extreme signal

bias: more than 60% of our subjects are on average within 5 points of the optimal

Bayesian report. Digging deeper, we find that only 16% of subjects exhibited a

consistent bias towards the sample-average heuristic and only 20% exhibited a

consistent bias towards the Gambler’s fallacy. The majority (64%) subjects are

able to counteract the effect of biased information when bias is transparent!

As a benchmark for an easier decision environment, we designed the Colors

treatment, where the subjects are also informed how many of the four unobserved

signals lie between 1-50 (called Blue signals) or 51-100 (called Red signals). At a
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minimum, this alerts the subjects that the observed signals might not be infor-

mative about the unobserved signals, and at a maximum, it helps them account

for the unobserved signals. As expected, this additional information improves

the accuracy of subjects’ reports without introducing any bias. We also find that

playing the simpler Colors treatment before the Baseline (No Colors) treatment

does not improve the performance in the Baseline treatment.

In our next two treatments, Active Choice and Average, instead of be-

ing assigned to signals randomly, subjects “buy” the signals they observe. We

place subjects in a market-place for information to study how subjects, facing

information bias, opt into or opt out of particular informational environments.

Information in this setting is instrumentally valuable as it helps subjects better

guess the payoff relevant state of a world. We use a pricing mechanism to vary

the cost of different signal combinations, usually making diverse signals costlier

than extreme signals. In the Active Choice treatment, subjects are told the price

of observing a signal of each color, and they choose how many of their observed

three signals should be Red or Blue. They see the realization of those three signals

and the colors of the other four signals, before guessing the average. Thus the

treatment is similar to the Colors treatment, but subjects can actively purchase

three signals of the same color or a mixture of signals of opposite bias. Each

transaction reveals when subjects believed that the instrumental value of diverse

signals was higher than its cost. When diverse and extreme signals are equally

costly, we find that approximately 95% of subjects choose a diverse portfolio of

signals. The demand for diverse signals persists as the cost of diverse information

increases. As the price for diverse signals increases, subjects become less likely

to buy them, but even at the most extreme price differentials 20% of subjects
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continue to purchase diverse signals. Notably, we also find evidence of metacog-

nition in signal choice: subjects who were worse at aggregating information were

also more likely to purchase diverse signals, perhaps in an attempt to make their

inference problem easier.

In our Average treatment, we measure if subjects can identify when the value

of diverse information objectively increases, and if they react to it in their mar-

ketplace transactions. To exogenously increase the value of diverse signals, we

impose the rule that after subjects choose a signal portfolio, a sample-average

heuristic would calculate the report on their behalf. Our intervention significantly

increases the value of diverse information as the accuracy of the sample-average

heuristic is severely hurt under extreme information. The subjects know that

accurate reports pay more, and thus, are incentivized to select signals that pre-

serve accuracy under the imposed sample-average rule. In our experiments, most

of the subjects realize that the accuracy premium from diverse signals is even

higher under the sample-average rule and it is reflected in their signal choices.

The demand for diverse signals is even higher in the Average rounds, increasing

by more than 50% at intermediate information costs.

Our results advocate for greater transparency in media bias, so that individuals

can choose the right portfolio of information to make better choices. For example,

websites like Allside.com or Adfontesmedia.com that explain and measure various

dimensions of media bias can be extremely useful in the quest for transparency.

In particular, All Sides is a news website that presents multiple sources side by

side in order to provide the full scope of news reporting. It also provides a Bias

Ratings page that allows a visitor to filter a list of news sources by the bias on

the political spectrum (left, center, right).5

5See their media bias chart here
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Our paper is related to information acquisition and a large literature, pioneered

by Tversky and Kahneman [1971, 1974], that studies the prevalence of biases

and heuristics in probabilistic decisions. For clean identification, our experimen-

tal environment excludes the scope for motivated reasoning (Kunda [1990]), the

tendency of people to conform assessments of information to some goal or end

extrinsic to accuracy. Similarly, it also excludes mistakes originating in the failure

of hypothetical or contingent reasoning; any event that subjects should condition

on is clearly and explicitly displayed. We discuss the related literature in detail

in Section 1.

1. Related Literature

The Sample-average rule, that subjects might find naturally attractive in our

decision environment, belongs to the class of simplistic heuristics that overweight

one type of information over other available information.6 For example, experi-

mental subjects frequently discard or under-weight base-rate information because

it is not relevant to judgements of representativeness (Kahneman and Tversky

[1973]), or because the likelihood information is more“vivid, salient, and concrete”

(Nisbett and Ross [1980]). Subjects in our treatments might similarly overweight

the information from the three signals that they observe, thinking it is represen-

ative of the seven signals, or because the information it provides is more salient

and concrete. A recent literature in cognitive psychology connects such behavior

to people behaving like “naive intuitive statisticians” who despite being skilled

in making judgements based on memory-stored frequencies, often naively assume

that their information samples are representative and that sample properties can

be directly used to estimate population analogs (Fiedler and Juslin [2006]).

6Benjamin [2019] provides a detailed literature review.
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The Gambler’s Fallacy (GF in short) is one of the oldest documented probabilis-

tic biases. marquis de Laplace [1840] described people’s belief that the fraction

of boys and girls born each month must be roughly balanced, so that if more

of one sex has been born, the other sex becomes more likely. Rabin [2002] and

Oskarsson et al. [2009] review the extensive literature that documents the GF in

surveys and experiments. Chen et al. [2016a] finds consistent evidence of negative

autocorrelation in decision making that is unrelated to the merits of the cases

considered in three separate high-stakes field settings: refugee asylum court de-

cisions, loan application reviews, and Major League Baseball umpire pitch calls.

They link it to people underestimating the likelihood of sequential streaks oc-

curring by chance—leading to negatively autocorrelated decisions that result in

errors. Similarly, experimental participants playing a game with a unique mixed-

strategy Nash Equilibrium or tennis players making a serve switch their actions

too often (Rapoport and Budescu [1997], Gauriot et al. [2016]), and this excessive

switching could reflect the mistaken GF intuition for what random sequences look

like.

Studies on information extraction are also closely related to the growing litera-

ture on contingent reasoning or hypothetical thinking. For example, to avoid the

winner’s curse, bidders in a common value auction should extract information

from their private signal, while conditioning on the hypothetical event of winning

the auction. Similarly, voters should extract information from their private sig-

nal, while conditioning on the hypothetical event of being pivotal to the outcome.

Esponda and Vespa [2019], Araujo et al. [2021] find that experimental subjects

routinely fail to perform such contingent reasoning while processing their private

information. Enke [2020] finds that when subjects are exclusively shown infor-

mation consistent with their initially reported prior, they often behave as if the
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sample selection does not even come to their mind. Enke [2020] provides further

causal evidence that the frequency of such incorrect mental models is a function

of the computational complexity of the decision problem. To disentangle the

value of and demand for diverse information from these other behavioral forces,

we offer subjects a simple decision problem where the difference between extreme

and diverse signals is transparent, even to subjects who cannot reason through

hypothetical events.

Our paper is also related to the literature on the value of instrumental infor-

mation. Duffy et al. [2019, 2021] study how subjects choose between social and

private information sources that vary in relative quality. Charness et al. [2021]

and Montanari and Nunnari [2019] study how subjects update their beliefs about

a payoff-relevant state of the world while choosing exactly one of two information

sources (signals) which have mutually opposite biases, and thus are the closely

related. In both studies, subjects had to guess the probability that a single ball

drawn randomly from an urn would be of a particular color, and also guess the

color of the ball. To inform their guesses, subjects first chose one of a pair of

computerized advisors, from which to receive an informative signal about the ball

drawn. Subjects were fully informed of the probabilities with which each advi-

sor would provide each signal as a function of the true color of the ball drawn

from the urn. Charness et al. [2021] find that the fraction who choose infor-

mation optimally and the fraction who use a mistaken confirmation-seeking rule

are roughly equal. In Montanari and Nunnari [2019], when the two information

sources are equally reliable, subjects select information optimally. But, when the

source less supportive of the prior belief is more informative, subjects display

a dis-confirmatory pattern of information acquisition that is not always consis-

tent with the theoretical predictions. Even in cases where information is not
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instrumentally valuable, subjects might have preferences over how information

is disclosed (Zimmermann [2015], Ganguly and Tasoff [2017], Masatlioglu et al.

[2017], Nielsen [2020]). An emerging literature on motivated reasoning addresses

how we often seek particular information and stay willfully ignorant of other in-

formation, because we wish to arrive at our desired conclusion (Festinger [1962]).

We deliberately frame our experimental tasks to remove the scope for motivated

reasoning, as we want to to study to the demand for information with purely

instrumental value.

Acquisition of instrumental information has also been studied in applied set-

tings. Fuster et al. [Forthcoming] use an experimental survey instrument to de-

termine which pieces of economic data subjects prefer to consult when predicting

house price movements. Burke and Manz [2014] asked subjects to forecast infla-

tion in a simulated laboratory economy, and provided subjects with a choice of

viewing historical information on inflation, interest rates, unemployment, pop-

ulation growth, or price changes of specific commodities, before making their

forecast. In both environments choices of more informative sources were cor-

related with measures of economic sophistication. Mikosch et al. [2021] study

how information acquisition about the future development of the exchange rate

is related to the exposure to and uncertainty about exchange rate risk, and the

perceived information acquisition costs. Roth et al. [2022] find that a higher

personal exposure to unemployment risk during recessions increase the demand

for an expert forecast about the likelihood of a recession. Capozza et al. [2021]

provide a detailed review the emerging literature on information acquisition in

field settings.

Most of the lab-experimental literature on information-acquisition compares

empirical information choice to a theoretical optimal calculated for the Bayesian
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subjects. This allows for sharp theoretical predictions, but the test for optimal

signal choice becomes a joint test of optimal choice and subjects updating using

Bayes Rule. The information-choice data can only reject optimal choice when

information-updating behavior is consistent with Bayes Rule. There are, how-

ever, some exceptions in the literature. Charness et al. [2021] use a treatment

with exogenously assigned signals to show that the Bayesian optimal information

choice was also optimal for the behavioral non-Bayesian types in their subject pool

(i.e. the optimality of information choices is not dependent on an assumption of

Bayesian updating). Ambuehl and Li [2018] measure the value of information

against both a Bayesian benchmark and an empirical updating benchmark and

find that subject’s value for information is higher, but still lower than optimal,

when measured against the empirical benchmark. We instead test if subjects react

optimally to an increase in the value of diverse signal choice and we do not require

subjects to be Bayesian. All we require is that diversification is more valuable

under the sample-average rule than whatever updating rule subjects actually use.

As we show later in Figure 4.3, this is indeed true for all-but-one individual par-

ticipant in our study. Further, in our Average treatment we exogenously impose a

sub-optimal updating rule on subjects which allows us to measure, unconfounded

by updating ability, subject propensity to select information that offsets updating

biases.

2. Experimental Design

To study the acquisition and aggregation of extreme information, we conduct 4

treatments: No Colors (NC), Colors (C), Active Choice (AC), Average (Avg).

The first two treatments randomly allocate signals (information) to study

information aggregation in isolation. The last treatment fixes the information

aggregation procedure exogenously to study information acquisition in isolation,
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and the AC treatment combines both information aggregation and information

selection tasks.

2.1. Baseline/ No Colors treatment (NC):. The first treatment is No Colors

(NC henceforth). Each round in the NC treatment has the following structure:

(1) Signal realization stage: A set of seven signals are independently drawn

from the numbers 1 to 100. Each signal, si for i ∈ {1, . . . , 7} is assigned

a color based on its realization: Blue if si ≤ 50 and Red if si ≥ 51.

(2) Information stage: In the experiment, we framed s1 as the subject’s own

signal and each other signal {s2, .., s7} as belonging to a passive computer

“player”. Subjects see the realization of s1, and two other randomly chosen

signals (say s2 and s3).
7 We use this framing to imitate information flow

in the subject’s social network. Subjects are not informed about the colors

of the remaining 4 signals. For example, in a particular round, if the signal

realization were { 10︸︷︷︸
s1

, 20︸︷︷︸
s2

, 30︸︷︷︸
s3

, 40, 50, 60, 70}, and s2 and s3 were shown

to the subject, then the subject would observe {10, 20, 30} and but they

would not know the color composition of the unobserved 4 signals. Thus

the name No Colors treatment.

(3) Updating/ aggregation stage: Subjects state their best estimate of

the average value s =
∑7

i=1 si
7

given the information above.

One crucial feature of our design is that we did not provide any feedback to the

subjects in between the rounds, in any of our treatments. Subjects were provided

with a hand-held calculator, although few subjects elected to use the calculators;

we did not want to test the ability of subjects to do basic arithmetic.

7Given the signals are ordered randomly, this is equivalent to showing subjects any three signals
randomly.
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At the end of the experiment, one of the rounds was randomly chosen as the

round for which subjects were paid. For the chosen round, the guessing error was

calculated as the absolute difference between the reported guess and the realized

s =
∑7

i=1 si
7

. Each subject won a large prize worth 200 points with max(100 −

6× error,0)% chance, and a small prize worth 50 points with the complementary

probability. This payment function ensures that reports are unaffected by the

curvature of the subject’s utility function over money. The linear loss function

was chosen as it is simple and it incentives reporting the expected value of s̄

truthfully under an assumption that the belief about s̄ is symmetric and single

peaked.8

2.2. Colors treatment (C):. The Colors treatment is identical to the No Colors

treatment, except, in the Information stage, they are also shown the colors

of all the remaining 4 remaining signals. For example, in a particular round,

suppose the signal realizations were { 10︸︷︷︸
s1

, 20︸︷︷︸
s2

, 30︸︷︷︸
s3

, 40︸︷︷︸
≤50

, 50︸︷︷︸
≤50

, 60︸︷︷︸
>50

, 70︸︷︷︸
>50

}. If

the realizations s2 and s3 were shown to the subject, then the subject observed

{10, 20, 30} and additionally they would know that among the unobserved 4,

there are 2 Blue (<= 50) and 2 Red (> 50) signals. The Colors treatment makes

the importance of unobserved signals salient.

2.3. Active choice treatment (AC):. The AC treatment is identical to the

Colors treatment, except, in the Information stage, subjects make an active

choice about the signals they observe. They observe s1 by default. They can

choose to observe the realizations of two Blue signals or two Red signals or one

signal of each color. For example, in a particular round, if the signal realization

were { 10︸︷︷︸
s1

, 20, 30, 40, 50︸ ︷︷ ︸
Blue

, 60, 70︸ ︷︷ ︸
Red

}, then the subject only sees {10} by default. If she

8This assumption obviously holds for Bayesian subjects, but can hold more generally.
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chooses to see 2 Blue signals, then she is randomly shown exactly two signals from

{20, 30, 40, 50︸ ︷︷ ︸
Blue

} and she is told that among the unobserved 4, there are 2 Blue and

2 Red signals. If she instead chooses to see 2 Red signals, then she is shown both

{60, 70} and she is told that all the unobserved 4 signals are Blue. If she instead

chooses to see 1 signal of each color, then she is shown one of {20, 30, 40, 50}, one

of {60, 70}and she is told that among the unobserved 4, there are 3 Blue and 1

Red signals.

The subjects made their signal selection without knowing if their choice were

available. In the improbable event that the selected signals are not available

(for example, all but one of {s2, s3, .., s7} are Blue but the subject requests two

Red signals), then the subject is shown a combination of signals that is as close

as possible to matching the subjects requested combination of colors (in this

example, the subject would be shown one each of Red and Blue signals). The

subject is always informed of the colors of any unobserved signals (in this example,

there are 4 unobserved Blue signals).

Further, each round, subjects are paid p1 for each signal they observe that is

the same color (Blue/ Red) as s1 and p2 for each observed signal that is of the

opposite color from s1. We vary p1 and p2 to generate the price-differences

∆p = (p1 − p2) ∈ {−6,−2, 0, 2, 4, 6, 8, 10, 14, 20}

When ∆p > 0, subjects have an explicit monetary incentive for choosing more

signals that are of the same color as s1. When ∆p < 0, they have the opposite

incentive, and when ∆p = 0, there is no explicit incentive and subjects should

choose the set of signals that they subjectively view as the most informative.

2.4. Average treatment (Avg): The Average treatment is identical to the

Active Choice treatment in the Information stage: subjects choose the colors of
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Features Treatments

Color (C) No Color (NC) Active Choice (AC) Average (Avg)

Signal
Random Random Active choice Active choice

acquisition

Information
Active choice Active choice Active choice Sample-Avg

Aggregation

Colors of
Available Unavailable Available Not Applicable

unobserved balls

Table 1. Features of different treatments.

the signals, subject to the available price-difference ∆p. But, subjects know that

their report in the Updating/ aggregation stage is exogenously constrained to be

the sample average of their three observed signals. Thus, if a subject observes

{10, 20, 30}, then the software would report 20 on their behalf. Similarly, if they

observe {10, 20, 60}, then the software would report 30 on their behalf. Thus

the name Average treatment. This treatment manipulation increases the value

of diversified signals for all subjects, given that the sample-average updating rule

suffers a huge bias when all observed signals are extreme. As before, we vary p1

and p2 to generate the price-differences

∆p = (p1 − p2) ∈ {−6,−2, 0, 2, 4, 6, 8, 10, 14, 20}

In the Appendix, we report on a fifth treatment. We do not include this treat-

ment in the main text because, as discussed in the Appendix, there is evidence

of substantial subject confusion in the novel part of the extra treatment. The

sessions that included the fifth treatment also included some rounds of the Col-

ors and Avg treatments as well. We exclude all sessions that included the fifth

treatment from the main text, but include the data from those sessions in the

Appendix. All our results are robust to including the fifth treatment sessions.
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Session name
Treatment(s) run

#Sessions
Rounds 1-20 Rounds 21-40

C1+NC2 Colors No Colors 2
NC1+C2 No Colors Colors 2
AC+Avg Active Choice Average 2

Table 2. Number of sessions conducted with each pairwise combination
of treatments. C1 and C2 mean Colors treatment were run in the first
and second half of the session respectively. Similarly, NC1 and NC2.

2.5. Sessions. Each session was run with around 15 subjects. Sessions lasted 40

rounds, grouped into 2 treatment-blocks of 20 rounds each. In the table below

we summarize the treatment composition of the sessions

Subjects were paid for the sum of points earned during one randomly selected

round. At the end of the experiment, points were converted to US Dollars at an

exchange rate of $0.07 per point. Thus, the larger prize (200 points) was worth

$14 and the smaller prize (50 points) was worth $3.50. They were also paid a

$5.00 show up fee in addition to any money they earned during the experiment.

We conducted 6 sessions in total, with a total of 89 subjects. Our experiments

were conducted in-person at the Purdue University, using student subjects drawn

from Purdue’s implementation of the ORSEE subject database [Greiner, 2015],

during 2018. The experiments were programmed using oTree [Chen et al., 2016b].

3. Hypotheses

3.1. Information aggregation.

Given the information subjects have while making a guess, the Bayesian report

for both Color and No Color rounds can be calculated as follows. For the Color
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treatment the Bayesian report is given by

R∗
C =

s1 + s2 + s3 + 25.5× (#Blue) + 75.5× (#Red)

7

where #Blue and #Red are the number of unobserved Blue and Red signals,

respectively, the subscript C denotes the Colors treatment, and the superscript

∗ denotes the optimal Bayesian report. In the NoColor treatment the Bayesian

report is

R∗
NC =

s1 + s2 + s3 + 50.5× 4

7

where the subscript NC denotes the NoColor treatment. The Color treatment

provides subjects with more information about the unobserved signals and will,

on average, lead to better performing reports in the Color treatment than the

NoColor treatment. Our first set of hypotheses concern the effects of the

distribution of the three observed signals on the quality of reports. We call a set

of three signals extreme if they are all Red (51 or above) or all Blue (50 or

below). If a set of signals is not extreme then it is diversified. For example,

{10, 20, 30} would be a set of extreme signals, and so would {95, 60, 70}. We

initially focus on two behavioral biases that are ex-ante plausible in the NoColor

rounds.

1) Sample average: An intuitive but incorrect decision rule would be to

completely disregard any information present in the unobserved signals and

simply report the sample average of the three observable signals. That is, a

naive, sample-average report would be to report

RSA
NC =

s1 + s2 + s3
3︸ ︷︷ ︸

sample average
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where the subscript SA stands for sample-average. Given the observed three

signals were randomly chosen from the seven draws in the NC treatment,

subjects might assume that their observed sample is “representative” of the

seven draws and be attracted to such a heuristic. In this case, when the signals

are extreme, the guess would be more inaccurate on average and would be

biased towards the signal-extremity. For example, when all the three observed

signals are Blue, subjects would, on average, under-report by a large margin

E[RSA
NC |(0R, 3B)] = 25.5 < E[R∗

NC |(0R, 3B)] =
25.5× 3 + 50.5× 4

7
= 39.79

Similarly, when all the signals are Red, subjects would over-report by a large

margin. Instead when the observed signals are mixed, for example two Blue and

one Red, the margin of error is much smaller:

E[RSA
NC |(1R, 2B)] = 42.2 < E[R∗

NC |(1R, 2B)] =
51 + 75.5 + 50.5× 4

7
= 46.92

2) Gambler’s Fallacy: The gambler’s fallacy (GF) is the common, but

mistaken, belief that that i.i.d. random variables are “self-correcting towards the

mean” and hence exhibit negative serial correlation.9 In our setting, the

gambler’s fallacy implies that subjects mistakenly believe that each observed

Red (or Blue) signal reduces the likelihood of the unobserved signals being that

color. For simplicity, one can think of this as the rule

RGF
NC =

s1 + s2 + s3 + 4× (75.5p+ 25.5(1− p))
7

9

The fallacy earns its name from the story of a gambler who, after observing a run of black
numbers at a roulette table, exclaims “We are due for a red number next!”

18



where p depends on the colors of the signals s1, s2, s3. Thus, if n is the number

of Red balls among s1, s2, s3, then, according to the GF,

p(n = 0) > p(n = 1) > .5︸︷︷︸
under Bayes

> p(n = 2) > p(n = 3)

Thus, when the signals are extreme (either n = 0 or n = 3), the guess would be

further from the Bayesian estimate on average and would be biased in the

opposite direction of the signal-extremity. One could construct hybrid rules by

taking the following convex combinations of the non-Bayesian heuristics with

the Bayesian rule, that is, αR∗
NC + (1− α)RSA

NC and αR∗
NC + (1− α)RGF

NC . For

any value of α ∈ [0, 1) these hybrid rules would inherit the directional bias of

their parent non-Bayesian rule. We construct our null hypothesis under the

generalized sample-average rule αR∗
NC + (1− α)RSA

NC for α ∈ [0, 1).

Hypothesis 1 (Error and Bias, Sample Average). In the No Colors and Colors

treatments, extreme signals create reports that are further away from the Bayesian

report and biased towards the corresponding extremity.

An alternative hypothesis, using the Gambler’s Fallacy, would suggest a bias

towards the opposite direction under extreme signals.

The Gambler’s Fallacy, as described above, is ruled out in the Colors treatment.

A heuristic like sample-average is also unlikely when subjects are explicitly

informed about the colors of the unobserved realizations. Thus, subjects are

more likely to make mistakes in the No Colors rounds, which is our next

hypothesis.

Hypothesis 2 (Color vs No Color). Bias is higher when the color information

of unobserved balls is unavailable (No Colors treatment).
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3.2. Learning: Subjects get no feedback between rounds. But, consider a sub-

population of subjects who use the Sample average rule RSA
NC in the No Color

treatment. They completely disregard any information that might be present in

the unobserved signals. Their play might be influenced by the order in which they

play both the Color and No Color treatments. In particular, any prior experience

in the Color treatment might make it salient for them that the unobserved signals

play a significant role in determining the target s =
∑7

i=1 si
7

.10 This experience

might move them away from a naive sample-average rule to some rule that ac-

counts for the unobserved signals (for e.g, αR∗
NC +(1−α)RSA

NC) and thus improve

their quality of information aggregation when they get to the No Color treatment.

To test this, we could compare the data from subjects who experienced Colors

before the NoColors treatment (i.e. using the data from the C1+NC2 sessions)

to those who did not (from the NC1+C2 sessions).

Hypothesis 3 (Learning). Compared to the NC1 condition, subjects in the NC2

condition aggregate information more accurately.

3.3. Information choice. For any subject i who uses an aggregation strategy

R̂i
C , the optimal choice of signal depends jointly on the signal-prices and i’s beliefs

about how R̂i
C interacts with signal choice. The variation in signal prices ∆p helps

us measure the demand for signals without assuming any structure on R̂i
C . When

∆p = 0, all signal compositions are equally expensive. Thus, any subject i from

the Active Choice treatment should choose a signal combination that she believes

would deliver the most accurate report, given R̂i
C . If they believe that extreme

signals might result in more a more inaccurate report, then they would prefer

10Recall that subjects were never provided feedback, so this learning can only occur if subjects
realize the connection between colors and the sample average introspectively.
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diverse signals. It is important to note that, i’s choices are guided by her beliefs

about which signal choices lead to more accuracy, i.e, the perceived value of

information, which might not be equal to the actual value of information. In the

range ∆p > 0, as ∆p increases, diversification gets increasingly expensive, while

its perceived value stays the same. Thus, they should choose diverse signals less

often.

Hypothesis 4 (Demand for diversity at zero cost). In the AC treatment, subjects

prefer diverse signals over extreme signals for ∆p = 0.

The sample-average rule imposed in the Average treatment, disregards all in-

formation about the unobserved signals. Thus, unless the subjects themselves are

using the sample-average rule in the Colors treatment, which is unlikely, the ac-

tual value of diversification increases significantly when the sample average rule is

imposed.11 Does the perceived value of diversification react to this change? Our

next hypothesis is about how the perceived value of diversification, as measured

through the demand for diverse signals, changes when the sample-average rule is

imposed:

Hypothesis 5 (Higher demand at higher value). Compared to the AC treat-

ment, subjects in the Avg treatment are more likely to choose diverse signals over

extreme signals for all ∆p > 0.

To summarize, hypotheses 1, 2, and 3 presume that subjects use a naive

aggregation rule (for e.g, sample-average or Gambler’s fallacy) to predict

comparative statics over signal diversity, experience, or informativeness of

treatments (C versus NC treatments). Sophisticated aggregation behavior

11Recall that we expect the sample-average rule to be more prevalent in the NoColors treatment,
rather than the Colors treatment.
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would result in their rejection. Our last two hypotheses (4 and 5) posit

sophisticated signal choice favoring diverse signals, and would be rejected if

subjects are naive in their signal choice.

4. Results

We address Hypotheses 1, 2 and 3 using the data from all rounds of C1+NC2

and NC1+C2 sessions. For ease of exposition, we define a subject to be inexperi-

enced during rounds 1-20, and experienced when they are in rounds 21-40, having

played a different treatment previously in rounds 1-20. In Table 3, we isolate the

effects of diverse signals, the observation of colors, and experience. We regress

the absolute deviation from Bayesian reports on indicator variables for extreme

signals, the C treatment, and Experience, plus all interaction terms, clustering

standard errors at the subject level. The baseline observations are the NC1 rounds

where inexperienced subjects observed diverse signals. From the top left panel,

we see that observing extreme signals increases the average absolute reporting

error by 2.08 units (p < 0.001) for inexperienced NC subjects. For experienced

subjects who play the NC treatment in the second 20 rounds the relative effect

of extreme signals is slightly smaller, increasing average error by 2.08-.37=1.71

units (p < 0.01) relative to diverse signals. To place this effect size in context,

given the incentive structure of the experiment, observing diverse signals in the

NC treatment increases expected earnings by approximately $1.26 or $1.07 for

experienced or inexperienced subjects, respectively. Further, the standard errors

indicate that the effects of extreme signals are estimated with reasonable preci-

sion (see also the top left panel in Table 4). The standard errors, of around half

a unit on the 100 point scale used in the experiment, are approximately 28 times

22



smaller than the expected absolute difference between the Bayesian estimate and

the Sample Average heuristic when extreme signals are observed.

Absolute deviation from Bayesian report

1Extreme 2.08∗∗∗

(0.51)

1Color -1.06

(0.74)

1Extreme × 1Color -1.33

(0.78)

1Experienced -1.48

(0.77)

1Extreme × 1Experienced -0.37

(0.71)

1Color × 1Experienced 2.10

(1.47)

1Extreme × 1Color × 1Experienced 0.16

(1.19)

Constant 4.87∗∗∗

(0.50)

N 2360

Table 3. The effects of Extreme signals, the observability of colors,
and subject experience, on the absolute deviation of subject reports from
the Bayesian report. The omitted category is observations from the No
Colors rounds 1-20 where subjects observed diverse signals. Standard
errors clustered at subject level are reported in parentheses (59 clusters).
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001. Data includes all rounds of C1+NC2
and NC1+C2 sessions.

To aid the interpretation of these results we also report, in Table 4, the inter-

action effects from this regression. The bottom left panel of 4 shows the effects

of observing Colors on the average absolute deviation from Bayesian reports. A

statistically significant effect is only found for inexperienced subjects who observe

extreme signals: the improvement in reports, when observing extreme signals, for

subjects who are participating in the C treatment (relative to those participating

in the NC treatment) and have not yet experienced the other treatment is 2.40
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units (p < 0.05).12 The effects of Experience are shown in the top right panel.

There is an improvement in reports in the NC treatment for subjects who have

already had experience in the C treatment (relative to those who play the NC

treatment first), but the effects are not significant at the 5% level.

Result 1. (a): Diverse signals improve reports, relative to the Bayesian bench-

mark, only when color information is not available. (Qualified support for Hy-

pothesis 1.)

(b): Observing colors improves reports, relative to the Bayesian benchmark, only

when signals are extreme and subjects are inexperienced. (Qualified support for

Hypothesis 2.)

(c): Prior experience with the Colors treatment does not cause a statistically

significant improvement in reports in the NoColors treatment. (Fails to support

Hypothesis 3.)

Result 1 documented the effects of extreme signals and observing colors on the

absolute error of subject reports, but is silent on whether errors are generated

by biased reports or are generated by unbiased variance in reports.

We define bias towards the extremity as instances where the report was lower

than (Bayesian estimate− 1) when all signals were low, or the report was higher

than (Bayesian estimate + 1) when all signals were high. Conversely, we define

bias against the extremity as in the report was higher than

(Bayesian estimate + 1) when all signals were low, and lower than

(Bayesian estimate− 1) when all signals were high. We allow the ±1 tolerance

band around the Bayesian estimate to allow for inconsistencies between how the

computer and subjects rounded fractions, and our results are robust to

12That is, this statistic is a between subject measure of the effect of observing the colors of
unobserved signals among inexperienced subjects.
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Extreme signals Rounds 1-20 Rounds 21-40 Experience Diverse signals Extreme signals

Colors 0.75 0.54 Colors 0.61 0.41

(0.59) (0.56) (0.82) (1.20)

NoColors 2.08∗∗∗ 1.71∗∗ NoColors -1.48 -1.85

(0.51) (0.49) (0.77) (1.06)

Colors Rounds 1-20 Rounds 21-40

Diverse signals -1.06 1.04

(0.74) (0.84)

Extreme signals -2.40∗ -0.14

(1.11) (1.14)

Table 4. The top left table measures the effect of moving from diverse
signals to extreme signals, at each level of Colors and Experience, on
the absolute deviation from the Bayesian report. The bottom left table
measures the effect of moving from the NC treatment to the C treatment
at each level of Extreme and Experience, on the absolute deviation from
the Bayesian report. The top right table measures the effect of experience
at each level of Colors and Extreme, on the absolute deviation from
the Bayesian report. All values are calculated from a regression of the
absolute deviation from the Bayesian report on indicators for Extreme
signals, Colors, and Experience, plus all interaction terms, with standard
errors clustered at the subject level. Standard errors are in parenthesis.
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001

alternative tolerance bands, for example, ±1.5 or ±2. Misreporting towards the

extremity is consistent with subjects employing the generalized sample-average

(αR∗
NC + (1− α)RSA

NC), and misreporting against the extremity is consistent

with the generalized Gambler’s fallacy (αR∗
NC + (1− α)RGF

NC).

Under systematic misreporting towards the extremity, subjects would be more

likely to over-report with respect to the Bayesian paradigm under all-high

signals. Similarly, subjects would be more likely to under-report under all-low

signals. In columns [1] and [2] of Table 5, we report a multinomial probit

regression of whether the subjects under or over-reported, on whether the

signals were all-high or all-low. We find that extreme signals increase the

probability of both under and over reporting, implying noisier reports rather
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1Underreport 1Overreport

[1] [2]

NC1,NC2 NC1,NC2

1Red 0.43∗ 0.36

(.21) (.20)

1Blue 0.25 0.52∗

(.20) (.22)

Constant -0.06 -0.07

(0.16) (0.16)

N 1180 1180

Table 5. Multinomial probit regression of the probability of underre-
porting (column [1]), correctly reporting (base group, not shown), and
overreporting (column [2]) on indicator variables for observing all Red
signals or all Blue signals (with diverse signals as the base group). Stan-
dard errors clustered at subject level are reported in parentheses. There
were 59 clusters. ∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

than systematic under/ over reporting. although the effect is stronger and

significant for high signals causing under reporting (and vice versa).

Importantly, there is no significant difference in the proportion of under (or

over) reporting when signals are all-high as compared to all-low. If extreme

reports caused biased reports, we would expect the rate of under reporting to be

substantially different, and also to differ in sign, when facing all-high as

compared to all-low signals.

In the Appendix we include an alternative analysis that focuses on the

magnitude, rather than the probability, of misreporting. The conclusions are

the same: there is no evidence of bias in our sample.

Result 2: In the baseline (non-color rounds), aggregate behavior is inconsistent

with systematic misreporting biased towards the extremity. (Fails to support

Hypothesis 1.)
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To dig deeper, we conduct a subject-level analysis. For each subject who faced

extreme signals in the No Color rounds 3 or more times, we calculate how

frequently they misreported towards and against the extremity of their observed

signals. In Figure 4.1, we bubble-plot these fractions of misreports that were

towards or against the extremity, for these same subjects. There are 9 (out of

54) subjects who misreport in the direction of the sample-average heuristic but

never misreport in the direction of the Gambler’s fallacy, and 11 subjects who

do the opposite. Thus, 9 and 11 subjects are, respectively, consistent with

sample-average and Gambler’s fallacy, and the remaining 34 subjects do not

show a systematic bias under extreme signals.13 The data overall is slightly

biased towards the lower right of the figure, suggesting that mistakes a la

Gambler’s fallacy were marginally more prevalent than Sample average rule.

We also calculate, at the subject level, the average absolute deviation from the

Bayesian report and the naive sample-average report across each of the Color and

No Color rounds, and then plot this data in Figure 4.2a. We plot the average

absolute distance from the Bayesian report on the x-axis, and the distance from

the sample-average report on the y-axis. Subjects who are positioned above the

45-degree line are closer to the Bayesian average, and subjects below the 45-

degree are closer to the sample-average report, with distance from the 45-degree

line giving an indication of the size of the advantage of one rule over the other. It is

immediately visually apparent that (i) most subjects are above the 45-degree line

and, therefore, on average, closer to the Bayesian report than the sample-average

13Alternative classification procedures lead to similar conclusions. For example, we could clas-
sify a subject as exhibiting the Gambler’s fallacy if 80% of their choices are biased in the
direction of the fallacy (and similarly for the sample-average heuristic). In this case, we would
classify 8 subjects as exhibiting the Gambler’s fallacy, 6 subjects as exhibiting the sample-
average heuristic, and 40 subjects as being unbiased.
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Figure 4.1. Proportion of choices, by subject, that are consistent with
either the gambler’s fallacy or the sample average bias for extreme signals
in the NC treatment. Restricted to subjects who observed extreme signals
at least three times. The size of each bubble represents the number of
subjects at each point.

report (ii) there is no strong relationship between the observability of colors and

average deviations from either rule. In fact, more than 60% of subjects were, on

average, within 5 points of the Bayesian update for both treatments.

In figure 4.2b we drill further down into the distinction between the C and NC

treatments. In this panel, we plot the subject-level average absolute deviation

from Bayes rule in the NoColor and Color rounds on the x and y axis, respec-

tively. Here, subjects above the 45-degree line provide better reports in the NC

treatment, and subjects below the 45-degree line provide better reports in the C

treatment, relative to the Bayesian optimal report.

Result 3: Reports are substantially closer to the Bayesian paradigm than to

the naive sample-average paradigm, for both the C and NC treatments. (Fails to

support Hypothesis 2.)
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(b) Average absolute deviation from
the Bayesian optimal report in the C
treatment plotted against the average
absolute deviation from the Bayesian
optimal report in the NC treatment,
at the subject level, when signals were
extreme.

Figure 4.2. Heterogeneity

Hypothesis 5 predicts that subjects will have a stronger preference for diverse

signals in the Average treatment than the in the Active Choice treatment. This

hypothesis relies on the implicit assumption that diverse signals are actually more

valuable in the Avg treatment than in the AC treatment: an assumption that is

testable in our data. Not only is the assumption supported on average, across

the subject population, we find that that it holds individually for all but one

subject. For each subject we calculate the average absolute difference of their

guesses from the true s̄ for all Active choice rounds, separately for diverse and

extreme signals, and interpret their difference as the loss from choosing extreme

signals. In Figure 4.3 we plot the CDF of the subject specific losses from extreme

signals. It is clear from the figure that, while the aggregation rule used by the

median subject experiences essentially no gain from diversity, there is substantial
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Figure 4.3. CDF of the average gain (at the subject level) from di-
versification over all Color rounds. The vertical dashed line denotes the
average gain from diversification observed in the Average rounds.

heterogeneity across subjects. We also calculate and plot the average loss from

extreme signals in the Average rounds (under the sample-average aggregation) as

the vertical line at, approximately, 8.4. Despite the heterogeneity, the gain from

diverse signals in the AC treatment is less than 8.4 units for all subjects.

Result 4: Diverse signals improve reports (relative to s̄) in the Average rounds

more than they do in the Active Choice rounds.

An unfortunate programming constraint, which was not noticed until after the

experiments were run, allows us to only observe the signals finally received by

the subjects and not the chosen or requested signals. The received signals can

differ from the requested signals when, for example, the subject requests two

Blue signals but only one Blue signal is available in {s2, s3, .., s7}. In the rounds

where {s2, s3, .., s7} contained at least two signals of either color, the signals

requested and received are guaranteed to be identical. We use only data from

these rounds for our following results on signal choice. Given subjects made their

signal choice without knowing the composition of {s2, s3, ..s7}, conditioning on
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the composition does not bias the analysis of the signal choice in any conceivable

way.14 For comparison, we repeat the analysis with the full data set, containing

all rounds, in Appendix A. The results are similar.

In Figure 4.4, we plot the proportion of extreme signal choices against ∆p, the

difference between the price of own signal and the price of the other signal. We do

this separately for when subjects aggregate on their own (Active Choice rounds)

versus when they aggregate under sample-average rule (Average rounds), pooling

similar price differences to simplify the figure.

When ∆p = 0, approximately 10% of signal choices are extreme as most sub-

jects prefer a diverse portfolio of signals. As the price-difference increases, sub-

jects become more likely to choose extreme signals. In the Active Choice treat-

ment, even at the highest price-difference group (∆p ∈ {14, 20}), approximately

20% of decisions are in favor of diverse signals and this figure is higher still in the

Average treatment (approximately 35%). In the Average treatment, where there

is a clear objective benchmark for optimal behavior, it is optimal to choose diverse

signals at all values of ∆p, which indicates that some subjects are over-reacting

to the price of signals.15

Result 5: Subjects rarely choose extreme signals when ∆p = 0 . (Support for

Hypothesis 4.)

As seen in Figure 4.4, at every ∆p > 0, subjects are less likely to choose

extreme signals under Average than under Active Choice. Table 4.4 presents

14{s2, s3, ..s7} are drawn independently of s1, and hence s1 is uninformative about the other 6
signals.
15In expectation, a one-unit improvement in guess accuracy is worth (200 − 50) × 0.06 = 9
points, which implies that the value of diverse signals is substantially larger than the largest
value of ∆p = 20.
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[1] [2]

∆p 0.10∗∗∗ 0.10∗∗∗

(0.02) (0.02)

∆p×1SmplAvg -0.00 -0.01

(0.01) (0.02)

1SmplAvg -0.61∗∗ -0.92∗∗

(0.20) (0.28)

Dev -0.11∗∗

(0.03)

Dev×1SmplAvg 0.08∗

(0.04)

Constant -0.65∗∗∗ -0.19

(0.14) (0.19)

N 909 909

Figure 4.4. The left hand panel plots the proportion of extreme signal
choices against ∆p, the difference between the price of an own colored
signal and an other colored signal, separately for when subjects update on
their own (Active Choice rounds) versus when they update under sample-
average rule (Average rounds) with 95% confidence intervals. The right
hand panel presents a probit regression of extreme choice on ∆p, with a
dummy variable for the Average rounds with standard errors clustered at
the subject level (30 subjects). In regression [2], we additionally control
for“Dev”, which is calculated at the subject level as the average deviation
from the Bayesian update across the first 20 Active Choice rounds and
restricted to rounds with diverse signals. Both panels restrict the data
to only include rounds where there were at least two red signals and at
least two blue signals in {s2, s3, s4, s5, s6, s7}

two regressions designed to study the determinants of extreme signal choices. In

column [1], which controls for ∆p and the treatment (Average or Active Choice)

we observe a negative coefficient on the dummy for Average. In column [2] we add

a control, Dev, which captures subject-level guess accuracy in the Active Choice

32



rounds when the subject observed diverse signals. Thus, the higher the value of

Dev, the worse was the quality of information aggregation by the subject.16

From column [2] of Table 4.4 we conclude, given the negative coefficient on Dev,

that subjects who are worse at aggregating information are more likely to select

diverse signals in the AC treatment. To provide some context for the estimated

value of −0.11, in the Active Choice treatment, at the sample average ∆(p) and

average value of Dev, a one unit improvement in signal aggregation ability leads

to a 4 percentage point decrease in the likelihood of choosing extreme signals.

That is, subjects who are worse at aggregating exhibit some self-awareness of

this and respond by giving themselves an easier updating problem. For the Avg

treatment, the effect of Dev is −0.11 + 0.08 = 0.03 and statistically insignificant,

suggesting that the choice of signals is independent of aggregating ability in the

Avg treatment. This forms our final result, and suggests that subjects are able

to separate information acquisition from information processing. The estimates

of ∆(p) and Dev in Table 4.4 are also rather precise, with standard errors of only

0.02 and 0.03, respectively.

Result 6: Subjects choose extreme signals less frequently (i) in the Average

treatment and (ii) when they are poor at aggregating information in the Active

Choice treatment. (Support for Hypothesis 5.)

Result 7: Signal choices in the Average treatment are independent of guess

accuracy in the Active Choice treatment.

16If the Dev variable was calculated using rounds with both diverse and extreme signals, then
there would be a potential endogeneity problem: subjects who choose diverse signals more
often might have systematically different deviations from the Bayesian update. We checked the
robustness of column [2] by recalculating Dev using either all rounds with diverse signals or all
rounds with extreme signals, finding that the results are qualitatively unchanged.
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5. Conclusion

In this paper we study the value of and the demand for diverse information

sources in a simple decision environment where information-processing does not

require contingent reasoning. We find that subjects are remarkably resistant to

making mistakes when receiving news with transparent bias. Subject reports are

unbiased even when signal bias is extreme. We find little evidence for subjects fol-

lowing a naive sample-average rule or committing the Gambler’s paradox. Most

importantly, subjects are willing to pay non-negligible amounts to observe di-

versified, rather than biased, signals and subject demand for diverse information

reacts rationally to the value and cost of diverse information. Remarkably, sub-

jects who perform poorly when aggregating information appear to be cognizant

of their limitations and exhibit a stronger demand for diversified information.

Finally, when we exogenously impose a naive sample-average aggregation rule

the subject level demand for diversified information sources is, rationally, not

dependent on subject level aggregation ability.

Previous research (e.g. Enke [2020]) has identified conditions under which in-

formation bias can lead to ex-post polarization. Our results, conversely, demon-

strate that when information bias is transparent, and motivated reasoning is not

present, that subjects are surprisingly good at constructing a balanced portfolio

of signals and then constructing unbiased estimates of the true state of the world.

Our results advocate for greater transparency in media bias, so that individuals

can choose the right portfolio of information to make better choices.

We believe that there are three additional factors that future work could inte-

grate into our design. First, in our experiment, demand for diversity was mea-

sured when information was objectively biased. It would be interesting to extend

this measurement to the cases where the bias is ambiguous or subjective. For
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example, some may believe that the Huffington Post is fairly balanced (AllSides

rates Huffington Post as far Left) while others might see Fox as fair and bal-

anced (the AllSides media bias rating for Fox is Lean Right). Second, the bias

from the two different colors were symmetrically opposite, mutually exclusive and

complementary. Subjects might not subjectively believe in the existence of sym-

metrically opposite biased sources at all. In the 2019 Gallup study, around 72%

of Democrats only 31% of Republicans agreed that there were enough sources

to be able to sort out the facts. Information choice might be affected by such

beliefs. Third, it would be interesting to see if information fatigue induces re-

version to the choice of extreme signals. In response to feeling overwhelmed by

the abundance of news sources in the current media environment, a plurality of

Americans (39%) reported they only pay attention to one or two trusted sources,

while 30% try to consult a variety of sources to see where they agree.
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Appendix A. Supplementary Tables

A.1. Magnitude of bias. In the main text, we evaluate bias in reports by evalu-

ating the probability that a subject over or under reports as a function of observ-

ing all high or all low signals. Here, we provide a robustness check by examining

the magnitude of bias as a function of observing all high or all low signal in Table

A.1. The first column of Table A.1 presents a restricted version of the regression

contained in Table 3, while the second and third tables estimate the bias of re-

ports. The second column uses only rounds where the sample average heuristic

lies above the Bayesian estimate, and the third column uses rounds where the

sample average heuristic lies below the Bayesian estimate. If reports are biased,

for either extreme or diverse signal observations, then either the constant or the

coefficient on Extreme must be different from zero. As the Table shows, all co-

efficients in both regressions are close to zero and not statistically significant,

indicating that there is no evidence of bias in our sample. Note that the second

and third column use only data from the NC treatment, given that the sample

average heuristic is unnatural in the C treatment.

A.2. Robustness of the information selection results. As described in the

main text, our data only allows us to observe the signals received by the subjects

(and not the signals requested by the subjects). In the main text we restrict

attention to a subset of rounds for which we know that requested and received

signals must be the same. Here, we provide a robustness test by including data

from all rounds. Figure A.1 is a robustness check on Figure 4.4.

A.3. The fifth treatment. In a fifth treatment, we gave subjects the oppor-

tunity to construct an algorithm that would calculate the subject’s report of s̄

automatically given the signals and colors that the subject observed. Despite our
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|deviation| deviation deviation

Sample
Full avg>Bayes avg<Bayes

C+NC NC only NC only
1Extreme 1.83∗∗∗ 0.53 -0.78

(0.37) (1.00) (0.86)

1Color -0.07

(0.30)

1Extreme × 1Color -1.19∗

(0.48)

Constant 4.21∗∗∗ -0.24 0.06

(0.39) (0.46) (0.37)

N 2360 615 565

Table A.1. The first column regresses the absolute deviation of subject
reports from the Bayesian benchmark on an indicator for Extreme sig-
nals and a Color treatment indicator, using the full sample (all rounds of
C1+NC2 and NC1+C2 sessions). The second and third columns regress
the deviation of subject reports from the Bayesian benchmark on an indi-
cator for Extreme signals, using only data from the NC treatment, using
samples restricted to upwards and downwards biased signals. Standard
errors clustered at subject level are reported in parentheses (59 clusters).
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.

attempts to design an interface that would be intuitive and easy for subjects to

understand, the algorithms that subjects constructed demonstrated that subjects

did not understand the algorithm construction process sufficiently. Sessions that

contained the algorithm treatment consisted of 20 rounds of the Colors treatment,

followed by 10 rounds of the algorithm treatment, followed by 10 rounds of the

Sample Average treatment. In the remainder of this subsection, we repeat some

of the analysis from the main text with the inclusion of data from Colors and

Sample Average treatments in these sessions. The results are similar and more

precise as the standard errors shrink further.

Table A.2 is a robustness check on Table 3, and Table A.3 is a robustness check

on the right hand panel of Figure 4.4.
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∆p∈{-6,-2} =0 ∈{2,4} ∈{6,8,10} ∈{14,20}

Pooled ∆p

95% CI for Active Choice 95% CI for Sample Avg
mean for Active Choice mean for Sample Avg

Probit (Active choice + Avg)

Dependent variable

1 if signal choice was

Extreme, 0 otherwise

[1] [2]

∆p 0.09∗∗∗ 0.09∗∗∗

(0.01) (0.01)

∆p×1SmplAvg -0.01 -0.01

(0.01) (0.01)

1SmplAvg -0.45∗∗ -0.79∗∗

(0.16) (0.24)

Dev -0.08∗∗

(.03)

Dev×1SmplAvg 0.08∗

(0.04)

Constant -0.71∗∗∗ -0.32

(0.12) (0.17)

N 1200 1200

Figure A.1. Robustness check for the information selection results from
Figure 4.4, including data from all rounds.
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Absolute deviation from Bayesian report

1Extreme 2.08∗∗∗

(0.51)

1Color -0.53

(0.79)

1Extreme × 1Color -1.49∗

(0.70)

1Experienced -1.48

(0.77)

1Extreme × 1Experienced -0.37

(0.71)

1Color × 1Experienced 1.57

(1.43)

1Extreme × 1Color × 1Experienced 0.32

(1.12)

Constant 4.87∗∗∗

(0.50)

N 2900

Table A.2. (Robustness check on Table 3 when we add the Color
rounds from the fifth treatment.) The effects of Extreme signals, the ob-
servability of colors, and subject experience, on the absolute deviation of
subject reports from the Bayesian report. The omitted category is obser-
vations from the No Colors rounds 1-20 where subjects observed diverse
signals. Standard errors clustered at subject level, including subjects
from the Algorithm sessions, are reported in parentheses (86 clusters).
∗p < 0.05,∗∗ p < 0.01,∗∗∗ p < 0.001.
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Probit (Active choice + Avg)

Dependent variable

1 if signal choice was

Extreme, 0 otherwise

[1] [2]

∆p 0.10∗∗∗ 0.10∗∗∗

(0.02) (0.02)

∆p×1SmplAvg -0.00 -0.01

(0.01) (0.02)

1SmplAvg -0.55∗∗ -1.03∗∗∗

(0.17) (0.23)

Dev -0.12∗∗

(.03)

Dev×1SmplAvg 0.13∗∗

(0.04)

Constant -0.65∗∗∗ -0.13

(0.14) (0.19)

N 1116 1116

Table A.3. (Robustness check on the right hand panel of Figure 4.4
when we add the AC rounds from the fifth treatment.) Probit regression
of extreme choice on ∆p, with a dummy variable for the Average rounds
with standard errors clustered at the subject level, including subjects
from the Algorithm sessions (57 subjects). In regression [2], we addi-
tionally control for “Dev”, which is calculated at the subject level as the
average deviation from the Bayes rule across the first 20 Active Choice
rounds.
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