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Abstract

We study competitive search in goods markets in a heterogeneous-agent monetary
model. The model accounts for three stylized facts connecting inflation to consump-
tion inequality, to price dispersion, and to the speed of monetary payments. With
competitive search, individuals’ endogenous probabilities on trading events give rise
to a trading-opportunity (extensive-margin) force that works in opposite direction to
well-known redistributive (intensive-margin) effect of inflation. This implies a new
trade-off in response to long-run inflation targets. Welfare falls but liquid-wealth in-
equality falls and then rises with inflation as an extensive margin of trade dominates
the redistributive intensive margin, when inflation is sufficiently high.
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1 Introduction

After almost four decades of low—and in recent years very low—inflation, the U.S. infla-

tion rate appears to be picking up again. During the Great Recession, inflation-targeting

policy makers advocated policies that raised longer term inflation rates. Some policy

makers in some countries still do. These policy responses motivate us to study the wel-

fare and distributional consequences of inflation afresh. From a long-run perspective,

should we be concerned about the effects of having higher or lower trend inflation? Are

there possibly countervailing effects on household and business incentives, and on eco-

nomic inequality, as a result of a particular long-run inflation policy?

In this paper, we focus on how might inflation contribute to inequality across hetero-

geneous individuals’ consumption and monetary asset outcomes. We also study welfare

costs of inflation in the long-run and along the transition between steady states, in terms

of aggregate welfare and across heterogeneous individuals. We provide new insights on

these matters from the perspective of a competitive-search model with heterogeneous

agents. The model extends that of Menzio, Shi and Sun (2013).1

We show that this simple model—deliberately lacking in any exogenous, idiosyncratic

shock assumptions—can account for three interesting micro- and macro-level facts.2 The

facts are as follows: (i) Inflation and consumption inequality have a hump-shaped re-

lationship; (ii) inflation and (non-sales) goods pricing dispersion tend to be positively

related; and (iii) inflation and the speed of consumer money payments are positively

related.3

In addition, this alternative framework advances a new channel from inflation to asset

and consumption inequality that is not present in existing heterogeneous-agent monetary

models. The key feature in the model that induces this new channel is a well-known as-

pect of competitive search theory—an equilibrium trade-off between an intensive margin

of consumption and an extensive margin in terms of trading probabilities. Since the model

also features a non-degenerate distribution of agents, such a trade-off would also be het-

1The flavor of competitive search markets we have in mind is the same as that in Moen (1997) or Menzio
et al. (2013): In such markets, trade is decentralized in that there is no single Walrasian or centralized market.
Excess demand in Walrasian markets is eliminated by some unspecified invisible-hand pricing outcome. In
competitive search, agents have to direct their search to observed trading posts (viz. terms of trade) created
by sellers. Sellers anticipate buyers’ search strategies and post optimally. An equilibrium is given by a
distribution of trading posts or market tightness measures (or equivalently, a distribution of terms of trade)
that is consistent with optimal buyer search, firm posting, consumption and production behavior.

2In this paper, our aim is to quantitatively discipline a microfounded model of money with heterogeneous
agents and to show that it possesses some realism while providing a new economic insight or trade-off
that is missing in more reduced-form models of money and agent heterogeneity. As such, it would be
counterproductive to understanding if we added more exogenous sources of micro-level heterogeneity in
order to “match” empirical facts.

3We expand on these facts further below, in Section 1.2. Why the focus on consumption inequality?
Consumption is vital in inequality measurements since almost every economic model has a basic utility
function that depends on it. Furthermore, paying attention to consumption inequality allows one to see
directly whether there are impediments to consumption smoothing (Attanasio and Pistaferri, 2016).
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erogeneously dependent on individual states. We show that through this new channel, a

higher long-run inflation policy tends to attenuate (exacerbate) wealth inequality but in-

crease (reduce) consumption inequality for sufficient low (high) range of inflation. As a

corrollary, we also show that the welfare cost of inflation is nontrivial, especially when

transitional dynamics are taken into account.

Inflation in the model induces a redistributive-tax effect through the intensive margin

of trade in all markets. This is also the case in standard heterogeneous-agent monetary

models. However, inflation also raises individuals’ downside risks or probabilities of

not getting to trade in decentralized search markets. This risk affects individual incen-

tives—i.e., how fast agents trade relative to how much liquidity they carry into in these

markets. In equilibrium, agents have to trade off between these two channels, and the

trade-off depends on long-run inflation targeting policy.

1.1 The literature and what we do

Consider a taxonomy of the costs and benefits of inflation from the perspective of stan-

dard Walrasian-market models (see, e.g., Erosa and Ventura, 2002). First, inflation acts as

an intertemporal tax that distorts consumption. This feature raises the (welfare) cost of

inflation present in all monetary models (with or without heterogeneous agents). Second,

inflation is costly since agents have to engage in precautionary liquidity management ac-

tivities. Third, inflation may act as a redistributive tax that shifts resources from the

“rich” to the “poor”. This force tends to lower the welfare cost of inflation.

In most heterogeneous-agent models (see, e.g., Imrohoroğlu and Prescott, 1991a; Akyol,

2004; Boel and Camera, 2009; Meh et al., 2010), the third force—a redistributive-tax chan-

nel of inflation—is strong. This is often because there is only an intensive margin through

which inflation tax works. That is, with increasing inflation, agents would like to reduce

their money holdings. Those with high balances reduce their holdings more relative to

those at the bottom end of the distribution. This tends to lower average money bal-

ance. Hence, inflation acts as a progressive tax that reduces inequality of money hold-

ings. Consequently, agents’ decision margins—and the impact of government policy

on private decisions—typically work along the intensive margin.4 This explains why

in many heterogeneous-agent models, the welfare cost of inflation is often smaller than

representative-agent models (Camera and Chien, 2014).

However this conclusion need not be robust, as it may depend on the nature of id-

iosyncratic shocks, financial structure and the sensitivity of labor supply to real wage

changes: Camera and Chien (2014). For example, in their model with a reduced-form

4One can also complicate Walrasian models with extensive margins to capture limited market participa-
tion, as in Alvarez et al. (2002). However, conditional on being in any market, agents within those markets
are always trading. In competitive search, some agents are participating and searching but may not find a
match in order to trade.
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transaction technology that is free from inflationary effects, Erosa and Ventura (2002)

showed that for sufficiently high returns to scale of the technology, inflation can become a

regressive tax. In a different Bewley economy, where holding money is driven by precau-

tionary motives, Wen (2015) showed that inflation can increase agents’ consumption risks

by tightening poorer agents’ ad-hoc borrowing limits. There is also another class of mod-

els that combine these incomplete-markets and ex-post heterogeneity features with sticky

price assumptions (see, e.g., Kaplan, Moll and Violante, 2018; Ravn and Sterk, 2020).

In a random-matching, search-theoretic model of money, Molico (2006) showed that

a “real balance effect”—i.e., agents choosing to carry less money balances into decen-

tralized trades as inflation increases which results in a higher amount of money paid

per goods—can work against the redistributive effect of inflation. There is a similar

“reduced-form” property in our model, but with a deeper twist. In our setting with

competitive search in decentralized trades, this is bolstered by the additional extensive

margin effect: Higher inflation exacts a greater downsize risk of not matching for agents

by reducing the equilibrium matching probability for buyers (contra. random matching).

Although expected money carried in each decentralized trade will be lower per payment

for goods, with lower equilibrium probability of matching, agents who match don’t have

to reduce consumption as much—this trade-off between matching probability and quan-

tity of goods in the competitive search environment (see, e.g., Peters, 1984, 1991; Moen,

1997; Burdett et al., 2001; Julien et al., 2008; Shi, 2008) helps to amplify the speed at which

agents expect to get rid of their money in decentralized trades.

Chiu and Molico (2010) also have a notion of extensive margin, in the form of costly

participation in centralized markets. In our setting, even without costly participation

in markets, there is a non-trivial extensive margin. In Chiu and Molico (2010) and Ro-

cheteau, Weill and Wong (2019), trading probabilities are fixed in decentralized-market

meetings. This is due to their random matching assumption. In our setting, the extensive

margin arises in the form of endogenous matching probabilities.

In contrast to the Walrasian or random matching models discussed above, our Menzio,

Shi and Sun (2013) competitive search setup advances a fourth channel to the standard

taxonomy previously outlined.5 Our framework is closer to the monetary search litera-

ture in which money as a medium of exchange and its liquidity properties are explicitly

modelled. In our setting, there is an opposing extensive margin effect that helps to mit-

igate the previously-discussed redistributive channel of inflation. With higher inflation,

agents are also spending faster in decentralized trades and entering the Walrasian or cen-

5Another advantage of considering competitive search is that agents’ decision problems are block recur-
sive (as pointed out earlier in Menzio et al., 2013). This means that agents’ decision problems are recursively
independent from the problem of determining the equilibrium distribution of assets. This has an accuracy
benefit in terms practical computation—one does not have to ad-hoc parametrize aggregate wealth distribu-
tion as state variables when computing transitional dynamics.
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tralized market to rebalance their liquidity more frequently. Higher centralized-market

participation implies that there are more agents at the bottom end of the equilibrium dis-

tribution at the end of each period. These are agents who will enter the centralized market

in the subsequent period. Also, there are less agents at the upper end of the distribution

since they top up with less liquidity in the centralized market and they spend faster in

the decentralized search market. Since agents have a preference to consume goods from

both types of markets, we also show that this qualitative equilibrium behavior is robust to

whether there is (or there is not) additional friction to centralized market participation.

The additional friction is parametrized by a fixed pecuniary cost of centralized-market

participation, similar in spirit to Chiu and Molico (2010).

This will be key to inducing non-monotone effects of inflation on consumption and

money inequality. Of course, endogenous matching probabilities via competitive search

is not new (see, e.g., Rocheteau and Wright, 2005). What is different here is that the

endogenous matching probabilities are dependent on heterogeneous agent states. This

creates a nontrivial equilibrium, countervailing effect to what would be a traditional re-

distributive role of inflation. This is an important feature driving our non-monotone

inequality results.6

Sun and Zhou (2018) study fiscal and monetary policy in a similar setup. However,

they assume that all agents in a decentralized market must exit it in one period and

must enter a centralized market deterministically. In our setting, agents get to choose.

In their equilibrium, since agents have quasilinear preferences in the centralized market,

agent heterogeneity (i.e., non-degeneracy of the equilibrium distribution of agents) needs

to be preserved by assuming that there are exogenous idiosyncratic shocks to agents in

the centralized market. In contrast, we do not require additional exogenous individual

shocks. We can have a non-degenerate distribution of agents in our model since agents

endogenously choose which market to enter every period and not all agents go to the

centralized market at the same time.

6An expanded version of our model can be shown to relate to two elegant intellectual origins. In the
Online Appendix A, we entertain the additional feature of an exogenous probability α that ex-ante, each
agent may go to the CM costlessly. In that extended setting, we can relate to two well-known models in the
literature—i.e., the representative-agent random-matching model with competitive search DM of Rocheteau
and Wright (2005), and, the block-recursive ex-post heterogeneous agent model of Menzio et al. (2013). The
main difference in one limit of our model to Rocheteau and Wright (2005) is that in Rocheteau and Wright
(2005), some measure of households become sellers in the DM each period. In our setting, non-DM-buyer
households are, in a sense, sellers only insofar as supplying labor to firms that create trading posts in the
DM. This is a feature inherited from Menzio et al. (2013). Our difference to Menzio et al. (2013) is that
here, agents derive consumption value in the CM and they need not exhaust all their liquid wealth before
deciding to enter the CM again. We extend the theoretical analyses of Menzio et al. (2013) in the direction
of inflationary monetary equilibria and prove their existence. We also provide an efficient computational
method for solving these models, thus taking the new monetarist literature closer to mainstream quantitative
macroeconomics.

5



1.2 Three motivating empirical facts

Previously, we alluded to three empirical facts. We now discuss these facts in more detail.

Fact 1 (Hump-shaped inflation-consumption-inequality relation). In Figure 1, we re-

produce the U.S. consumption inequality measure (standard deviation of log consump-

tion) from Attanasio and Pistaferri (2016), and we juxtapose this against CPI inflation

data obtained from FRED.7 Inflation has been trending downwards since the early 1980s

Volcker era. Consumption inequality between 1980 and 2005 has been rising. However,

it has been falling since 2005.

Figure 1: Inflation (right y-axis) and consumption inequality (left y-axis).

In other words, from 1980 to 2004, consumption inequality and inflation were nega-

tively correlated but this correlation became positive from 2005 onwards. The correlation

charts for this relationship pre- and post-2005 are in Figure 2 (respectively, the left and

right panel). That is, there is a hump-shaped relationship between inflation and consump-

tion inequality over a relatively long-run span of time.

This hump-shaped relationship would still hold if we considered alternative measures

of consumption inequality. Meyer and Sullivan (2017) used the ratio of consumption

outcomes for top percentiles relative to bottom percentiles (e.g., the ubiquitous “90/10”

ratio) to measure inequality in the U.S. consumption distribution since the 1960s. They

also find that since 2005 consumption inequality has been falling despite rising income

inequality.8 If we superimpose the observation of Meyer and Sullivan (2017) against

7See FRED, series FPCPITOTLZGUSA.
8The figures are reproducible from our Jupyter notebook consumption-inequality-inflation.ipynb

(available from our Github repository).
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inflation, we would again see the same hump-shaped relation between inflation and con-

sumption inequality as in Figures 1 and 2.9

Figure 2: Hump-shaped inflation-consumption-inequality relation. Left: After (2005-
2012). Right: Before (1980-2004). Notes: Least-squares regression (solid line), boot-
strapped 95% confidence bands (shaded patches), and marginal data histograms
(smoothed density estimates) superimposed.

Fact 2 (Inflation and price dispersion). In a recent paper, Sheremirov (2020) docu-

mented the following facts about inflation and price dispersion of goods at the Universal

Product Code (UPC) level, using IRI scanner data (a proprietary data set): The comove-

ment between dispersion of regular retail prices and inflation is positive in the data. In

studying city-level data from the U.S., Debelle and Lamont (1997) showed that price dis-

persion and inflation are positively associated.10

Fact 3 (Inflation and speed of money transactions). Consider a measure of how quickly

people spend money. The data comes from the U.S. Federal Reserve Bank of Atlanta’s

Survey of Consumer Payment Choice (SCPC) and Diary of Consumer Payment Choice (DCPC).

The data is available on an annual frequency. The SCPC measures how often a means of

9A similar phenomenon has been documented for the UK and Sweden. Blundell and Etheridge (2010)
document that consumption inequality measures in the UK have been increasingly divergent from other
measures based on income and earnings. Daunfeldt et al. (2010) document a similar divergence for Sweden
since 1988. Inflation in both the UK and Sweden have also been on a downward trend since the late 1980s.

10Reinsdorf (1994) uses micro-level data from the BLS for the years 1980 to 1982 and found that this rela-
tionship is negative. Sheremirov (2020) also found that the comovement between dispersion of sales prices
and inflation is negative in the data. Since our model will be silent on the separate phenomenon of sales and
sale prices, we will focus on the majority of evidence on a positive relationship between retail prices and
inflation.
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payment (e.g., cash or credit card) is used in consumer expenditures. The DCPC mea-

sures the dollar value of expenditures, conditioning on each payment instrument. The

data on this phenomenon is still somewhat sparse. The SCPC is available from 2008 and

the DCPC is available from 2015. Nevertheless, we will take the information below to be

a suggestive fact.

We use the SCPC data on the number of transactions using cash (b) and the DCPC for

the size of expenditure for each cash transaction (x). We also use the aggregate M1 series

(M). We define the speed of money transactions here as the mean of (b × x)/M. This

can be interpreted as how quickly agents expend their money holdings on average. This

measure will also be consistent with our model’s measure of money-transaction speed.

However, we need to take a stance on what is money, in the payment instruments mea-

sures. There are nine types of payments in the dataset: Cash, check, money order, debit

card, credit card, prepaid card, bank-account-number payment, online-banking-bill pay-

ment and direct-from-income payment. In our online notes, we consider the following

measurement cases: (1) cash; (2) case (1) + check + money order + debit card; (3) case

(2) + credit card + prepaid card; (4) case (3) + bank-account-number payment + online-

banking-bill payment; and (5) case (4)− credit card.11 (The “addition” and “subtraction”

here denote dataset-wise inclusion and exclusion, respectively.)

11See the Jupyter notebook payments-speed-inflation.ipynb on our Github repository.
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Figure 3: Speed of money payments (bx/M measures 1, 2 and 5) and inflation. Top-Left:
Time series with the right-hand-side axis measuring inflation (dashed-square marker).
Top-Right: Scatterplot of bx/M (measure 1) and inflation. Bottom-Left: Scatterplot of
bx/M (measure 2) and inflation. Bottom-Right: Scatterplot of bx/M (measure 5) and in-
flation. Notes: Least-squares regression (solid line), bootstrapped 95% confidence bands
(shaded patches), and marginal data histograms (smoothed density estimates) superim-
posed onto scatterplot (right).

Consider the most relevant measures of money payments, cases (1), (2) and (5). We

plot the available time-series observations of these against that of CPI inflation in Figure

3 (top-left panel). In Figure 3 (top-right panel), we see that the speed at which agents spends

using cash only—i.e., case (1)—appears to be positively correlated with inflation. That is,

in a more inflationary environment agents are expected to be quicker in spending their

money holdings on goods. As additional checks, we also show that a similar pattern

holds when we consider a broader measure of money payments—i.e., cases (2) and (5),

respectively, in Figure 3 (bottom-left panel) and Figure 3 (bottom-right panel).12 This is quite

12In fact, the pattern still holds in cases (3) and (4) as well. We prefer not to use these cases since they
include credit cards. (Credit-card payments could be largely dominated by consumers taking out debt as
opposed to just being a means of money transfer.)
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intuitive and will be a feature implied by our model’s equilibrium.

The remainder of this paper is organized as follows. In Section 2, we set up and ana-

lyze a version of the model of Menzio, Shi and Sun (2013) in a more general setting with

non-zero inflation. In Section 3, we take the model to the data. In Section 4, we provide

an explanation of the main equilibrium mechanism or trade-offs that drive the model’s

quantitative and welfare outcomes. Armed with these insights, we conduct counterfac-

tual experiments in Section 5 to understand how these forces balance out in monetary

equilibria under alternative long-run inflation targeting policies. We will reconcile and

rationalize these three motivating facts from the lens of a novel monetary model with de-

centralized, competitive search markets. Here, we also study their welfare and monetary-

wealth inequality consequences. Finally, we also show that our insights are robust to a

limiting case where we shut down an additional friction due a limited-CM-participation

assumption. We conclude with Section 6.

2 Model environment

There is a decentralized market (DM) with competitive search and matching friction and

a centralized market (CM). The DM allows one to microfound the crucial frictions in the

model. The CM, as in Lagos and Wright (2005), allows the model to be more flexibly

mapped to macroeconomic data and to be compared with more standard models with

neoclassical origins. Time is discrete and indexed by t ∈ N. Hereinafter, we will denote

X := Xt and X+1 := Xt+1 for dynamic variables.

Market incompleteness will arise from two features of the model: First, equilibrium

matching in the DM (where money is essential) implies that agents face ex-ante uncer-

tainty over being able to exchange and consume in those markets. Since agents are

“anonymous” in these markets, their individual trading risks cannot be insured away

by exchanging private state-contingent securities. As a result, we have ex-post agent

heterogeneity. Second, because agents have a convex preference over goods from the

centralized and the decentralized markets, there is endogenous limited participation in

centralized markets. Agents engage in the centralized markets for liquidity risk man-

agement. For quantitative purposes we introduce a couple of modifications to Menzio et

al. (2013): a preference for consumption in the CM and a possibly non-zero fixed cost of

CM participation. Later, we show that these do not affect the qualitative insights of the

model.

Figure 4, which summarizes the timing of events and decisions between two arbi-

trary dates, may be a useful accompaniment to the notation and decision processes to be

described next.
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Ex Ante

m 7→ V̄(m; ω)

Ex-post

z 7→ Ṽ(z; ω)

CM buyers: (z− χ) 7→W(m̃; ω)

Work, Eat, Store: l?(m̃), C̄?, y?(m̃)

Firm: Hire, produce

y?(m̃)+τ
1+τ

m′′+1 7→ V̄
(
m′′+1; ω

)

DM buyers: z 7→ B(z; ω)

Search/match, Pay: b?(z), x?(z)

Firms: Hire/post, match, produce: k, µ ◦ b?(z), q?(z)

z+τ
1+τ m′+1 7→ V̄

(
m′+1; ω

)

z−x?(z)+τ
1+τ

m+1 7→ V̄ (m+1; ω)

Start t

lottery Firms

Money Injection Start t + 1

Figure 4: Timing, Markets, Outcomes

2.1 Money supply

We assume that the total stock of money in the economy M grows according to the pro-

cess

M+1

M
= 1 + τ, (2.1)

where τ > β− 1, the growth rate of money supply, is a given policy parameter.

Following Menzio et al. (2013), we define labor as the numéraire good. If we denote

ωM as the current nominal wage rate, where ω is normalized nominal wage (i.e., nominal

wage rate per units of M), then a dollar’s worth of money is equivalent to 1/ωM units of

labor. The variable ω will be endogenously determined in a monetary equilibrium.13 If

M is the beginning of period aggregate stock of money in circulation, then 1/ω = M×
1/ωM is the beginning of period real aggregate (per-capita) stock of money, measured in

units of labor.

Denote (equilibrium) nominal wage growth as γ(τ) ≡ ω+1M+1/(ωM). Later, for a

13In the original setting of Menzio et al. (2013) the unique good traded in the perfectly-competitive Wal-
rasian spot market is labor. Hence the authors decision to define labor as the numéraire. We maintain their
definition for ease of comparison. For readers who prefer the more conventional normalization of a Wal-
rasian consumption good as the numéraire, it will just be a matter of making an appropriate relative price
conversion—i.e., multiply the quantity of a particular good (measured in labor units), say q, by the relative
price ωM/p, where p is some nominal price level of another (Walrasian) good.
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stationary monetary equilibrium, we will require that equilibrium nominal wage grows

at the same rate as money supply, i.e., γ(τ)|(ω+1=ω) = M+1/M.

2.2 Markets, agents, commodities and information

There is a measure one of individuals who decide at the beginning of each date which

market (CM or DM) to participate in. Firms act in both CM and DM at the same time. An

individual can only be in the CM or DM at a given time period. In the DM, individuals

shop for special goods q. In the CM individuals supply labor l, and, consume a general

good C. As a result, they also manage their liquidity holding y to be carried into the

following period. A firm in the CM hires labor to produce the general CM good and the

special DM goods. We describe the CM and DM markets in turn.

In the CM, two markets are open: A competitive spot market for labor and a compet-

itive general good market. Agents demand money as a precaution against the need for

liquidity in anonymous markets in the DM.

In the DM, we have a setting similar to Menzio et al. (2013) where there is an infor-

mation friction: Buyers of special DM goods, q, are anonymous and cannot trade using

private claims or cannot undertake contracts with selling firms. As a result, the only

medium of exchange is money. There is a finite set of types of individuals and goods,

I. There is a continuum of individuals and firms of type i ∈ I, where an individual i

consumes good i and produces good i + 1 (mod-|I|). A type i firm hires labor service

from type i− 1 (mod-|I|) individuals (from the CM spot labor market) and transforms it

(linearly) into the same amount of DM good i. Each i-type firm commits to posted terms

of trade in all submarkets it chooses to enter. Buyers of good i direct their search toward

these submarkets that sell good i, by choosing the best terms of trade offered. However,

as we will see, these buyers will have to balance their decision on terms of trades against

the probability of getting matched. Since firms and buyers choose which submarket to

participate in, a type i buyer will only participate in the submarkets where type i firms

sell.

There is a continuum of submarkets for these types of goods. Each type-i good is

equivalently indexed by a submarket’s terms of trade (x, q) ∈ R2
+. A submarket terms

of trade comprises a real payment by a buyer, x, and the quantity traded in exchange, q.

Hereinafter, the explicit dependency on the type of good i ∈ I will become unnecessary.

2.2.1 Preference representation

The per-period utility function of an individual is

U (C)− h (l) + u(q). (2.2)

12



We assume that the functions U and u are continuously differentiable, strictly increasing,

strictly concave, U1, u1 > 0, U11, u11 < 0, and the following boundary conditions hold:

u(0) = U1(∞) = u1(∞) = 0, and u1(0) < ∞.14 Also, we assume that h (l) = l. This

simplifies the algebraic description of the CM decision problem and ensures that agents

exiting the CM are identical.

2.2.2 Matching technology in the DM

We follow the assumptions of Menzio et al. (2013) in the setting below. Let θ ∈ R+

denote the ratio of trading posts to buyers in a submarket—i.e., its market tightness. In

a submarket with tightness θ, the probability that a buyer is matched with a trading post

is b = λ(θ). The probability a trading post is matched with a buyer is s = ρ(θ) :=λ(θ)/θ.

We assume that the function λ : R+ → [0, 1] is strictly increasing, with λ(0) = 0, and

λ(∞) = 1. The function ρ(θ) is strictly decreasing, with ρ(0) = 1, and ρ(∞) = 0. We can

re-write a trading post’s matching probability s = ρ(θ) = ρ ◦ λ−1(b) ≡ µ(b). Observe

that the matching function µ is a decreasing function, and that µ(0) = 1 and µ(1) = 0.

Assume that 1/µ(b) is strictly convex in b.

2.2.3 Firms

Consider a firm i ∈ [0, 1] that takes the CM good’s relative price p (in units of labor) as

given. The firm hires labor on the spot market and transforms hired labor services into

Y units of CM good linearly. In the DM, a firm takes the market tightness function θ as

given, and chooses the measure of trading posts (viz., shops) dN(x, q) to open in each

submarket. (This is equivalent to stating that the firms post and commit to their terms of

trade in the particular submarket, taking the probability of being matched with a buyer as

given. If x is what a matched buyer is willing to pay for q and s(x, q) := ρ (θ (x, q)), then

x · s(x, q) is the firm’s expected revenue in submarket (x, q). To produce q the firm must

hire c(q) units of labor. Hence s(x, q)c(q) is its expected labor wage bill at submarket

(x, q). We assume that q 7→ c(q) is a continuous convex function. The firm also pays a

per-period fixed cost k of creating the trading post in submarket (x, q).

The firm’s profit is:

π(p; k) = max
Y∈R+

{pY−Y}+ max
dN

∫
R2

+

{s(x, q) [x− c(q)]− k}dN(x, q), (2.3)

where N is a positive measure on the Borel σ-algebra B
(
R2

+

)
. The first term on the RHS

14We will use the notational convention, fi (x1, ..., xn) ≡ ∂ f (x1, ..., xn) /∂xi, to denote the value of the
partial derivative of a function f with respect to its i-th variable. Likewise, fij will denote its cross-partial
derivative function with respect to the j-th variable.
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is the firm’s value from operating in the CM. The second, is its DM total expected value

across all submarkets it chooses to operate in.

Note that the firms’ problem above (and also agent decision problems to be discussed

below) do not explicitly depend on the aggregate distribution of agents. This is because

of the nature of competitive search in the DM: Firms and buyers take matching prob-

abilities as given when making respective posting and directed search decisions. The

observed terms of trade posts and matching probabilities suffice to condition their deci-

sion processes. Moreover CM preferences are quasilinear such that agents are identical

at the end of the CM. We discuss this further in Section 2.4.1.

2.3 Individuals’ decisions

An individual is identified by her current money balance (measured in units of labor),

m. Given policy τ, her decisions also depend on knowing the aggregate wage ω. Denote

the relevant state vector as s := (m, ω).15 At the beginning of a period (ex ante), an

individual decides whether to work and consume in the CM or whether to be a buyer

in the frictional DM. Ex post, if the agent has positive initial money balance as a DM

buyer, he continues searching for a trading post. Also, ex post, another agent is in the

CM either because she had previously expended all her money in a DM submarket or

she finds it optimal to go to CM even with positive money balance.16 Next, we describe

these different ex-post agents’ problems in turn, and then, we will describe an agent’s

ex-ante decision problem.

2.3.1 Ex-post individual in the CM

Suppose now we have an individual s := (m, ω) who begins the current period in the

CM. The individual takes policy, τ, and the sequence of aggregate prices, (ω, ω+1, ...),

as given. Her value from optimally consuming C, supplying labor l, and accumulating

end-of-period money balance y, is

15In a steady state equilibrium, ω is a constant.
16Our assumption here is different to that of Sun and Zhou (2018). In Sun and Zhou (2018), all DM

individuals go into the CM deterministically at the end of one period. From CM, individuals choose whether
to go into the DM submarkets. In their model, at the end of every period agents would be identical since
in the CM agent preferences are quasilinear. To avoid degeneracy in the agent distribution Sun and Zhou
(2018) introduce Bewley-style idiosyncratic shocks. They do so in terms of preference shocks—i.e., labor
supply shocks. In contrast, our model still preserves non-degeneracy without an additional assumption of
exogenous preference shocks, since there is always a positive measure of agents who will be stuck trading
in the DM submarkets for some time before some of them get to go to the CM.
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W(s) = max
(C,l,y)∈R3

+

{
U(C)− h(l)+ βV̄ (s+1) : pC+ y ≤ m+ l, m+1 =

ωy + τ

ω+1 (1 + τ)

}
,

(2.4)

where V̄ : S→ R is her continuation value function, to be fully described in Section 2.3.3

on the following page. This continuation value function yields her next-period expected

total payoff from state m+1 . The continuation state for the individual, m+1, is derived

as follows: At the end of the CM, the individual would have accumulated balance y

(measured in units of labor). In current units of nominal money, this is ωM × y. At

the beginning of next period, each individual gets a nominal transfer of new money τM

(population is normalized to size 1). In units of labor next period, the beginning-of-period

balance would thus be m+1 = (ωMy + τM) / (ω+1M+1). Replacing for M/M+1 with the

money supply process in (2.1) gives the expression for the individual’s continuation state

m+1 in (2.4).

2.3.2 Ex-post individual buyer in the DM

Now we focus on an individual who has just decided to be a DM buyer. The buyer

chooses which submarket (or trading post) (x, q) to enter, taking the market tightness

function (x, q) 7→ θ (x, q) as given. The individual buyer, s := (m, ω), has initial value:17

B(s) = max
x∈[0,m],q∈R+

{
β [1− b (x, q)]

[
V̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)]
+ b (x, q)

[
u(q) + βV̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]}
. (2.5)

Consider the first two terms on the RHS of the functional (2.5): With probability 1 −
b (x, q) := 1− λ (θ (x, q)) the buyer fails to match with the trading post and must thus

continue the next period with his initial money balance subject to inflationary transfer.

With the complementary probability b (x, q) := λ (θ (x, q)) he matches with a trading

post (x, q), pays the seller x in exchange for a flow payoff u (q), and then continues into

the next period with his net balance, also subject to inflationary transfers.

17Implicit in the DM-buyer’s problem here is that the buyer sees which trading posts—each indexed by its
posted terms of trade (x, q)—are open. In equilibrium, each buyer’s problem must be consistent with firms’
price-posting strategies (to be further discussed in Section 2.4).
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2.3.3 Ex ante decision

Given a money balance z, the individual decides which markets to participate in, and her

value becomes

Ṽ (z, ω) =

maxa∈{0,1} {aW (z− χ, ω) + (1− a) B (z, ω)} , z− χ ≥ −ymax (ω; τ)

B (z, ω) , otherwise
,

(2.6)

where

ymax (ω; τ) := m̄− τ

ω
, (2.7)

is a natural upper bound on CM saving (in real money balances) and m̄ ∈ (0, ∞) is a

sufficiently large constant. We derive this upper bound in the Online Appendix B.

As shown in Menzio et al. (2013), the resulting value function B in Equation (2.5)

may not be strictly concave in m.18 This is the case even if primitive functions are. As

a result, the value function Ṽ may not be concave either.19 This implies that agents can

be weakly better off by choosing a lottery over the pure participation outcomes. That is,

consider the following problem. Suppose at the beginning of a period, an agent begins

with money balance m. If there is a non-empty subset [z1, z2] containing m such that

any weighted average of the pure-action induced values Ṽ(z1, ω) and Ṽ(z2, ω) (weakly)

dominates Ṽ(m, ω), then the agent will optimally play a fair lottery (π1, 1− π1) over the

prizes {z1, z2}. This yields the ex-ante value

V̄ (s) = max
π1∈[0,1],z1,z2

{
π1Ṽ(z1, ω) + (1− π1) Ṽ (z2, ω) : π1z1 + (1− π1)z2 = m

}
. (2.8)

Observe that in Equation (2.6), contingent on realizing a lottery payoff z, the outcome

of the lottery also induces the pure action of going to the DM or the CM. If the agent

decides to go to the CM, he must pay a (small) fixed cost χ ≥ 0 (measured in units of

labor) to participate in the CM. This fixed-cost component is interpretable as a barrier to

participation in liquidity-risk management in the CM for some agents.

Remark 1. This additional friction, parametrized by χ, is not per se crucial to the model’s

equilibrium mechanism and trade-off. In the quantitative model later, we allow for χ > 0

in order to better fit auxiliary empirical targets. Theoretically, the extensive-margin CM-
18This is due to the bilinear and non-concave interaction between b (x, q) and u (q) in the DM-buyer’s

objective function in Equation (2.5). These two terms, respectively, give rise to an extensive margin (i.e., how
likely is a buyer to trade) and an intensive margin (i.e., how much of q to consume given a match).

19However, we show that B it is still continuous and increasing in Online Appendix D (Lemma 5). Hence
Ṽ also inherits this property.
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participation decision is still present even if χ = 0. Why? From Equation (2.2) the flow

preference function is strictly concave, implying that they would like to consume both

CM and DM goods in their infinite lifetimes. However, no agent in equilibrium would

optimally stay in either market forever. Agents would still go from CM to DM since they

have a preference for DM goods too. Agents in DM would exit to CM at some optimal

time since they need to manage their liquidity balance for future DM expenditures. In

our quantitive experiments, we confirm this via a robustness check for the case where

χ = 0 (see our Online Appendix I.2).

In the ex-ante market participation problem (2.6), there is a limited short-sale (I.O.U.)

constraint z− χ ≥ −ymax (ω; τ). It may be possible that an agent, whose state is such that

m < χ, when faced with deciding to go to the CM, may still find it optimal to issue an

I.O.U. worth m− χ at the beginning of a CM, and go to work in the CM immediately to

repay the shortfall m− χ. Since the fixed cost is levied in the CM, and in the CM promises

or contracts are completely sustainable, then a limited amount of short selling (I.O.U.) is

possible. The limit on the short sale m − χ, is equivalent to agents exerting a maximal

CM labor effort lmax (ω; τ) = ymax (ω; τ) + U−1 (1) < 2U−1 (1), and not saving anything

in the CM. In Online Appendix C we derive these limits of −ymax (ω; τ) and lmax (ω; τ).

2.4 Monetary equilibrium

Clearly there exists a non-monetary equilibrium whereby no agent will participate in the

DM. In this paper, we restrict attention to the case of a monetary equilibrium. Hereinafter,

whenever we refer to “monetary equilibrium”, or “equilibrium”, we mean a recursive

monetary equilibrium—one in which agent’s decision functions are recursive and time-

invariant maps. In what follows, we first characterize the equilibrium strategy of firms

(section 2.4.1), the equilibrium value and decision functions of agents in the CM (section

2.4.2) and in the DM (section 2.4.3), and then close the equilibrium notion by describ-

ing the market clearing conditions (section 2.4.4). At the end of this section, we restrict

attention to and define formally the notion of a stationary monetary equilibrium (SME).

2.4.1 Equilibrium strategy of firms

A firm’s problem is static. We can characterize the equilibrium behavior of a firm given

p (in the CM). Free entry in the CM will render zero profits to firms in equilibrium, and

thus, p = 1. Likewise, free entry and zero-profit in the DM with competitive search will

imply that

r(x, q) := s (θ(x, q)) [x− c(q)]− k ≤ 0, and, θ(x, q) ≥ 0, (2.9)
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where the weak inequalities would hold with complementary slackness: For a submarket

(x, q) such that r(x, q) < 0, the firm optimally chooses not to post in the submarket. If

r(x, q) = 0, then the firm is indifferent to creating different numbers of trading posts

in submarket (x, q). We can also deduce that r(x, q) > 0 cannot be an equilibrium: If

expected profit is positive, then this implies θ(x, q) = +∞, and thus s (θ(x, q)) = 0 which

yields a contradiction to the case.20 We will restrict attention to an equilibrium where

Equation (2.9) also holds for submarkets not visited by any buyer.21

From (2.9), we can deduce that

s(x, q) ≡ µ ◦ b (x, q) =


k

x−c(q) ⇐⇒ x− c(q) > k

1 ⇐⇒ x− c(q) ≤ k
. (2.10)

Observe that the firm’s probability of matching with a buyer, s(x, q) := ρ (θ (x, q)) de-

pends only on the posted terms of trade (x, q). Likewise, the buyer’s probability of

matching with a firm, b(x, q) := λ (θ (x, q)), given the matching technology µ : [0, 1] →
[0, 1]. Thus, in any submarket with positive measure of buyers, the market tightness,

θ(x, q) ≡ b(x, q)/s(x, q), is neccessarily and sufficiently determined by free entry into the

submarket. Moreover, the terms of trade of a submarket (x, q) is sufficient to identify

the submarket. This will imply that firms’ and agents’ optimal decision processes do not

depend on the equilibrium distribution of agents. They will only depend on the distri-

bution only through the aggregate statistic ω as a result of inflation. Looking ahead, the

equilibrium will be (partially) block recursive.

In equilibrium, there is a relation between q and (x, b). That is, in any equilibrium,

each active trading post will produce and trade the quantity:

q = Q(x, b) ≡ c−1
[

x− k
µ(b)

]
, (2.11)

given payment x and its matching probability s = µ(b). This relation will allow us to

perform a change of variables, and re-write the buyers’ problems below in terms choices

over (x, b), instead of over (x, q).

20If we let (x, q) 7→ N(x, q) denote the equilibrium distribution of trading post across submarkets, condi-
tion (2.9) implies that aggregate profit in the DM is zero:

∫
{s(x, q) [x− c(q)]− k}dN(x, q) = 0.

21Justification for this off-equilibrium-path restriction can be rationalized via a “trembling-hand” sort of
argument: Suppose there is some exogenous perturbation that induces an infinitesimally small measure of
buyers to show up in every submarket. Given a non-zero measure of buyers present in a submarket, if firms’
expected profit is still negative in that submarket, i.e., r(x, q) < 0, then the market will not be active. This
restriction is commonly used in the directed search literature (see, e.g., Menzio et al., 2013; Acemoglu and
Shimer, 1999; Moen, 1997).
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2.4.2 Equilibrium CM individual

Let us denote C[0, m̄] as the set of continuous and increasing functions with domain [0, m̄].

Then V [0, m̄] ⊂ C[0, m̄] denotes the set of continuous, increasing and concave functions

on the domain [0, m̄]. We have the following observations of any CM individual’s value

and policy functions, which apply to both a steady-state equilibrium or along a dynamic

equilibrium transition. (Since these are standard dynamic programming result, proofs of

these results are relegated to the Online Appendix.)

Theorem 1. Assume τ/ω < m̄. For a given sequence of prices {ω, ω+1, ...}, the value function

of the individual beginning in the CM, W (·, ω), has the following properties:

1. W (·, ω) ∈ V [0, m̄], i.e., it is continuous, increasing and concave on [0, m̄]. It is linear on

[0, m̄].

2. The partial derivative functions W1 (·, ω) and V̄1 (·, ω+1) exist and satisfy the first-order

condition

β

1 + τ

(
ω

ω+1

)
V̄1

(
ωy? (m, ω) + τ

ω+1 (1 + τ)
, ω+1

)≤ 1, y? (m, ω) ≥ 0

≥ 1, y? (m, ω) ≤ ymax (ω; τ)
, (2.12)

and the envelop condition:

W1 (m, ω) = 1, (2.13)

where y?(m, ω) = m + l?(m, ω)− C?(m, ω), l?(m, ω) and C∗(m, ω), respectively, are

the associated optimal choices on labor effort and consumption in the CM.

3. The stationary Markovian policy rules y? (·, ω) and l? (·, ω) are scalar-valued and contin-

uous functions on [0, m̄].

(a) The function y? (·, ω), is constant valued on [0, m̄].

(b) The optimizer l? (·, ω) is an affine and decreasing function on [0, m̄].

(c) For every (m, ω), the optimal choice l?(m, ω) is finite valued: 0 < lmin ≤ l? (m) ≤
lmax (ω; τ) < +∞, where there is a very small lmin > 0 and lmax (ω; τ) := ymax (ω; τ)+

U−1 (1) < 2U−1 (1) ∈ (0, ∞).

In the proof to Theorem 1, we also derive the equilibrium decisions of the CM agent.

We show that in an equilibrium, CM consumption is

C? (m, ω) ≡ C̄? = (U1)
−1 (1) , (2.14)
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a finite and non-negative constant. Equilibrium CM asset decision will depend on the

aggregate state ω, i.e.,

y? (m, ω) = ȳ? (ω) (2.15)

and this satisfies the first-order condition (2.12). Finally, from the budget constraint, we

can obtain the equilibrium labor supply function as

l?(m, ω) = C̄? + ȳ? (ω)−m. (2.16)

Note that l?(m, ω) is single-valued, continuous, affine and decreasing in m.

2.4.3 Equilibrium DM buyer

Observe that since V̄(·, ω), W(·, ω) ∈ V [0, m̄] (i.e., are continuous, increasing and con-

cave), then by (A.1), V̄ (·, ω) ∈ V [0, m̄]. In an equilibrium, the DM buyer’s problem in

(2.5) can be re-written as

B(s) = max
x∈[0,m],b∈[0,1]

{
β(1− b)

[
V̄
(

ωm + τ

ω+1 (1 + ω)
, ω+1

)]
+ b
[

u (Q(x, b)) + βV̄
(

ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]}
. (2.17)

It appears as if the buyer is choosing his matching probability b along with payment x.

However this is just a change of variables utilizing the equilibrium relation (2.11) between

quantity q and terms of trade (x, b). From this we can begin to see that there will be a

trade-off to the buyer, in terms of an extensive margin (i.e., trading opportunity b), and,

an intensive margin (i.e., how much to pay x).

The operator defined by (2.17) clearly does not preserve concavity: The objective func-

tion in (2.17) is not jointly concave in the decisions (x, b) and state m, since it is bilinear in

the function b and the value function V̄, or the flow payoff function u. However, we can

still show that the resulting DM buyers’ optimal choice functions for (x, b), denoted by

(x?, b?), are monotone, continuous, and have unique selections, using lattice program-

ming arguments.

The following theorem summarizes the properties of a DM agent’s value and policy

functions:22

Theorem 2 (DM value and policy functions). For a given sequence of prices {ω, ω+1, ...}, the

following properties hold.

22Theorem 2 is a generalization of the observation of Menzio et al. (2013) in two aspects: (i) We have
additional endogenous CM participation in our model; and (ii) the theorem extends beyond steady state
equilibria to encompass equilibrium along a dynamic transition.
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1. For any V̄(·, ω+1) ∈ V [0, m̄], the DM buyer’s value function is increasing and continuous

in money balances, B (·, ω) ∈ C [0, m̄].

2. For any m ≤ k, DM buyers’ optimal decisions are b? (m, ω) = x? (m, ω) = q? (m, ω) =

0, and B (m, ω) = βV̄ [φ(m, ω), ω+1], where φ(m, ω) := (ωm + τ)/ [ω+1(1 + τ)].

3. At any (m, ω), where m ∈ [k, m̄] and the buyer matching probability is positive b? (m, ω) >

0:

(a) The optimal selections (x?, b?, q?) (m, ω) and φ?(m, ω) := φ [m− x? (m, ω) , ω],

are unique, continuous, and increasing in m.

(b) The buyer’s marginal valuation of money B1(m, ω) exists if and only if V̄1 [φ(m, ω), ω]

exists.

(c) B(m, ω) is strictly increasing in m.

(d) the optimal policy functions b?and x?, respectively, satisfy the first-order conditions

u ◦Q [x?(m, ω), b?(m, ω)] + b?(m, ω) (u ◦Q)2 [x
?(m, ω), b?(m, ω)]

= β [V̄ (φ (m, ω) , ω+1)− V̄ (φ? (m, ω) , ω+1)] , (2.18)

and,

(u ◦Q)1 [x
?(m, ω), b?(m, ω)] =

β

1 + τ

(
ω

ω+1

)
V̄1 [φ

?(m, ω), ω+1] . (2.19)

We prove these results in sequence, in Online Appendix D. Here, we summarize

briefly the workings behind these results: Part 1 of the Theorem uses standard results

from optimization and can be found in Lemma 1 of the appendix. Part 2 is proven as

Lemma 2 in the appendix, and its insight here is simple: If buyers do not carry enough

money to at least pay for a trading post’s fixed cost, no firm will want to set up that post

in equilibrium, and so the buyers get nothing. Part 3(a) is proven as Lemma 3 using the

fact that a log-transform of the DM buyer’s objective function is jointly concave in the

choice variables (x, b), and is continuous in m (fixing the aggregate state). It nevertheless

satisfies an increasing difference—and therefore, supermodularity—property. Thus, by

lattice programming arguments, we can show that the DM buyer’s optimal policies are

increasing in m. Lemmata 4 and 5 in the appendix, together establish Parts 3(b) and 3(c):

These show that whenever a buyer has a chance of matching, her value function is dif-

ferentiable. As a result, we can also characterize her best response in terms of a matching

probability (extensive margin) and spending level (intensive margin) via Euler equations

in Part 3(d), and this is proven in Lemma 6.
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2.4.4 Market clearing

Goods in CM. In equilibrium, the total production of CM good equals its demand:

Y = C ≡ U−1 (1) .

Goods in DM. Given equilibrium policy functions, x? and b?, and, equilibrium distri-

bution of money G and wage ω, Equation (2.11) pins downs market clearing for each sub-

market in the set of equilibrium submarkets {(x(m, ω), b(m, ω)) : m ∈ supp(G(·, ω))} .

Money demanded must also equal money supplied:

1
ω

=
∫

mdG(m; ω) > 0. (2.20)

Since M is the beginning of period aggregate stock of money in circulation, then the LHS

of (2.20), 1/ω = M × 1/ωM, is the beginning of period real aggregate stock of money,

measured in units of labor. The RHS of (2.20) is beginning of period aggregate demand,

or holdings, of real money balances measured in the same unit.

2.5 Existence of a SME with unique distribution

For the rest of the paper, we focus on a stationary monetary equilibrium (SME), which

comprises the characterizations from Section 2.4, where the sequence of prices are con-

stant: ω = ω+1.

Definition 1. A stationary monetary equilibrium (SME), given exogenous monetary policy

τ, is a

• list of value functions s 7→ (W, B, V̄)(s), satisfying the Bellman functionals: (2.4),

(2.5), and jointly, (A.1)-(2.6);

• a list of corresponding decision rules s 7→ (l?, y?, b?, x?, q?, z?, π?)(s) supporting the

value functions;

• a market tightness function s 7→ µ ◦ b?(s) given a matching technology µ, satisfying

firms’ profit maximizing strategy (2.10) and (2.11) at all active trading posts;

• an ergodic distribution of real money balances G(s) satisfying an equilibrium law

of motion

G(E) = T(G)(E) :=
∫

P(s, E)dG(s), ∀E ∈ B (S) , (2.21)

where B (S) is the Borel σ-algebra generated by open subsets of the product state

space S, and, s 7→ P(s, ·) is a Markov kernel induced by (l?, x?, q?, z?, π?) and µ ◦
b?under τ; and,
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• a wage rate function s 7→ ω(s) satisfying the money stock adding up condition

(2.20).

At this point, we note that it will not be difficult to show that there is a unique dis-

tribution of agents in a SME. However, whether a SME is unique remains elusive to us

as the frequency function dG(m; ω) does not admit a closed form expression in terms of

known functions, and in general, it will also depend on the equilibrium candidate ω. This

statement is also true for the original Menzio et al. (2013) setting, if the authors’ model

had money supply growth. The intractability of their version of the frequency function

dG(m; ω) under money supply growth comes about from the modeller no longer being

able to work out analytically how long it will take for DM-unmatched buyers’ balances

to get eroded by inflation, before they have to go to work again. In contrast, the variation

in Sun and Zhou (2018) admits an analytical form for dG(m; ω) and as a result they can

show that there is a unique SME. This special result arises from their assumption that all

types of agents in the DM must deterministically enter the CM after one round of trade

(or no trade) in the DM, so that the aggregate demand for money in their model can

be analytically described by a composition of equilibrium decision functions with well-

behaved properties and an assumed exogenous distribution of CM preference shocks. In

their model, without an exogenous distribution of CM preference shocks, given the mar-

ket timing assumptions, there would be no distribution of agents since preferences are

quasilinear in their CM.

Our setting yields a modeling trade-off in the opposite direction: In contrast to Sun

and Zhou (2018), we do not require the latter assumption to preserve distributional non-

degeneracy. However, our relaxation here would come at an analytical cost on the form of

the frequency function dG(m; ω). In our opinion, the loss of tractability in this respect is

not too severe: Our equilibrium characterization remains computational feasible. In fact,

it retains the feature that agents’ decision rules depend on the aggregate state only in-

sofar as the scalar aggregate variable, ω. Unlike heterogeneous-agent random matching

models, the market clearing conditions in competitive search do not require the conjec-

ture of an entire distribution of assets in order to pin down terms of trade. In that sense,

our algorithm for finding a SME will be similar to that used for computing neoclassical

heterogeneous-agent models. In fact, with aggregate shocks (e.g., to τ) our setting will

also imply an accurate application of the (originally heuristic) Krusell and Smith (1998)

algorithm to an exact problem. (A similar point was previously discussed in Menzio et

al. 2013, pp.2294-2295.)

The following theorem ensures that in our computations below there exists a steady

state, stationary monetary equilibrium, and for each steady state equilibrium ω, there is

a unique distribution of agents.

Theorem 3. There is a SME with a unique nondegenerate distribution G.
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We prove this in Online Appendix E. The idea here is to first show that a composite

Bellman functional for each agent satisfies Banach’s fixed point theorem. Then, from The-

orems 1 and 3, we know that agents’ decision functions are monotone and continuous.

This implies that for fixed ω, the equilibrium Markov operator on a current distribution

of agents G is a monotone map and satisfies measurability conditions. We can easily ar-

gue that there monotone mixing as a result of the equilibrium self-map (2.21) on the space

of distributions G, and conclude that there is a unique fixed point (in a weak-convergence

sense). Finally we show that there is at least one fixed point in the space of ω satisfying

the SME conditions by utilizing the intermediate value theorem.

3 Quantitative analyses

Finding a SME requires numerical computation. In this section, we calibrate the model

to the US economy and explain a little the equilibrium properties of the benchmark cali-

brated model. We will pause to discuss the underlying forces and trade-offs at work that

will help us to understand the SME outcomes. This will also help guide our understand-

ing at the end of this section, where we provide some comparative SME analyses in terms

of allocative, distributional and welfare outcomes.

3.1 Statistical calibration

The CM and DM preference functions are, respectively,

U (C)− h(l) =
C1−σCM

1− σCM
− l, and, u (q) = ŪDM

[
ln
(

q + q
)

-ln
(

q
)]

,

where q = 1× 10−8. Following Menzio et al. (2013), the matching function is such that

a trading post’s matching probability as a function of a buyer’s matching probability is

µ(b) = 1− b.23

All the parameters of the model are listed in Table 1. The parameters τ and β are exter-

nally pinned down. The rest (χ, σCM, k, ŪDM) are jointly calibrated to match an empirical

money demand curve, price dispersion and labor hours statistics. Next, we explain intu-

itively our identification and calibration strategy.

23This function is derived from the well-known telegraph- or telephone-line matching function (see, e.g.,
Stevens, 2007; Cox and Miller, 1965) that is used in models of labor matching (see, e.g., Petrosky-Nadeau and
Zhang, 2017; Hagedorn and Manovskii, 2008; den Haan et al., 2000). Let B denote the number of buyers, S
the number of sellers at a trading post and v the number of matches that has occurred. A buyer’s matching
probability is thus b = v/B. A seller’s is s = v/S . This implies that B/S = s/b. The number of matches
in a telephone-line matching function is given by v = BS / (Bρ +S ρ)1/ρ, where ρ > 0. From these, we can
derive the relationship: s ≡ µ (b) = (1− bρ)1/ρ. In robustness checks, our results do not change qualitatively
with ρ. Hence we chose not to calibrate ρ and instead normalized it as ρ = 1.
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Table 1: Benchmark estimates

Parameter Value Empirical Targets Description

1 + τ (1 + 0.0089)1/4 Inflation ratea Inflation rate
1 + i (1 + 0.0385)1/4 3-month T-bill ratea Nominal interest rate

β 0.99879 - Discount factor, (1+i)
(1+τ)

χ 0.00297 Aux reg. (i,M/PY)b CM participation cost
σCM 2 Aux reg. (i,M/PY)b CM risk aversion

k 0.003997 Price dispersion (21% s.d.)c Price-posting cost
ŪDM 407.77 Mean Hours ( 1

3 ) Preference scale
a Mean nominal interest and inflation rates in the data are annual.
b The auxiliary statistics (data) are from a spline function fitted to the data on annual

observations of the (3-month T-bill) nominal interest rate (i) and Lucas-Nicolini New-
M1-to-GDP ratio (M/PY).

c Kaplan-Menzio dataset: generic-brand aggregation pricing dispersion (21 percent
standard deviation).

External calibrations. The benchmark SME inflation rate τ is estimated by the sam-

ple mean of long-run (1915-2007) CPI inflation data obtained from FRED (CPIAUCNS).

Given the sample mean of the three-month Treasury Bill rate (i) (sourced from the dataset

of Lucas and Nicolini, 2015), we can pin down an estimate of the discount factor β using

Fisher’s ex-post relation: β = (1 + i) / (1 + τ).

Money demand: Identification and internal calibrations. In the model, we can iden-

tify the taste parameter σCM and the cost parameter χ from the observed aggregate money

demand relationship. The risk aversion parameter σCM affects money demand through

the individual money demand condition in Equation (2.12), its related envelop condition

embedded in marginal continuation value function V̄1 and through aggregation in the

overall SME. From Theorem 1, V̄1 depends on probable ex-post DM or CM outcomes.

Hence, ex-ante V̄1 depends on DM and CM preferences. That is, the CRRA parameter

σCM influences equilibrium money demand.24

Likewise, from Equation (2.6) the ex-post market participation problem depends on

cost parameter χ. In turn, this influences ex-post participation value function Ṽ. This

feeds through to V̄1 through the ex-ante lottery problem in Equation (2.8) and the optimal

money demand condition in Equation (2.12).

Since we are focusing on a notion of long-run equilibrium, we calibrate the pair (σCM, χ)

to minimize the distance between the model-implied aggregate money demand relation-

ship and an auxiliary (spline) money-demand model. The auxiliary model is fitted to

24Readers familiar with (Lagos and Wright, 2005)-type models might expect calibrations in terms of a
corresponding CRRA parameter σDM instead of σCM. This is because in (Lagos and Wright, 2005)-type
models, agents typically move in and out of the DM together and deterministically. In our setting, there is
an individual choice on stochastic transitions between the two markets. It is because of this that there is a
direct link from σCM to the characterization of money demand in Equation (2.12). We chose to normalize
σDM = 1. In short, it does not matter if we had freed up the DM utility-of-consumption CRRA σDM for
calibration in lieu of σCM.
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Figure 5: Lucas and Nicolini (2015) money demand annual data (1915-2007), model
(green-dashed line) and auxiliary regression model target (red-dashed line). The red dot
refers to the sample average for nominal interest.

long-run data spanning from 1915 to 2007.25 Our focus on using long-run data is similar

in spirit to Lucas (2000).

Figure 5 shows the model’s aggregate money demand curve (solid black line), with

a three-month Treasury-bill measure of the nominal interest rate (i) and the Lucas and

Nicolini (2015) “New” M1-to-GDP ratio (M1/PY), respective on the horizontal and ver-

tical axes. The long-run data is shown as scatter points with various shapes: circles for

pre-WWII observations, squares for post-WWII and pre-Great-Recesssion observations.

The dashed line is the auxiliary, empirical money demand curve used as our target for

indirectly estimating the model’s money demand (solid curve). From the scatter plots,

we can deduce that the empirical money demand has shifted in several regimes in the

historical data (see also, Ireland, 2009). In following Lucas (2000), we can think of our ap-

proach, as specifying a model-implied money demand curve that is a “halfway-house”

between these different historical episodes. Indeed, from Figure 5, we can see that the

solid curve (model) lies in between the various sub-samples and is close to the empirical

(auxiliary) money demand curve.

Hours worked and price dispersion: Identification and internal calibrations. We iden-

tify the preference scaling parameter ŪDM (i.e., relative size of DM and CM payoffs) from

empirically measured hours worked. In the model, ŪDM is related to the marginal utility

function U1 via Equation (2.12) for individual money demand and Equation (2.16) for

an individual’s CM budget constraint. That is, ŪDM influences individual optimal labor

supply. Through SME, ŪDM is identified from average labor hours of 0.33 in the U.S.

data.

Given the Menzio et al. (2013) matching technology µ (with no free parameter), the

25The 2007 data measurement preceded the start of the Great Recession.
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cost of creating a trading post, k can be pinned down in an SME via firms’ profit maxi-

mizing strategy (2.10) and (2.11) at all active trading posts. All else equal, k affects the

equilibrium location or dispersion of submarkets. As such, we can identify k from mea-

sured price-dispersion data. Since we do not have matching historical measures of price

dispersion, as a next-best option, we calibrate k to target more recent evidence on price

dispersion in micro-level data. For the empirical evidence, we consult with a recent study

using price-scanner data in the U.S. by Kaplan and Menzio (2015). According to Kaplan

and Menzio (2015) their big-data sample of prices exhibit dispersion. Measured in terms

of standard deviation, price dispersion ranges from 19 percent (if goods are defined ac-

cording to their universal product codes) to 36 percent (if goods are aggregated with

different name brands and sizes). A generic-brand aggregation would imply a pricing

distribution with about 21 percent in terms of standard deviation. The benchmark cali-

brated model implies a price dispersion (standard deviation) statistic of 21.7 percent.

3.2 Benchmark SME

In Figure 6, we plot the SME value functions (V, B, W) in the benchmark economy. In

the benchmark economy, our algorithm finds that two lottery segments exist. The solid

blue line is the graph of W (·, ω). The dashed green line is the graph of B (·, ω). The

upper envelop of these two graphs give us Ṽ (·, ω), the thick solid green line. Denote

conv {·} as the convex-hull set operator. The solid magenta graph is the graph of V (·, ω)

obtained through our convex-hull approximation scheme, once we have located all the

intersecting coordinates between the set graph
[
Ṽ (·, ω)

]
and the upper envelope of the

set conv
{

graph
[
Ṽ (·, ω)

]
, (0, 0) , (m̄, 0)

}
.

Figure 6: Value functions for benchmark economy.

Sustaining the equilibrium value functions are the policy functions (l?, b?, x?, q?), and

the lottery policies (π1, 1− π1) and (π′1, 1− π′1) over the prize supports (z1, z2) and (z′1, z′2),

where π1 (m, ω) = (z2 −m) / (z2 − z1) and π′1 (m, ω) = (z′2 −m) / (z′2 − z′1).
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The other policy functions can be seen in Figure 7. Consider the panel depicting the

graph of the CM labor supply function. As shown earlier in (2.16), labor supply is affine

and decreasing in money balance. There are three shaded patches in the Figure’s panels.

The darker (and narrowest) patch corresponds to the region where m ∈ [0, k), i.e., an

agent will never match nor trade in the DM. The orange patches (one of which overlaps

the dark-red patch) are the regions of the agent’s state space in which a lottery may be

played—i.e, [z1, z2] and [z′1, z′2]. What matters for each agent in the SME is then the loci of

these policy functions outside of the orange patch, but including the points on its bound-

ary. These will be consistent with the equilibrium’s ergodic state space of agents. As

proven in Theorem 2, the policy functions (b?, x?, q?) are monotone in m in the relevant

subspace where an agent can exist at any point in time. The relevant ergodic subspace of

[0, m̄] in equilibrium is given by {z1, [z2, z′1] , [z′2, m̄]} = {0, [0.52, 0.54] , [0.98.., m̄]} in the

benchmark economy in Figure 6 or Figure 7.

Figure 7: Markov policy functions in the benchmark economy.

Given the information about our benchmark SME’s active or relevant agent state

space, and, the corresponding policy functions, we can simulate an agent’s outcomes

and also compute the equilibrium distribution of real money holdings.26 To do so, one

may begin from any initial agent named (m, ω) and apply the decision rules computed

earlier, as in Figure 7. Details of the algorithms for simulating the SME outcomes can be

26With competitive search, the domain of real money balances will be finite. Menzio et al. (2013) derive a
unique closed-form for the graph of the distribution of money holdings, in the special case of zero inflation.
When there is non-zero inflation, this becomes analytically intractable. We can numerically compute this,
given agents’ equilibrium policy functions.
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found in our Online Appendix G. Readers interested in the SME behavior of agents may

take a detour here to study the benchmark-calibrated SME simulation outcomes in On-

line Appendix H. Otherwise, we may proceed to discuss the equilibrium trade-offs faced

by agents (i.e., the model mechanism) in the next section.

4 Trade-offs: inspecting the mechanism

In this section, we explain the mechanism behind equilibrium behavior and the attendant

welfare and redistributive consequences of inflation. We identify the opposing forces un-

derlying an SME as a function of inflation policy τ. The key insight here is that there

is an endogenous, trading-probability or extensive margin that acts in opposite direction to

an intensive-margin effect of inflation. The latter is a feature that also exists in all other

heterogeneous-agent monetary models (including random-matching models). In con-

trast to standard models or random matching models, competitive search equilibrium

induces matching probabilities that are endogenous to individual states and to aggre-

gate (policy) outcomes. This creates a new channel from policy τ to the cross section of

money holdings that will work against a standard inequality-reducing effect of τ. For the

sake of exposition, we will split our discussion of these two opposing forces according to

activities in the CM and the DM.

CM-participation intensive vs. extensive margins. Positive inflation (τ > 0) induces

the following trade-offs: On one hand, with inflation, individuals would like to visit the

CM more frequently to work and consume there (since in the CM money is not needed

for exchange). On the other hand, given a real fixed cost χ ≥ 0 of entering the CM,

higher inflation means that low-balance agents in the DM will face a greater barrier

to engage in liquidity management in the CM. This is because of two possibilities: (i)

their natural short-sale constraints in (2.6) may be violated if inflation is too high, i.e.,

m− χ < −ymax (ω; τ) < 0, and so they choose to stay in the DM and are more likely to

keep realizing a bad draw of the zero balance lottery prize; or (ii) their short-sale con-

straints in (2.6) are not binding, but the value of going to CM, W (m− χ, ω) is still dom-

inated by the value of going to the DM, B (m, ω). However, in equilibrium, in order to

continue deriving consumption value in the DM, an agent would also need to ensure that

he has sufficient balance to pay to go back to the CM often enough to maintain enough

precautionary saving of money.

These trade-offs imply two margins for a precautionary motive for agents with respect

to incomplete consumption insurance: Either they work harder each time in the CM and

bear the cost of holding excess money balances (intensive labor-CM margin), or, they work

less in each CM instance, reduce their spending in each DM exchange, and ensure that
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they are more likely to be able to afford to go to the CM frequently (extensive labor-CM

margin).

Remark 2. Recall from Remark 1 that the fixed cost parameter χ is not crucial to the ex-

istence of this intensive-versus-extensive margin mechanism in the model. We again

emphasize that the device χ ≥ 0 is merely to facilitate quantitative fit of the model.

We confirm this in a robustness check for the case that χ = 0, in our Online Appendix

I.2. There we show that the same qualitative conclusions arise, as in our benchmark-

calibrated model results to be discussed next.

DM-specific intensive vs. extensive margins. This is the key trade-off with respect

to the DM. This trade-off is not present in standard general-equilibrium or in random-

matching models. Consider the equilibrium description of firms’ optimal behavior in

relation to DM production and profit maximization (2.11). Given the firms’ best re-

sponse in a SME, we can deduce the following about a potential DM buyer: Q1(x, b) > 0,

Q2(x, b) < 0, Q(x, b) is weakly concave, and Q12(x, b) = 0. In words, we have another

tension here: On one hand, faced with a given probability b of matching with a trading

post, the more a buyer is willing to pay, x, the more q she can consume. (This is the inten-

sive margin of DM trade—i.e., how much one can purchase.) On the other hand, given a

required payment, x, a buyer who seeks to match with higher probability, b, must tolerate

eating less q (This is the extensive margin of DM trade—i.e., trading opportunities.)

From Theorem 2, we know that if a DM buyer brings in more (less) money balance

every period, then x will be higher (lower) and b will be higher (lower). The tension just

outlined above gives an ambiguous resolution on x or q. Thus the intensive margin faces

a countervailing force in the extensive margin within the DM, as this will interact with

the CM-participation intensive and extensive margin trade-off as well.

How might inflation affect money holdings inequality? As in standard heterogeneous-

agent models, inflation has redistributive-tax effect (through the intensive margin of

trade in all markets). Intuitively, agents who have higher (lower) balances have a lower

(higher) marginal, ex-ante valuation of money. Inflation thus taxes the “rich” and gives

to the “poor”. This is also the case in standard heterogeneous-agent monetary models.

However, inflation also raises individuals’ downside risks or probabilities of not get-

ting to trade in decentralized search markets. Consider Equations (2.18), (2.19) and Theo-

rem 2 (part 2). With higher inflation, agents tend to carry less money holdings. However,

since an individual’s probability of not trading in the DM is decreasing in her money

balance, this risk affects individual incentives on the extensive margin—i.e., how fast

agents trade relative to how much liquidity they carry into in these markets. If individ-

ual matching probabilities decline and their dispersion widens as inflation gets higher,
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then there could be rising inequality in money holdings. From Figure 7, we can see that

the equilibrium matching probabilities are concave in money holdings—i.e., with higher

inflation, they tend to decline more slowly for the “rich” than the “poor”. This works in

an opposite direction to the intensive-margin, redistributive effect of inflation. In equilib-

rium, agents trade off between these two channels. This trade-off depends on long-run

inflation targeting policy.

5 Inflation and the opposing intensive-extensive margins

We now use the calibrated model to demonstrate where the intensive-versus-extensive-

margin tension resolves, in the face of higher inflation. On the horizontal axes of the fig-

ures that follow, we are increasing the (quarterly) steady-state inflation rate, τ, within the

set (β− 1, 0.025]. On the vertical axes, we measure relevant statistics for each correspond-

ing economy under policy τ. In the following discussion, we refer to each equilibrium as

SME(τ).

We note that the results below remain qualitatively similar even when we shut down

the additional friction of CM participation (χ = 0). This is demonstrated in our Online

Appendix I.2. In other words, the extensive margin channel from competitive search

matters in terms of creating a countervailing effect to the redistributive effect of inflation.

This additional trade-off is nonexistent in standard or random-matching, heterogeneous-

agent monetary models.

Money distribution. First, consider how the distribution of end-of-period money hold-

ings in a SME(τ) varies with successively higher trend inflation τ. We see from Figure

8 (left panel) that for higher inflation economies, average money balance is smaller. We

have checked that this is also true for the entire distribution: Each heterogeneous agent

would also be holding less money balance in an SME that has a higher inflation rate. That

is, as inflation rises, the cost of holding money increases. In response, agents carry less

money out of the CM.

If we consider a “90/10” measure of inequality in Figure 8 (right panel)—i.e., the ratio

of balances held by the top ten percent to the bottom ten percent of agents in the distri-

bution—then we see that for low levels of How might inflation affect money holdings

inequality? inflation, this measure of inequality falls as inflation rises. That is, the de-

cline of money holdings for the top ten percent of money holders (the “rich”) is relatively

faster than that for the bottom ten percent (the “poor”) as inflation rises. This echoes

our discussion of the model mechanism earlier. Here, inflation works through a stronger

intensive margin. Through the intensive margin, inflation taxes the rich (those with low

marginal valuations of money) and redistributes to the poor (those with higher marginal
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valuations of money). However, there is still the countervailing force arising from the

interaction of endogenous trading probabilities with how quickly agents should spend

searching for goods in the DM. At some point, as inflation gets high enough, the latter

extensive-margin channel begins to dominate the intensive margin. As a result, we see

money-holdings inequality rising with inflation.

We see a similar result if we use the Gini measure for money holdings inequality (see

Figure 8, bottom panel). The green square marker in Figure 8 (bottom panel) denotes a

reference SME at zero inflation, or at τ = 0. The red diamond marker is at an SME with

annual inflation of 10%.

Next, we can further dissect the reason for this non-monotone, “U”-shaped money

balance inequality relationship with inflation.

Figure 8: Inflation and money distributions’ statistics (Left: mean. Right: top-10% to
bottom-10%. Bottom: Gini cofficient.)

Extensive and intensive margins. From Theorem 2, we know that agents’ optimal de-

cision rules (x?, q?, b?) are monotone increasing in individual real balances. Thus, with

higher inflation, money holdings across the distribution tends to fall and agents who

match with firms will also be paying (x?) and consuming (q?) less in the DM on aver-

age. The solid lines in Figure 9 (top left and right panels) illustrate this. The corresponding

dashed and circled lines denote the bottom- and the top-ten percent of outcomes, of the

respective SME(τ) distributions, at each inflation rate. Consistent with the 90/10 figure

for money distribution in Figure 8 (right panel), we see that although the upper 10 percent
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of money holders all decrease money balances, they do so at slower rate than the bottom

10 percent of agents. As a result, the “rich” face a slower decline in their total payments

(x?) for DM goods relative to the “poor” in Figure 9 (top-left panel). Also, while matching

probabilities of all buyer types fall with inflation, the “rich” experience a slower decline

in these probabilities relative to the “poor”—see Figure 9 (bottom panel) and Figure 10 (left

panel)—i.e., there is an increased dispersion in total payments and trading probabilities.

Figure 9: Buyer matching probabilities and quantities—Mean (left panels, solid), 90%
(solid-dotted) and 10% (dashed) percentiles.

Reconciling Fact 1 (Inflation and consumption inequality). For low inflation ranges,

as inflation rises, the 90/10 inequality measure for DM consumption is rising. For high

enough inflation, this inequality measure is falling. This is true if we consider either a

90/10, a standard deviation, or a Gini measure of consumption inequality. Examples

of these, respectively, are shown in Figure 10 for either DM consumption inequality

or all consumption (DM and CM) inequality. Interestingly, if we consider these equi-

libria “backwards”—i.e., read Figure 10 from high to successively lower inflation out-

comes—we see that the model predicts a hump-shaped inflation-consumption-inequality

relation. This is consistent with observed long-run correlations between inflation and

consumption inequality (recall Fact 1 in Section 1.2). The correlation had been positive

until in recent years, when that has become negative, while inflation had been steadily

declining.

33



Figure 10: Inflation and consumption inequality measures—90/10 ratio and standard
deviation

Reconciling Facts 1 and 2 (Inflation, consumption inequality and price dispersion).

As shown in Figure 11, this is driven by rising (implicit) prices and dispersion of prices

as inflation goes up. This is because in equilibrium, DM agents with more money end

up paying more and consuming more, relative to those who have less money. For suffi-

ciently low inflation, as inflation rises the dispersion in prices increases; and the increase

is steeper at the top. That is, those with more money optimally direct themselves to trad-

ing posts where they end up forking out higher total payments (x). This is positively

related with them facing a higher trading probability, relative to those who are poorer

in money holdings. The “richer” agents face higher prices (p ≡ x/q) relative to the

“poorer” ones. (This also rationalizes Fact 2 in Section 1.2.) The higher total payments

are induced by relatively higher prices at those trading posts. Thus, as inflation rises,

everyone reduces their consumption, but at some point, the “rich” have a reduction in q

that is relatively steeper than that for the “poor”. That is, the “rich” in successively higher

inflation settings are holding relatively more money than the “poor” for the purposes of

being able to direct themselves to trading posts that offer a relatively higher probability of

matching, compared to those frequented by the “poor”.
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Figure 11: Inflation and price dispersion—Mean (solid), 90% (solid-dotted) and 10%
(dashed) percentiles

Reconciling Facts 1, 2 and 3 (Inflation, consumption inequality, price dispersion and

speed of monetary transactions). Another way to see the increased dominance of the

extensive, trading-opportunity margin is as follows. Consider Figure 12. Since the proba-

bility of not getting matched, 1− b? (m), increases with inflation for all agents in the DM,

this exacerbates the cost of holding money for DM buyers who are unmatched, especially

those holding higher balances. Even though we observe that the across the distribution

of agents, their matching probabilities b? are decreasing with inflation, what matters for

DM agents is how quickly they can dispose of a given amount of liquidity they carry into

each DM round, in exchange for DM goods. A useful summary statistic here would be

the (average) payment in the DM across buyers, bx/m. We see in Figure 12 (top-left panel)

that the average measure of total payments for goods, bx, is falling slower than the fall in

their average money balances. That is, the average speed of transactions in the DM, the

ratio bx/m, is increasing with inflation. This echoes the new DM extensive margin that

we identified above. It is also consistent with Fact 3 in Section 1.2.

At the distribution level though, we again see the intensive-versus-extensive-margins

tension through Figure 12 (top-right panel). For low inflation, the “rich” tend to transact

more slowly relative to the “poor”. However, as inflation rises, the extensive margin

effect begins to dominate; the “rich”, although holding relatively more money, will spend

their money holdings on directing themselves to higher matching-probability and higher-

priced trading posts. A consequence of this is that agents would also go to the CM more

often to manage their liquidity, as shown in Figure 12 (bottom panel).

In summary, agents consume less (intensive margins in both markets) in return for

being able to trade faster in DM and to visit the CM more often (extensive-margin ef-

fects in both markets). In the DM sector, the new extensive margin incorporates the effect

that inflation policy has an additional effect on the cross section of money holdings by

affecting their heterogeneous matching probabilties. In short, inflation may not neces-

sarily be a redistributive tax that reduces (money) wealth inequality—a feature of earlier

heterogeneous-agent monetary models (see, e.g., Molico, 2006; Imrohoroğlu and Prescott,
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Figure 12: Agents trade faster with money in DM, return to CM quicker

1991b; Erosa and Ventura, 2002). With a trade-off between inflation tax on the inten-

sive margin of allocations and inflation incentivizing agents to trade faster on the exten-

sive margin, we get non-monotone distributional consequences—a U-shaped inflation-

money-inequality relationship and a hump-shaped inflation-consumption-inequality re-

lation.

Effect of inflation on welfare. We now turn to the traditional question of how costly

is inflation, from the calibrated model’s perspective. We measure welfare as how much

consumption equivalent variation (CEV) an ex-ante agent is willing to give up in order

to move from a zero-inflation economy to a higher-inflation one. This CEV measure falls

with inflation.27

Figure 13 (top-left and top-right panels) shows that the welfare cost of inflation rises with

inflation, for both average agents and other agents across the respective distributions.

Consider the solid line in Figure 13: The mean welfare cost of moving the economy from

27An individual’s ex-ante welfare is naturally measured as Zτ :=
∫

V̄ (m, ω (τ))dG(m, ω(τ)). Consider
a reference equilibrium, SME(τ0). Its corresponding individuals’ ex-ante value is Zτ0 . In an alternative
economy SME(τ), the consumption equivalent variation (CEV) required to move the individual from the
reference τ0-economy to the τ-economy will be defined as

CEV (τ) =

[
U−1 (Zτ)

U−1 (Zτ0 )
− 1

]
× 100%.

This individual-specific variation is measured in units of the CM good (i.e., labor). In the comparisons, we
set τ0 = 0, i.e., the zero-inflation economy.
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Figure 13: (a) Mean welfare (CEV) falls for all types (0% to 10% inflation p.a.).

zero to ten percent inflation per annum is about 0.83 percent of consumption loss (relative

to the zero-inflation SME mean consumption outcome.

Cross-model welfare cost comparisons. In Table 2, we compare our model’s welfare

cost of inflation with some well-known studies in the literature. In representative-agent

models such as those of Lucas (2000) or Lagos and Wright (2005) (which has additional

bargaining frictions), the comparative-steady-state welfare cost of inflation can be quite

high. However, this tends to be lower when one revisits the question in a heterogeneous-

agent version of the models. It is well known that the redistributive margin of inflation

tax is always present in heterogeneous-agent models. This margin tends to reduce the

inefficiency of holding money in the presence of inflation (see, e.g., Camera and Chien,

2014; Kocherlakota, 2005; Erosa and Ventura, 2002). This is also the case in random-

matching versions of such models (see, e.g., Chiu and Molico, 2010; Molico, 2006). In con-

trast, in heterogeneous-agent models such as Imrohoroğlu and Prescott (1991b), which

has more free parameters to govern frictions, one could obtain a welfare cost of inflation

as high as 0.9 percent per annum, in CEV terms.

Table 2: Welfare cost (CEV) from 0% to 10% (p.a.) inflation econ-
omy.

Economy Welfare Cost (%)a Remarks

Benchmark 0.83 / 1.31 static / transition
Imhoroğlu-Prescott (1991) 0.90 Bewley-CIAb-HAd

Chiu-Molico (2010) 0.41 RMc-HAd

Lagos-Wright (2005) 1.32 RMc-RAe-TIOLI f

Lucas (2000) 0.87 CIAb-RAe

a Annualized CEV cost (relative to zero-inflation economy)
b CIA: Cash-in-advance model
c RM: Random matching model
d HA: Heterogeneous agent model
e RA: Representative agent model
f TIOLI: Take-it-or-leave-it bargaining
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Figure 14: Transition from zero- to ten-percent-inflation SME. Left: Aggregate money.
Right: Real wage rate.

For completeness, we also calculate the (mean) welfare cost of inflation between a

zero-inflation and a ten-percent-inflation SME, taking into account the effects of transi-

tional dynamics. Figure 14 shows the transition of the aggregate state variable in terms of

total money holdings (left panel) and its inverse statistic which is the model’s real wage

rate, ω (right panel). The vertical axes are measure in percentage deviations from the re-

spective outcomes in the new or terminal SME. The economy is assumed to be in the

initial SME(τ) where money supply growth rate is τ−1 = 0 percent. At date t = −1,

money supply growth rate jumps to τ′−1 = τ′ = 10 percent per annum. The economy

reacts in date t = 0 and takes some time to transit to the new SME(τ′). We use a standard

shooting algorithm to compute the transition. Total welfare cost of inflation, along the

transition is 1.31 percent of the initial SME’s consumption, as summarized in Table 2 for

our benchmark economy.

5.1 Robustness and variations on the theme

Details for what follows can be found in our Online Appendix I. Specifically, in Online

Appendix I.1, we consider two variations or robustness checks on our model assump-

tions. First, we show that our insights above are robust to alternative parametrization of

the fixed-cost parameter χ. (There we show only the case of a doubling of χ, but qualita-

tively, the baseline results remain across a wide range of χ values. Second, we consider an

extreme assumption that agents face a zero-borrowing constraint when overcoming the

fixed cost of CM entry, χ: This alternative economy is tantamount to a reparametrization

of the borrowing limit (2.7) from the benchmark setting to ymax (ω; τ) = 0.

Consider the second alternative environment of zero borrowing (when it comes to

paying for the CM fixed cost). Given this environment, the results are similar qualita-

tively across increasing inflation rates. However, when one compares this alternative

economy with its benchmark counterpart, at any given level of long-run inflation, we

have the following additional insights: In the zero-borrowing-limit economy, average
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money balance is higher, and, equilibrium extensive margin effects in the DM (i.e., on

average how fast agents expend their given DM money holdings) are lower than its cor-

responding benchmark economy. However, the participation rate in CM is higher, but

the Gini index is smaller.

The reason is as follows: In the zero-borrowing economy, agents have a stronger pre-

cautionary liquidity-risk insurance motive. Since they cannot borrow to overcome the

fixed cost of entering the CM to manage their liquidity needs, then whenever they are in

the CM, agents will tend to demand more real balances. Likewise, conditional on being

in the DM, agents expect to trade at a lower volume relative to their DM money holdings,

as they need to economize on the balance in order to possibly overcome the fixed cost of

re-entering the CM. This explains the on-average higher money balance (in comparison

to the benchmark economy) and the lower rate of trading in the DM. In return, agents

would like to go to the CM more often to demand additional precautionary liquidity.

That explains a relatively higher top end of the money distribution relative to the bottom

(i.e., a more left-skewed distribution), and hence a lower Gini index, in comparison to the

benchmark economy’s outcome.

Finally, as alluded to earlier in Section 4, we also show in Online Appendix I.2 that

χ per se is not needed to materialize the model’s endogenous extensive-margin forces.

That is, if we set χ = 0, the same qualitative pattern arises as in the benchmark economy

discussion in Section 5. It is nevertheless a useful parameter for quantitative reasons.

6 Conclusion

We proposed a theoretical and quantitative heterogeneous-agent monetary model based

on Menzio, Shi and Sun (2013) to study the effect of inflation targeting on welfare and

inequality. In this paper, we have shown that details matter. They matter, both from a

logical-theoretic and from a quantitative perspective, when thinking about market fric-

tions and understanding the effects of monetary policy on heterogeneous individuals.

We focused on competitive search and matching in markets when money has value in

equilibrium exchange.

We highlight a new mechanism—an endogenous trade-off between intensive and ex-

tensive margins—through which monetary policy has impact on the aggregate economy

and welfare. In contrast to well-received wisdom that inflation acts as a redistributive tax,

we showed that there is a countervailing force with competitive search. Because agent’s

matching probabilities are endogenous to their states, monetary policy has differential

effects on across an equilibrium cross-section of heterogeneous agents. Agents trade-off

between their desire to consume more and their desire to be able to trade more frequently,

and this notion of frequency now depends on the endogenous matching probabilities.
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Quantitatively, the effect of inflation tax on liquid-wealth inequality is non-monotone.

Thus, the welfare cost of inflation in our model is still sizable, despite the redistributive

effect of inflation that tends to induce heterogenous-agent monetary models to produce

lower costs of inflation, relative to their representative-agent counterparts.

In this paper, we deliberately focused on a single-asset, pure-currency economy in

order to have a simple and clear understanding of our new equilibrium relation between

extensive- and intensive-margins of trade-off, and, the effect of inflation tax on the trade-

off. We think that if we allowed agents to hold additional illiquid assets (say, in the

centralized markets), this may further exarcerbate the inequality result in our model. We

are currently exploring this conjecture in an expanded setting with liquid and illiquid

assets, and, further with aggregate dynamics.28
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A Extension and special cases

Consider a variation on the benchmark setting in the paper. In particular, suppose that

each agent s := (m, ω) has an initial value each period as

V̄ (s) = αW (s) + (1− α)V (s) , (A.1)

where V(s) is the value of playing a fair lottery (π1, 1− π1) over the prizes {z1, z2}, i.e.,

V(s) = max
π1∈[0,1],z1,z2

{
π1Ṽ(z1, ω) + (1− π1) Ṽ (z2, ω) : π1z1 + (1− π1)z2 = m

}
; (A.2)

is a natural upper bound on CM saving (in real money balances).

The difference between (A.1) and (A.2) and their respective counterparts in (2.8) and

(2.6) in Section 2.3.3 on page 16 of the paper, is that there is a measure α of agents who

will participate in the CM for sure each period. When α = 0, we recover the simpler

model used in the main paper.

Also, when α = 0, there is no fixed cost of entering the CM (χ = 0), U (C) = 0 for all

C, and the labor utility function h(l) is strictly convex, we recover the original Menzio et

al. (2013) model as a special case.

Note that when α = 1 (i.e., agents get to enter the CM deterministically), χ = 0

(there is no fixed cost of entering the CM), and the continuation value from CM is a

convexification of B(·, ω), our model becomes a version of Rocheteau and Wright (2005)

with competitive search markets.

All proofs (to results in the paper) below are written with the more general case of

α ∈ [0, 1) in mind.

B CM individual’s problem

Preliminaries. Consider the feasible choice set for CM saving, y: If m̄ is an upper bound

on end-of-period balance plus transfer (measured in units of labor), then this gives the

bounds on end-of-period money balance plus transfer, in current money value, as:

τM ≤ ωMy + τM ≤ ωMm̄,

where ωM is current nominal wage. Since there is inflation in nominal wage, then next-

period initial balance is current end-of-period nominal money balance normalized by the
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next period nominal wage M+1ω+1, i.e.,

τM
ω+1M+1

≤ m+1 ≡
ωMy + τM

ω+1M+1
≤ ωMm̄

ω+1M+1
.

Using (2.1), we can re-write the above bounds as

0 ≤ y ≤ ymax (ω; τ) := m̄− τ

ω
,

which applies in the pair of KKT complementary slackness conditions (2.12).

The upper bound on real, end-of-period money holdings, m̄ ∈ (0, ∞), can be derived

as:

0 < m̄ < (U1)
−1 (1) ⇐⇒ 1 < U1(m̄) < U1(0). (B.1)

Later, in Part 3 of this section, we show that in any equilibrium U′(C) = 1. As-

suming U′(C) = 1 < U1(m̄) suffices. Intuitively, this permits an agent to accumulate

real balances at the end of each period beyond the level of optimal CM consumption

C? = U′−1(1). Below, we show that having m̄ ∈ (0, ∞) will ensure that there is always an

optimal, largest labor effort that is always finite and that in all dates, money balances are

bounded.

The following gives the proof of Theorem 1 on page 19 in the paper.
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Theorem 1. Assume τ/ω < m̄. For a given sequence of prices {ω, ω+1, ...}, the value

function of the individual beginning in the CM, W (·, ω), has the following properties:

1. W (·, ω) ∈ V [0, m̄], i.e., it is continuous, increasing and concave on [0, m̄]. Moreover,

it is linear on [0, m̄].

2. The partial derivative functions W1 (·, ω) and V̄1 (·, ω+1) exist and satisfy the first-

order condition

β

1 + τ

(
ω

ω+1

)
V̄1

(
ωy? (m, ω) + τ

ω+1 (1 + τ)
, ω+1

)≤ 1, y? (m, ω) ≥ 0

≥ 1, y? (m, ω) ≤ ymax (ω; τ)
, (B.2)

and the envelop condition:

W1 (m, ω) = 1, (B.3)

where y?(m, ω) = m + l?(m, ω) − C?(m, ω), l?(m, ω) and C?(m, ω), respectively,

are the associated optimal choices on labor effort and consumption in the CM.

3. The stationary Markovian policy rules y? (·, ω) and l? (·, ω) are scalar-valued and

continuous functions on [0, m̄].

(a) The function y? (·, ω), is constant valued on [0, m̄].

(b) The optimizer l? (·, ω) is an affine and decreasing function on [0, m̄].

(c) Moreover, for every (m, ω), the optimal choice l?(m, ω) is interior: 0 < lmin ≤
l? (m) ≤ lmax (ω; τ) < +∞, where there is a very small lmin > 0 and

lmax (ω) := min
{

m̄− τ
ω , m̄

}
+ U−1 (1) < 2U−1 (1) ∈ (0, ∞).

Proof. (Part 1). Consider the individual’s problem beginning in the CM (2.4). Since

U1 (C) > 0 for all C, the budget constraint always binds. Thus we can re-write (2.4)

as

W(s) = max
(C,y)∈R+×[0,m̄]

{
U(C)− [pC + y−m] + βV̄

(
ωy + τ

ω+1 (1 + τ)
, ω+1

)}
. (B.4)

Let

(C?, y?c ) (m, ω) ∈ arg max
(C,y)∈R+×[0,m̄]

{
U(C)− [pC + y−m] + βV̄

(
ωy + τ

ω+1 (1 + τ)
, ω+1

)}
. (B.5)

From (B.4), it is clear that W1 (·, ω) exists on [0, m̄], and moreover, we have the envelope
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condition W1 (·, ω) = 1 > 0. This implies that the value function W (·, ω) is continuous,

increasing and concave in m. Moreover it is affine in m.

(Part 2). First, we make the following observations: Since U is strictly concave in C, the

objective function is strictly concave in C. Moreover, the objective function on the RHS

of (B.4) is continuously differentiable with respect to C. The optimal decision, C? (m, ω)

satisfies the following Karush-Kuhn-Tucker (KKT) conditions:

U1 (C)

= p, C > 0

< p, C = 0
. (B.6)

In an equilibrium, p > 0 will be finite—in fact, p = 1. Therefore, C? (m, ω) ≡ C̄? =

(U1)
−1 (1) is a finite and non-negative constant. Thus, we only have to verify that the op-

timal decision correspondence, given by l?c (m, ω) ≡ pC̄? + y?c (m, ω)−m at each (m, ω),

exists and is at least a compact-valued and upper-semicontinuous (usc) correspondence:

Fixing C = C̄?, the objective function on the RHS of (B.4) is continuous and concave

on the compact choice set [0, m̄] 3 y. By Berge’s Maximum Theorem, the maximizer

y?c (m, ω), or l?c (m, ω), is compact-valued and usc on [0, m̄]. (In fact, after we further es-

tablish that the derivative V1 (·, ω+1) exists, we show below that it will be constant and

single-valued with respect to m.)

Second, we take a detour and show that the derivative V̄1 (·, ω+1) exists, in order to

characterize a first-order condition with the respect to y. The results below will rely on

the observation that since V(·, ω+1) is a concave, real-valued function on [0, m̄], it has

right- and left-hand derivatives (see, e.g., Rockafellar, 1970, Theorem 24.1, pp.227-228).

Fix C? (m, ω) ≡ C̄?. Since y?c (m, ω) is usc on [0, m̄], then for all ε ∈ [0, δ], and taking

δ ↘ 0, there exists a selection y? (m− ε, ω) ∈ y?c (m− ε, ω) feasible to a CM agent m.

Similarly, there is a y? (m, ω) ∈ y?c (m, ω) that is feasible to a CM agent m− ε. Moreover,

if l? (m, ω) ∈ l?c (m, ω) is an optimal selection associated with y? (m, ω), then for an agent

at m,

W (m, ω) = U (C̄?)− l? (m, ω) + βV̄
[

ω [m + l? (m, ω)− C̄?] + τ

ω+1 (1 + τ)
, ω+1

]
︸ ︷︷ ︸

≡Z[m,y?(m,ω)]

≥ U (C̄?)− l? (m− ε, ω) + βV̄
[

ω [m + l? (m− ε, ω)− C̄?] + τ

ω+1 (1 + τ)
, ω+1

]
︸ ︷︷ ︸

≡Z[m,y?(m−ε,ω)]

;
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and, for an agent at m− ε,

W (m− ε, ω)

= U (C̄?)− l? (m− ε, ω) + βV̄
[

ω [(m− ε) + l? (m− ε, ω)− C̄?] + τ

ω+1 (1 + τ)
, ω+1

]
︸ ︷︷ ︸

≡Z[m−ε,y?(m−ε,ω)]

≥ U (C̄?)− l? (m, ω) + βV̄
[

ω [(m− ε) + l? (m, ω)− C̄?] + τ

ω+1 (1 + τ)
, ω+1

]
︸ ︷︷ ︸

≡Z[m−ε,y?(m,ω)]

.

Rearranging these inequalities, we have the following fact:

Z [m, y? (m− ε, ω)]− Z [m− ε, y? (m− ε, ω)]

m− (m− ε)

≤ W (m, ω)−W (m− ε, ω)

m− (m− ε)
≤ Z [m, y? (m, ω)]− Z [m− ε, y? (m, ω)]

m− (m− ε)
,

which, after simplifying the denominator and taking limits, yields:

lim
ε↘0

{
Z [m, y? (m− ε, ω)]− Z [m− ε, y? (m− ε, ω)]

ε

}
≤ lim

ε↘0

{
W (m, ω)−W (m− ε, ω)

ε

}
≤ lim

ε↘0

{
Z [m, y? (m, ω)]− Z [m− ε, y? (m, ω)]

ε

}
⇐⇒

β lim
ε↘0

 V̄
[

ω(m+l?(m−ε,ω)−C̄?)+τ
ω+1(1+τ)

, ω+1

]
− V̄

[
ω(m−ε+l?(m−ε,ω)−C̄?)+τ

ω+1(1+τ)
, ω+1

]
ε

 ≤W1 (m, ω)

≤ β lim
ε↘0

 V̄
[

ω(m+l?(m,ω)−C̄?)+τ
ω+1(1+τ)

, ω+1

]
− V̄

[
ω(m−ε+l?(m,ω)−C̄?)+τ

ω+1(1+τ)
, ω+1

]
ε

 .

Since, from (B.4), W (·, ω) is clearly differentiable with respect to m, the second term in

the inequalities above is equal to the partial derivative W1 (m, ω), which is constant. As

ε ↘ 0, there is a selection l? (m− ε, ω) → l? (m, ω), and, by Rockafellar (1970, Theorem

24.1) the first is the left derivative of V̄ (·, ω+1). Moreover, the last term is identical to the

first, i.e.,

β

1 + τ

(
ω

ω+1

)
V̄1

[
ω (m− + l? (m, ω)− C̄?) + τ

ω+1 (1 + τ)
, ω+1

]
≤ W1 (m, ω) ≤ β

1 + τ

(
ω

ω+1

)
V̄1

[
ω (m− + l? (m, ω)− C̄?) + τ

ω+1 (1 + τ)
, ω+1

]
.

Therefore, if the optimal selection is interior, these weak inequalities must hold with
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equality, so we have the left derivative of V̄ with respect to the agent’s decision variable

y as:

β

1 + τ

(
ω

ω+1

)
V̄1

[
ωy?− (m, ω) + τ

ω+1 (1 + τ)
, ω+1

]
= W1 (m, ω) .

where y?− (m, ω) ≡ m− + l? (m, ω)− C̄?.

By similar arguments, we can also prove that the right directional derivative of V̄ (·, ω+1)

exists, and show that the right derivative of V̄ with respect to the agents decision y as:

β

1 + τ

(
ω

ω+1

)
V̄1

[
ωy?+ (m, ω) + τ

ω+1 (1 + τ)
, ω+1

]
= W1 (m, ω) ,

where y?+ (m, ω) ≡ m+ + l? (m, ω)− C̄?. From the last two equations, we can conclude

that the right and left directional derivatives must agree, and thus, we have the first-order

KKT condition (2.12) as, repeated here as

β

1 + τ

(
ω

ω+1

)
V̄1

(
ωy? (m, ω) + τ

ω+1 (1 + τ)
, ω+1

)≤ 1, y? (m, ω) ≥ 0

≥ 1, y? (m, ω) ≤ ymax (ω; τ)
,

where the weak inequalities apply with complementary slackness. Since V̄ is strictly

concave, the condition above ensures a unique selection y? (m, ω) at each state. Also,

note that in the previous proof of Part 1), we have established the envelop condition

(2.13):

W1 (m, ω) = 1.

(Part 3.) Observe that given the assumption in (B.1), we have (B.6) always binding:

U′ (C) = p = 1. Also, observe from(B.6) and (2.12) that an individual’s current money

holding m and the aggregate state ω have no influence on his optimal decision on con-

sumption, C? (m, ω) = C̄?, but that y? (m, ω) = ȳ? (ω). However, from the budget con-

straint, m clearly does affect the optimal labor decision,

l?(m, ω) = pC? (m, ω) + y? (m, ω)−m

≡
(p=1)

C̄? + ȳ? (ω)−m. (B.7)

Clearly, l?(m, ω) is single-valued, continuous, affine and decreasing in m.

Finally, we show that the optimal choice of l will always be interior. Evaluating the

budget constraint in terms of optimal choices at the current individual state m,

l? (m, ω) = ȳ? (ω)−m + C̄?.
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Since m ∈ [0, m̄], then, the minimal l attains when m is maximal at m̄, and, ȳ? (m̄, ω) = 0:

lmin : = ľ? (m̄, ω) ≡ 0− m̄ + C̄? > 0.

The last inequality obtains from (B.1) which requires m̄ < U−1 (1), and from optimal CM

consumption (2.14) which yields C̄? = U−1 (1) in an equilibrium. The maximal l attains

when m = 0 and ȳ? (0, ω) = ymax (ω; τ):

lmax (ω, τ) := ymax (ω; τ)− 0 + C̄? = ymax (ω; τ) + U−1 (1) < 2U−1 (1) . (B.8)

Clearly, lmax (ω, τ) < +∞. If we do not have hyperinflation, or, if transfers are not exces-

sively large—i.e., if τ/ω < m̄—then, lmax (ω, τ) > 0 will be well-defined. So if τ/ω < m̄,

then we will have an interior optimizer for all m: 0 < lmin ≤ l? (m) ≤ lmax (ω; τ) <

+∞.

C Limited short-sale constraint and CM participation

Here we derive the short-sale constraint that may bind in the ex-ante market participation

problem (2.6) in the paper. Suppose an agent were to participate in the CM with initial

asset a = z− χ, where z is his ex-ante money balance, and, χ is the fixed cost (in units of

labor) of CM participation. Thus if a < 0, the agent is said to be short selling, or issuing

an I.O.U.

Recall the CM budget constraint is

y + C = l + a.

The most negative an asset position the agent can attain in an equilibrium is some a such

that he must work at the maximal amount lmax (ω; τ) and cannot afford to save, y = 0.

From the budget constraint in such an equilibrium, we have:

0 + C̄? = lmax (ω; τ) + a,

which then implies that a = C̄? − lmax (ω; τ). From (B.8), we can further obtain the sim-

plified expression a = −ymax (ω; τ) ≡ −min {m̄, m̄− τ/ω}. Thus the limited short-sale

constraint in (2.6) in the paper.

D DM agent’s problem

In this section, we provide the omitted proofs leading up to Theorem 2 on page 20 in the

paper. Part 1 of the Theorem is obtained in Lemma 1, Part 2 is proven as Lemma 2. Part
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3(a) is proven as Lemma 3. Lemmata 4 and 5 together establish Parts 3(b) and 3(c) of the

Theorem. Finally, Lemma 6 establishes Part 3(d) of the Theorem.

D.1 DM buyer optimal policies

Recall the DM buyer’s problem from (2.17):

B(s) = max
x∈[0,m],b∈[0,1]

{ f (x, b; m, ω)} ,

where

f (x, b; m, ω) := β(1− b)
[

V̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)]
+ b
[

uQ(x, b) + βV̄
(

ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
,

and, we have re-defined the composite function u ◦ Q as uQ. Note that we have not

explicitly written f (x, b; m, ω) as depending on ω+1 which is taken as parametric. In an

equilibrium, ω+1 will be recursively dependent on ω, thus our small sleight of hand here

in writing f (x, b; m, ω).

The following Lemmata 1, 2, 3, 4, 5, and 6 make up Theorem 2. Also, these results will

rely on the following statements and notations:

1. Assume {ω, ω+1, ω+2...} is a given sequence of prices.

2. Let

φ(m, ω) : =
ωm + τ

ω+1(1 + τ)
,

and,

φ?(m, ω) = φ [m− x?(m, ω), ω] .

3. Equivalently define the objective function f (·, ·; m, ω) in the DM buyer’s problem

(2.17) as follows:

f (x, b; m, ω) = βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
+ b

[
uQ(x, b) + βV̄ (φ?(m, ω), ω+1)− βV̄ (φ(m, ω), ω+1)

]
.

≡ βV̄ (φ(m, ω), ω+1) + bR (x, b; m, ω) . (D.1)

Remark. Observe that maximizing the value of the objective function f (x, b; m, ω) in the
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DM buyer’s problem (2.17) is equivalent to maximizing the second term, bR (x, b; m, ω).

Note that the function R (x, b; m, ω) has the interpretation of the DM buyer’s surplus from

trading with a particular trading post named (x, b), by offering to pay x in exchange for

quantity Q(x, b).

Lemma 1. For any V̄(·, ω+1) ∈ V [0, m̄], the DM buyer’s value function is increasing

and continuous in money balances, B (·; ω) ∈ C [0, m̄].

Proof. Since the functions W (·, ω+1) , V (·, ω+1) ∈ C [0, m̄], i.e., are continuous and in-

creasing on [0, m̄], and V̄ := αW + (1− αV), then V̄ (·, ω+1) ∈ C [0, m̄]. The feasible

choice set Φ(m) := [0, m]× [0, 1] is compact, and it expands with m at each m ∈ [0, m̄].

By Berge’s Maximum Theorem, the maximizing selections (x?, b?) (m, ω) ∈ Φ(m) exist

for every fixed m ∈ [0, m̄], since the objective function is continuous on a compact choice

set (Berge, 1963). Evaluating the Bellman operator (2.17), we have that the value function

B (·, ω) ∈ C [0, m̄].

Lemma 2. For any m ≤ k, DM buyers’ optimal decisions are such that b? (m, ω) = 0

and B (m, ω) = βV̄ [φ(m, ω), ω+1], where φ(m, ω) := ωm+τ
ω+1(1+τ)

.

Proof. Since a buyer’s payment x is always constrained above by her initial money bal-

ance m in the DM, it will never be optimal for any firm to trade with such a buyer whose

m ≤ k, as the firm will be making an economic loss. In equilibrium it is thus optimal

for a buyer m ≤ k to optimally not trade and exit the DM with end-of-period balance

as m (i.e., with beginning-of-next-period balance φ(m, ω) when inflationary transfers

are accounted for). As a result, the continuation value is V̄ [φ(m, ω), ω+1], and thus,

B (m, ω) = βV̄ [φ(m, ω), ω+1], if m ≤ k.

Lemma 3. For any (m, ω), where m ∈ [k, m̄] and the buyer matching probability is

positive b? (m, ω) > 0, the optimal selections (x?, b?, q?) (m, ω) and φ?(m, ω) :=

φ [m− x? (m, ω) , ω] are unique, continuous, and increasing in m.

Observe that the DM buyer’s problem has a general structure similar to that of Menzio

et al. (2013). The main difference is in the details underlying the buyer’s continuation

value function, which in our setting is denoted by V̄ (·, ω). Nevertheless, we still have

that V̄ (·, ω) ∈ V [0, m̄]. As a consequence the proof of Lemma 3.3 in Menzio et al. (2013)

can be adapted to our setting. For the reader’s convenience, we repeat the proof strategy

of Menzio et al. (2013) below for our model setting in a few steps:
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Proof. The DM buyer’s problem (2.17) can be re-written as

B(s) = βV̄ (φ(m, ω), ω+1) + exp
{

max
x∈[0,m],b∈[0,1]

{ln (b) + ln [R (x, b; m, ω)]}
}

.

The optimizers thus must satisfy

(x?, b?)(m, ω) ∈
{

arg max
x∈[0,m],b∈[0,1]

{ln (b) + ln [R (x, b; m, ω, ω+)]}
}

. (D.2)

(Uniqueness and continuity of policies.) First we establish that the policy functions are con-

tinuous, and, at every state, there is a unique optimal selection: Since uQ (x, b) is contin-

uous, jointly and strictly concave in (x, b), and by assumption, V̄ (·, ω) ∈ V [0, m̄] , then

R (x, b; m, ω) ≡ uQ(x, b) + βV̄ (φ?(m, ω), ω+1)− βV̄ (φ(m, ω), ω+1)

is continuous, jointly and strictly concave in the choice variables (x, b). Also, ln(b) is

strictly increasing and strictly concave in b. Thus the maximand is jointly and strictly

concave in (x, b). By Berge’s Maximum Theorem, the optimal selections (x?, b?)(m, ω)

are continuous and unique at any m. Since c 7→ c(q) is bijective, then

q?(m, ω) = c−1 [x?(m, ω)− k/µ (b?(m, ω))]

is continuous in m; and so is φ?(m, ω).

(Monotonicity of policies.) The remainder of this proof establishes that the policy functions

are increasing. The key idea of the proof is in showing that the choice set is a lattice

equipped with a partial order, that the choice set is increasing in m, and, has increasing

differences on the choice set, and the slices of the buyer’s objective is supermodular in

each given direction of his choice set. By Theorem 2.6.2 of Topkis (1998), these properties

are sufficient to ensure that the buyer’s objective function is supermodular. Together,

these properties suffice, by Theorem 2.8.1 of Topkis (1998), for showing that the buyer’s

optimal policies are increasing functions in m.

1. The function R (·, ·, ·, ω) in (D.2) has increasing difference in (x, b, m) and is therefore

supermodular:

Fix an m ∈ [k, m̄] and b ∈ (0, 1]. (The case of b = 0 is trivially uninteresting.) It

suffices to optimize over the function ln [R (·, b, m, ω)] in (D.2). Then the optimizer

x̃(b, m, ω) ∈
{

arg max
x∈[k,m̄]

{ln [R (x, b, m, ω)]}
}

is unique for each (m, b, ω), since the objective functions is strictly concave.
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Next we show how the value of the objective function has increasing differences in

(x, b, m), throughout taking the sequence {ω, ω+1, ...} as fixed. Thus we will now

write R (x, b, m) ≡ R (x, b, m, ω) to temporarily ease the notation. First, the feasible

choice set

Fm : = {(x, b, m) : x ∈ [0, m] , b ∈ [0, 1] , m ∈ [k, m̄]} ,

is a partially ordered set with relation ≤, and it has least-upper and greatest-lower

bounds. It is therefore a sublattice in R3
+. Observe that Fm is increasing in m.

Second, pick any m′ > m, b′ > b, and x′ > x in Fm:

(a) For fixed x, consider m′ > m and b′ > b. Then, we can write

R
(

x, b′, m′
)
− R (x, b, m)

=
[
uQ(x, b′)− uQ(x, b)

]
+ β

[
V̄
(

ω (m′ − x) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
− β

[
V̄
(

ωm′ + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]
.

Observe that the RHS is separable in b and m: The first term on the right,

uQ(x, b′) − uQ(x, b) < 0, shows increasing difference in b. Likewise the re-

mainder two difference terms on the RHS show increasing differences in m.

Overall R (x, b, m) has increasing differences on the lattice [0, 1] × [0, m̄] 3
(b, m).

(b) For fixed m, consider x′ > x and b′ > b. Observe that

R (x, b, m)− R
(
x′, b, m

)
=
[
uQ(x, b)− uQ(x′, b)

]
+ β

[
V̄
(

ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x′) + τ

ω+1 (1 + τ)
, ω+1

)]
. (D.3)
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Now, using the expression (D.3) twice below, we have that

[
R
(
x′, b′, m

)
− R

(
x, b′, m

)]
−
[
R
(
x′, b, m

)
− R (x, b, m)

]
=
[
uQ(x′, b′)− uQ(x, b′)

]
+ β

[
V̄
(

ω (m− x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
−
[
uQ(x′, b)− uQ(x, b)

]
− β

[
V̄
(

ω (m− x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
=
[
uQ(x′, b′)− uQ(x, b′)

]
−
[
uQ(x′, b)− uQ(x, b)

]
> 0,

where the last inequality is implied by the fact that
(
uQ)

12 (x, b) > 0. Therefore

R (x, b, m) has increasing differences on the lattice [0, m]× [0, 1] 3 (x, b).

(c) For fixed b, consider x′ > x and m′ > m. Observe that

[
R
(

x′, b, m′
)
− R

(
x, b, m′

)]
−
[
R
(
x′, b, m

)
− R (x, b, m)

]
=
[
uQ(x′, b)− uQ(x, b)

]
+ β

[
V̄
(

ω (m′ − x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m′ − x) + τ

ω+1 (1 + τ)
, ω+1

)]
−
[
uQ(x′, b)− uQ(x, b)

]
− β

[
V̄
(

ω (m− x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
= β

[
V̄
(

ω (m′ − x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m′ − x) + τ

ω+1 (1 + τ)
, ω+1

)]
− β

[
V̄
(

ω (m− x′) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
m− x + τ

1 + τω
, ω+1

)]
≥ 0,

where the last weak inequality obtains from the property that V̄ (·, ω+1) ∈
V [0, m̄], and V̄ (·, ω+1) is therefore weakly concave. Therefore R (x, b, m) has

increasing differences on the lattice [0, m]× [0, m̄] 3 (x, m).

From parts (1a), (1b), and (1c), we can conclude that the objective function R (·, ·, ·, ω)

has increasing differences on Fm. This suffices to prove that the objective function

R (·, ·, ·, ω) is supermodular (see Topkis, 1998, Corollary 2.6.1), since the domain of

the function is a direct product of a finite set of chains (partially ordered sets with no

unordered pair of elements), and, the objective function is real valued (see Topkis,

1978).

2. Since R (·, b, m) is supermodular, for fixed choice b, the optimizer x̃ (b, m, ω) is in-

creasing in (b, m), for given ω:
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Let x̃ (b, m, ω) = arg maxx∈[0,m] R (x, b, m). From part (1a) above, we can deduce

that for fixed x̃ (b, m), R̃ (b, m) ≡ R [x̃ (b, m, ω) , b, m] is supermodular on the lattice

[0, 1]× [0, m̄] 3 (b, m). Since R(x, b, m) is strictly decreasing in b, then

R̃ (b, m) ≡ R [x̃ (b, m, ω) , b, m]

is strictly decreasing in b. Observe that for any m′ ≥ m, where m′, m ∈ [k, m̄], we

have

R
(
x, b, m′

)
− R (x, b, m)

= β

[
V̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m− x) + τ

ω+1 (1 + τ)
, ω+1

)]
− β

[
V̄
(

ωm′ + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ω (m′ − x) + τ

ω+1 (1 + τ)
, ω+1

)]
≥ 0,

since V̄ (·, ω) is concave. Since this inequality holds at each fixed pair(x, b), then,

R̃ (b, m) ≡ R [x̃ (b, m, ω) , b, m]

≤ R
[
x̃ (b, m, ω) , b, m′

]
≤ R

[
x̃
(
b, m′, ω

)
, b, m′

]
≡ R̃

(
b, m′

)
.

The last weak inequality obtains because the choice set is increasing in m, and so

x̃ (b, m, ω) is a feasible selection for the more relaxed problem whose value is

R
[
x̃
(
b, m′, ω

)
, b, m′

]
= max

x∈[0,m′]
R
(
x, b, m′

)
.

From these weak inequalities, we can conclude that R̃ (b, m) is increasing in m.

Now we are ready to apply Theorem 2.8.1 of Topkis (1998) to show that b? (m, ω)

increases with m: Let

b? (m, ω) = arg max
b∈[0,1]

r (b, m)

where r (b, m) = b · R̃ (b, m) and R̃ (b, m) ≡ R (x̃ (b, m, ω) , b, m, ω). Observe the

following identity:

[
r
(
b′, m′

)
− r

(
b, m′

)]
−
[
r
(
b′, m

)
− r (b, m)

]
=

b′
{

R̃
(
b′, m′

)
− R̃

(
b, m′

)
−
[
R̃
(
b′, m

)
− R̃ (b, m)

]}
+
(
b′ − b

) [
R̃
(
b, m′

)
− R̃ (b, m)

]
,

for any b, b′ ∈ (0, 1] , m, m′ ∈ [k, m̄] where b′ > b and m′ > m. The first term on
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the RHS is positive, since b′ > 0 and since R̃ (b, m) is supermodular in (b, m), then

Topkis (1998, Theorem 2.6.1) applies, so that R̃ (b, m) has increasing differences on

[0, 1]× [0, m̄] (i.e., the terms in the curly braces are positive). Since we have previ-

ously established that R̃ (b, m) is increasing in m, and b′ − b > 0, then the second

term on the RHS is also positive. Thus the objective r(b, m) is supermodular on

[0, 1]× [k, m̄] 3 (b, m). (Note that the choice set of b does not depend on m.)

Therefore, by Theorem 2.8.1 of Topkis (1998), the optimal selection b? (m, ω) is in-

creasing in m. Since x̃ (b, m, ω) is increasing in (b, m), for given ω, then we can

conclude that the optimal payment choice x? (m, ω) = x̃ (b? (m, ω) , m, ω) is also

increasing in m.

3. The decision q? (m, ω) is monotone in m:

We perform a change of decision variables. Denote a ≡ ϕ + c(q), where, ϕ ≡ m− x.

Then we have a change of the DM buyer’s decision variables from (x, q) to (a, q).

From (2.10), we can re-write m − x = a − c(q) and b = µ−1 [k/ (m− a)]. Since

b ∈ [0, 1], the domain of a is [0, m− k], and the domain for q is [0, a]. The buyer’s

problem from (2.17) is thus equivalent to writing

B(m, ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
= max

a∈[0,m−k],q∈[0,a]

{
µ−1

(
k

m− a

)
[u (q)

+βV̄
(

ω (a− q) + τ

ω+1 (1 + τ)
, ω+1

)
− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]}
. (D.4)

Recall we take the sequence (ω, ω+1, ...) as parametric here. This problem can be

broken down into two steps: Fix (a, ω). Find the optimal q for any a, to be denoted

by q̃ (a, ω), and then, find the optimal a given (a, ω), to be denoted by a? (m, ω).

Then we can deduce the optimal q? (m, ω) ≡ q̃ [a? (m, ω) , m, ω]. We details these

steps below:

(a) For any fixed a and (m, ω), q̃ (a, ω) induces the value

J (a, ω) = max
q∈[0,a]

{
u (q) + βV̄

(
ω (a− q) + τ

ω+1 (1 + τ)
, ω+1

)}
. (D.5)

Observe that q and J do not depend on m, given a fixed a. The objective

function on the RHS is clearly supermodular on the lattice [0, m− k]× [0, a] 3
(a, q). Since the objective function is strictly concave, the selection q̃(a, ω) in

unique for every a, given ω. Also, the choice set [0, a] increases with a, and,

the objective function is increasing. Therefore, respectively by Theorems 2.8.1

(increasing optimal solutions) and 2.7.6 (preservation of supermodularity) of

Topkis (1998), we have that q̃(a, ω) and J(a, ω) are increasing in a.
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(b) Given best response q̃(a, ω), the optimal a? (m, ω) choice satisfies

a? (m, ω) = arg max
a∈[0,m−k]

g (a, m, ω) ,

where

g (a, m, ω) = µ−1
(

k
m− a

) [
J (a, ω)− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]
.

(Again, note that we have suppressed dependencies on ω+1 since this is taken

as parametric by the agent, and, in equilibrium ω+1 recursively depends on

ω.)

Consider the case J (a, ω) − βV̄
(

ωm+τ
ω+1(1+τ)

, ω+1

)
≥ 0. Since µ (b) is strictly

decreasing in b, and 1/µ (b) is strictly convex in b, then µ−1
(

k
m−a

)
is strictly

increasing in m, strictly decreasing in a, and is strictly supermodular in (a, m).

Pick any a′, a ∈ [0, m− k], and any m′, m ∈ [k, m̄], such that a′ > a and m′ > m.

We have the identity:

[
g
(
a′, m′, ω

)
− g

(
a, m′, ω

)]
−
[
g
(
a′, m, ω

)
− g (a, m, ω)

]
=[

µ−1
(

k
m′ − a′

)
− µ−1

(
k

m− a′

)] [
J
(
a′, ω

)
− J (a, ω)

]
+

[
µ−1

(
k

m′ − a

)
− µ−1

(
k

m′ − a′

)]
×
[

βV̄
(

ωm′ + τ

ω+1 (1 + τ)
, ω+1

)
− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]
+

[
µ−1

(
k

m′ − a′

)
− µ−1

(
k

m′ − a

)
− µ−1

(
k

m− a′

)
− µ−1

(
k

m− a

)]
×
[

J (a, ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)]

The first term on the RHS is positive since µ−1
(

k
m−a

)
is strictly increasing in

m, and we have previously shown that J (a, ω) is increasing in a. The sec-

ond term on the RHS is positive since µ−1
(

k
m−a

)
is strictly decreasing in a,

and, Ṽ (·, ω) ∈ V [0, m̄]. The last term on the RHS is positive since µ−1
(

k
m−a

)
is supermodular, and therefore its first term in the product shows increasing

differences Topkis (1998, Theorem 2.6.1). Its last term in the product is pos-

itive under the case we are considering. Therefore the LHS is positive, and

this suffices to establish that g (a, m, ω) is strictly supermodular (Topkis, 1998,

Theorem 2.8.1).

Finally, since the choice set [0, m− k] is increasing in m, the solution a? (m, ω)

is also increasing in m Topkis (1998, Theorem 2.6.1). Since we have established
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in part (3a) that q̃ (m, ω) is increasing in a, then, q? (m, ω) ≡ q̃ [a? (m, ω) , ω] is

also increasing in m.

4. The decision φ? (m, ω) is monotone in m:

Similar to the procedure in the last part, we perform a change of decision variables

via a ≡ ϕ + c(q), where, ϕ ≡ m− x. The domain for ϕ is [0, min {m, a}]. However,

an optimal choice under b > 0 means that we will have ϕ < m (the end of period

residual balance is less than the beginning of period money balance). This is be-

cause, if ϕ = m then it must be that x = 0, i.e., the buyer pays nothing; but this

is not optimal for the buyer if the buyer faces a positive probability of matching

b > 0. Moreover, ϕ < a, if u′ (0) is sufficiently large—i.e., the buyer can always

increase utility by raising x (thus lowering ϕ such that ϕ < a attains). Thus the

upper bound on ϕ will never be binding. As such, the buyer’s problem from (2.17)

can be re-written as

B(m, ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
= max

a∈[0,m−k],ϕ≥0

{
µ−1

(
k

m− a

) [
uC (a− ϕ)

+βV̄
(

ωϕ + τ

ω+1 (1 + τ)
, ω+1

)
− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]}
, (D.6)

where uC (q) := u ◦ c−1 (q), which is continuously differentiable with respect to

q ≥ 0. For fixed a ∈ [0, m− k], denote the value

J (a, ω) = max
ϕ≥0

{
uC (a− ϕ) + βV̄

(
ωϕ + τ

ω+1 (1 + τ)
, ω+1

)}
, (D.7)

and the optimizer,

ϕ̃(a, ω) = arg max
ϕ≥0

{
uC (a− ϕ) + βV̄

(
ωϕ + τ

ω+1 (1 + τ)
, ω+1

)}
. (D.8)

Denote also q̃(a, ω) = c−1 [a− ϕ̃(a, ω)].

Given ϕ̃(a, ω), the optimal choice over a, i.e., a? (m, ω), solves

B(m, ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
=

max
a∈[0,m−k]

{
µ−1

(
k

m− a

) [
J (a, ω)− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]}
.

Applying the similar logic in the proof in part 3 on page OA-§.D. 15, we can show

that ϕ̃(a, ω) is increasing in a; that a? (m, ω) is increasing in m, and therefore, ϕ? (m, ω) ≡
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ϕ̃ [a? (m, ω) , ω] is increasing in m. Finally, since

φ? (m, ω) : = [ωϕ? (m, ω) + τ] / [ω+1 (1 + τ)] ,

which is a linear transform of ϕ? (m, ω), then φ? (m, ω) is increasing with m, since

ω/ [ω+1 (1 + τ)] > 0.

D.2 DM buyer value function and first-order conditions

Let us return to the DM buyer’s problem re-written as (D.6) in part (4) of the proof of

Lemma 3 on page OA-§.D. 10. The buyer’s decision problem over ϕ ≡ m − x, for any

fixed decision a ≡ ϕ + c(q), yields the value J (a, ω) as defined in Equation (D.7) of that

proof. The following intermediate results says that the value function J (·, ω) is differen-

tiable with respect to a and its marginal value can be related to primitives, i.e.:

Lemma 4. The marginal value of J (·, ω) agrees with the flow DM marginal utility

with respect to the buyer’s payment x,

J1 (a, ω) =u′ [q̃(a, ω)] ≡
(

uQ
)

1
[x?(m, ω), b?(m, ω)] > 0. (D.9)

Proof. Consider the problem described in Equations (D.6) and (D.7). Observe that since

ϕ ≡ a− c (q), then

ϕ̃(a, ω) = arg max
ϕ≥0

{
uC (a− ϕ) + βV̄

(
ωϕ + τ

ω+1 (1 + τ)
, ω+1

)}
(D.10)

is continuous with respect to a: There is some δ′ > 0, such that for all ε ∈ [0, δ′], the

choices ϕ̃(a+ ε, ω) and ϕ̃(a− ε, ω) exist. Moreover the optimal selection ϕ̃(a, ω) is unique

since the objective function in (D.10) is strictly concave by virtue of uC being strictly

concave and V̄ being concave. Denote also q̃(a, ω) = c−1 [a− ϕ̃(a, ω)], where the choices

q̃(a + ε, ω) and q̃(a− ε, ω) also exist, by continuity of c−1 in its argument.

To verify (D.9), we can use the perturbed choices, ϕ̃(a + ε, ω) and ϕ̃(a− ε, ω), for eval-

uating right- and left-derivatives of the functions uC, V̄ and J, in order to “sandwich” the

derivative function J1 (·, ω) and arrive at the claimed result. For notational convenience

below, we define the following function

Kω [a, ϕ̃(a, ω)] ≡ uC (a− ϕ̃(a, ω)) + βV̄
(

ωϕ̃(a, ω) + τ

ω+1 (1 + τ)
, ω+1

)
.
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Consider first the right derivatives: Take δ′ ↘ 0 such that for all ε ∈ [0, δ′], the choice

ϕ̃(a + ε, ω) is affordable for a buyer a. Since ϕ̃(·, ω) is an optimal policy satisfying (D.8),

then under action ϕ̃(a, ω) we must have that

J (a, ω) = uC (a− ϕ̃(a, ω)) + βV̄
(

ωϕ̃(a, ω) + τ

ω+1 (1 + τ)
, ω+1

)
≥ uC (a− ϕ̃(a + ε, ω)) + βV̄

(
ωϕ̃(a + ε, ω) + τ

ω+1 (1 + τ)
, ω+1

)
⇔ J (a, ω) = Kω [a, ϕ̃(a, ω)] ≥ Kω [a, ϕ̃(a + ε, ω)] .

Again, take δ′ ↘ 0 such that ∀ε ∈ [0, δ′], the choice ϕ̃(a, ω) is affordable for buyer a + ε.

Since ϕ̃(·, ω) is an optimal policy satisfying (D.8), then under ϕ̃(a + ε, ω) we must have

that

J (a + ε, ω) = uC (a + ε− ϕ̃(a + ε, ω)) + βV̄
(

ωϕ̃(a + ε, ω) + τ

ω+1 (1 + τ)
, ω+1

)
≥ uC (a + ε− ϕ̃(a, ω)) + βV̄

(
ωϕ̃(a, ω) + τ

ω+1 (1 + τ)
, ω+1

)
⇔ J (a + ε, ω) = Kω [a + ε, ϕ̃(a + ε, ω)] ≥ Kω [a + ε, ϕ̃(a, ω)] .

Re-write the two inequalities above as

Kω [a + ε, ϕ̃(a, ω)]− Kω [a, ϕ̃(a, ω)]

ε
≤ J (a + ε, ω)− J (a, ω)

ε

≤ Kω [a + ε, ϕ̃(a + ε, ω)]− Kω [a, ϕ̃(a + ε, ω)]

ε
.

Since the composite function uC—and therefore the objective function in (D.7)—is differ-

entiable with respect to a, J1 (·, ω) clearly exists. Therefore, the right derivative of this

value function must agree with its partial derivative: limε↘0 J (a + ε, ω) = J1 (a, ω). Us-

ing this fact, the inequalities above imply

lim
ε↘0

Kω [a + ε, ϕ̃(a, ω)]− Kω [a, ϕ̃(a, ω)]

ε
≤ J1 (a, ω)

≤ lim
ε↘0

Kω [a + ε, ϕ̃(a + ε, ω)]− Kω [a, ϕ̃(a + ε, ω)]

ε
.

Moreover, by continuity of ϕ̃(·, ω), we have that limε↘0 ϕ̃(a + ε, ω) = ϕ̃(a, ω), so the
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inequalities above collapse to

u′
[
q̃(a+, ω)

]
:= lim

ε↘0

uC (a + ε− ϕ̃(a, ω))− uC (a− ϕ̃(a, ω))

ε
≤ J1 (a, ω)

≤ lim
ε↘0

uC (a + ε− ϕ̃(a, ω))− uC (a− ϕ̃(a, ω))

ε
=: u′

[
q̃(a+, ω)

]
.

However, the first and the last term in the inequalities above are identical, and they are

the same as the right derivative of u with respect to q := q̃(a, ω), i.e., u′ [q̃(a+, ω)] . Thus,

it must be that u′ [q̃(a+, ω)] = J1 (a, ω) .

Using similar arguments as above, we can also consider the left-hand-side perturba-

tion about a, to evaluate ϕ̃(a− ε, ω). It can be shown that

u′
[
q̃(a−, ω)

]
:= lim

ε↘0

uC (a− ε− ϕ̃(a, ω))− uC (a− ϕ̃(a, ω))

ε
≤ J1 (a, ω)

≤ lim
ε↘0

uC (a− ε− ϕ̃(a, ω))− uC (a− ϕ̃(a, ω))

ε
=: u′

[
q̃(a−, ω)

]
,

so that u′ [q̃(a−, ω)] = J1 (a, ω) .

Combining the two arguments above, we have that

u′ [q̃(a, ω)] = u′
[
q̃(a+, ω)

]
= u′

[
q̃(a−, ω)

]
= J1 (a, ω) > 0.

Finally, the equivalence u′ [q̃(a, ω)] =
(
uQ)

1 [x
?(m, ω), b?(m, ω)] can be derived using

standard calculus, since the composite function uQ ≡ u ◦ Q is a known continuously

differentiable function in its arguments (x, b). The assumption on u that marginal utility

is everywhere positive renders u′ [q̃(a, ω)] > 0. This completes the proof of the claim.

Lemma 5. At any (m, ω), where m ∈ [k, m̄] and the buyer matching probability is

positive b? (m, ω) > 0,

1. the buyer’s marginal valuation of money B1(m, ω) exists if and only if

V̄1

[
ωm+τ

ω+1(1+τ)
, ω
]

exists; and

2. B(m, ω) is strictly increasing in m.

Proof. Lemma 3 implies that q̃(a, ω) is increasing in a. Since we have shown that u′ [q̃(a, ω)] =

J1 (a, ω) > 0, then J1 (a, ω) is also decreasing in a. Since J (a, ω) is clearly increasing in a,

then we conclude that it is also concave in a. The term µ−1
(

k
m−a

)
is strictly decreasing

and strictly concave in a. Therefore the objective function in (D.6) is strictly concave in

a. Thus maximizing (D.6) over a yields a unique optimal selection a?(m, ω). Moreover,
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the objective function in (D.6) is continuously differentiable with respect to a; and using

(D.9) we can show that a?(m, ω) satisfies the first-order condition:29

J (a?(m, ω), ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)

+ u′ [q̃ (a?(m, ω), ω)] · k · µ′ [b? (m, ω)] b? (m, ω)

µ [b? (m, ω)]2

= 0, if a?(m, ω) < m− k

< 0, if a?(m, ω) = m− k
.

(D.11)

Observe that b? (m, ω) > 0 implies the buyer has more than enough initial balance for

purchasing q? (m, ω), i.e.,

m− ϕ? (m, ω) > c [q?(m, ω)] + k =⇒ a(m, ω) ≡ ϕ? (m, ω) + c [q?(m, ω)] < m− k.

Since a?(m, ω) < m − k, and a?(m, ω) is continuous in m, then there is an ε > 0 such

that the following selections are also feasible: a?(m + ε, ω) < m − k, and, a?(m, ω) <

(m− ε) − k. Define the open ball Nε (m) := (m− ε, m + ε). Note that for any m′ ∈
Nε (m), the selection a? (m′, ω) is feasible for an agent m; and a? (m, ω) is feasible for

agent m′.

Given that a? (m, ω) is optimal for agent m, and since ϕ?(m, ω) = ϕ̃ [a? (m, ω)], then

we have the buyer’s optimal value as

B(m, ω) = βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)
+ max

a∈[0,m−k],ϕ≥0

{
µ−1

(
k

m− a

)
×
[
u ◦ c−1 (a− ϕ) + βV̄

(
ωϕ̃ + τ

ω+1 (1 + τ)
, ω+1

)
− βV̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)}
= F (a? (m, ω) , m) ≥ F (a? (m + ε, ω) , m) .

where F (a, m) := βV̄
(

ωm+τ
ω+1(1+τ)

, ω+1

)
+µ−1

(
k

m−a

) [
J (a, ω)− βV̄

(
ωm+τ

ω+1(1+τ)
, ω+1

)]
. Sim-

ilarly, for agent m + ε, it must be that

B (m + ε, ω) = F (a? (m + ε, ω) , m + ε) ≥ F (a? (m, ω) , m + ε) .

29Note that b = µ−1
(

k
m−a

)
. The term db/da = k/ (m− a)2 × 1/µ′ [b] can be derived using the implicit

function theorem: Define H(a, b) = k/ (m− a)− µ [b] = 0. Then db/da = −Ha(a, b)/Hb(a, b), which yields
the result. The first-order condition is thus derived as[

J (a?(m, ω), ω)− βV̄
(

ωm + τ

ω+1 (1 + τ)
, ω+1

)]
k

(m− a?(m, ω))2
1

µ′ [b? (m, ω)]

+ J1 (a?(m, ω), ω) µ−1
(

k
m− a?(m, ω)

){
= 0, if a?(m, ω) < m− k
< 0, if a?(m, ω) = m− k

.

Moreover, since k/(m − a) = µ(b), we can write db/da = k/ (m− a)2 × 1/µ′ [b] ≡ [µ (b)]2 /k × 1/µ′ [b],
and using the relation (D.9), the first-order condition can be further simplified to (D.11).
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Clearly,

F (a? (m, ω) , m + ε)− F (a? (m, ω) , m)

ε
≤ B (m + ε, ω)− B (m, ω)

ε

≤ F (a? (m + ε, ω) , m + ε)− F (a? (m + ε, ω) , m)

ε
.

Since F (a, m) is continuous and concave in a, and, a? (m, ω) is continuous in m, the fol-

lowing limits exist (Rockafellar, 1970, Theorem 24.1, pp.227-228), and the inequality or-

dering is preserved in the limit:

lim
ε↘0

F (a? (m, ω) , m + ε)− F (a? (m, ω) , m)

ε
≤ lim

ε↘0

B (m + ε, ω)− B (m, ω)

ε

≤ lim
ε↘0

F (a? (m + ε, ω) , m + ε)− F (a? (m + ε, ω) , m)

ε
.

Since limε↘0 a? (m + ε, ω) = a? (m, ω), the inequalities above are equivalent to

b? (m, ω)

[
J1 (a? (m, ω) , ω)− β

1 + τ
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)]
+

β

1 + τ
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
≤ B1

(
m+, ω

)
≤ b? (m, ω)

[
J1 (a? (m, ω) , ω)− β

1 + τ
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)]
+

β

1 + τ
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
,

where

V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
:= lim

ε↘0
(1 + τ)

(ω+1

ω

) [
V̄
(

ω (m + ε) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]
/ε.

However, observe that the first and the last terms in the inequalities are identical. Thus

we must have that the right derivative of B (·, ω) satisfies

B1
(
m+, ω

)
= b? (m, ω)

[
J1 (a? (m, ω) , ω)− β

1 + τ

(
ω

ω+1

)
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)]
+

β

1 + τ

(
ω

ω+1

)
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
.
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By a similar process to arrive at the left derivative of B (·, ω), we have

B1
(
m−, ω

)
= b? (m, ω)

[
J1 (a? (m, ω) , ω)− β

1 + τ

(
ω

ω+1

)
V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)]
+

β

1 + τ

(
ω

ω+1

)
V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)
,

where

V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)
:= (1 + τ)

(ω+1

ω

)
lim
ε↘0

{
1
ε

[
V̄
(

ω (m− ε) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)]}
.

Using the result from (D.9) in Lemma 4 on page OA-§.D. 18, we can re-write these right-

and left-derivative functions, respectively, as

B1
(
m+, ω

)
= b? (m, ω)

(
uQ
)

1
[x? (m, ω) , b? (m, ω)]

+
β [1− b? (m, ω)]

1 + τ

(
ω

ω+1

)
V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
, (D.12)

and,

B1
(
m−, ω

)
= b? (m, ω)

(
uQ
)

1
[x? (m, ω) , b? (m, ω)]

+
β [1− b? (m, ω)]

1 + τ

(
ω

ω+1

)
V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)
. (D.13)

From (D.12) and (D.13), it is apparent that B1 (m, ω) exists if and only if the left- and

right-derivatives of V̄ (·, ω+1) exist and they agree at the continuation state from m, i.e.,

if

V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)
= V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
= V̄1

(
ωm + τ

ω+1 (1 + τ)
, ω+1

)
.

This proves the first part of the statement in the Lemma.

Since V̄ (·, ω+1) ∈ V [0, m̄], it is concave and increasing in m, and therefore,

V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω+1

)
≥ V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω+1

)
≥ 0.

Since we assumed b? (m, ω) ∈ (0, 1], and by Lemma 4, we have

J1 (a? (m, ω) , ω) ≡
(

uQ
)

1
[x? (m, ω) , b? (m, ω)] > 0,
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then (D.12) and (D.13) imply that the first-order left and right derivatives of B (·, ω+1)

satisfy:

B1
(
m−, ω

)
≥ B1

(
m+, ω

)
≥ b? (m, ω)

(
uQ
)

1
[x? (m, ω) , b? (m, ω)] > 0.

From this ordering, we can conclude that if b? (m, ω) > 0, the buyer’s valuation B (m, ω+1)

is strictly increasing with his money balance, m. This proves the last part of the statement

in the Lemma.

Lemma 6. For any (m, ω), where m ∈ [k, m̄] and the buyer matching probability is

positive b? (m, ω) > 0, the optimal policy functions b?and x?, respectively, satisfy the

first-order conditions (2.18) and (2.19).

Proof. We want to show that the first order conditions characterizing the optimal policy

functions b?and x?, are indeed (2.18) and (2.19). It is immediate that the objective function

(2.17) is continuously differentiable with respect to the choice b ∈ [0, 1]. Holding fixed x,

if the optimal choice for b is interior, b?(m, ω) ∈ (0, 1), then it must satisfies the first order

condition (2.18) with respect to b:

uQ [x?(m, ω), b?(m, ω)] + b?(m, ω)
(

uQ
)

2
[x?(m, ω), b?(m, ω)]

= β [V̄ (φ (m, ω) , ω+1)− V̄ (φ? (m, ω) , ω+1)] .

The first order condition with respect to x is more subtle. We can derive it by first defining

one-sided derivatives of B (·, ω). Assuming beginning-of-next-period residual balance

after current DM trade is positive—i.e.,

φ? (m, ω) =
ω [m− x? (m, ω)] + τ

ω+1 (1 + τ)
> 0. (D.14)

Since (D.14) holds, and since we have shown in Lemma 3 that x? (m, ω) and φ? (m, ω) are

continuous in m ∈ [k, m̄], then

(φ?)+ (m, ω) : =
ω [m + ε− x? (m, ω)] + τ

ω+1 (1 + τ)
,

and,

(φ?)− (m, ω) : =
ω [m− ε− x? (m, ω)] + τ

ω+1 (1 + τ)
,

exist and are feasible (or affordable). From (2.17), the DM buyer’s one-sided derivatives
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of B (·, ω)—i.e., its left- or right-marginal valuation of initial money balance—are, respec-

tively,

B1
(
m+, ω

)
=

β

1 + τ

(
ω

ω+1

)
×
{
[1− b? (m, ω)] V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω

)
+ b? (m, ω) V̄1

[
(φ?)+ (m, ω) , ω+1

]}
,

(D.15)

and,

B1
(
m−, ω

)
=

β

1 + τ

(
ω

ω+1

)
×
{
[1− b? (m, ω)] V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω

)
+ b? (m, ω) V̄1

[
(φ?)− (m, ω) , ω+1

]}
,

(D.16)

where

V̄1

(
ωm± + τ

ω+1 (1 + τ)
, ω+1

)
:= (1 + τ)

(ω+1

ω

)
lim
ε↘0

{
1
ε

[
V̄
(

ω (m± ε) + τ

ω+1 (1 + τ)
, ω+1

)
− V̄

(
ωm + τ

ω+1 (1 + τ)
, ω

)]}
.

From Lemma 5, we have shown by change of variable, that the one-sided derivatives

of B (·, ω) also satisfy (D.15) and (D.16). These are repeated here for convenience as the

following equations:

B1
(
m+, ω

)
=

β

1 + τ

(
ω

ω+1

)
[1− b? (m, ω)] V̄1

(
ωm+ + τ

ω+1 (1 + τ)
, ω

)
+ b? (m, ω)

(
uQ
)

1
[x? (m, ω) , b? (m, ω)] , (D.17)

and,

B1
(
m−, ω

)
=

β

1 + τ

(
ω

ω+1

)
[1− b? (m, ω)] V̄1

(
ωm− + τ

ω+1 (1 + τ)
, ω

)
+ b? (m, ω)

(
uQ
)

1
[x? (m, ω) , b? (m, ω)] . (D.18)

From the last term on the RHS of each of Equations (D.15), (D.16), (D.17), and, (D.18), we
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have the observation that

β

1 + τ

(
ω

ω+1

)
V̄1

[
(φ?)+ (m, ω) , ω+1

]
=

β

1 + τω

(
ω

ω+1

)
V̄1

[
(φ?)− (m, ω) , ω+1

]
=
(

uQ
)

1
[x? (m, ω) , b? (m, ω)] .

Since these marginal valuation functions are evaluated at the DM buyer’s optimal choice,

it must be that β
1+τ

(
ω

ω+1

)
V̄1

[
(φ?)+ (m, ω) , ω+1

]
= β

1+τ

(
ω

ω+1

)
V̄1

[
(φ?)− (m, ω) , ω+1

]
=

β
1+τ

(
ω

ω+1

)
V̄1 [φ

?(m, ω), ω+1], and, that this satisfies the first order condition (2.19), which

is (
uQ
)

1
[x?(m, ω), b?(m, ω)] =

β

1 + τ

(
ω

ω+1

)
V̄1 [φ

?(m, ω), ω+1] .

E Proof of Theorem 3

Proof. First, we show that the value functions listed in the definition of a SME are unique

given ω. For given ω, The CM agent’s problem in (2.4) clearly defines a self-map TCM
ω :

V [0, m̄] → V [0, m̄], which preserves monotonicity, continuity and concavity (see The-

orem 1). However, for fixed ω, the DM buyer’s problem in 2.17 defines an operator

TDM
ω : V [0, m̄] → C [0, m̄], where C [0, m̄] ⊃ V [0, m̄] is the set of continuous and increas-

ing functions on the domain [0, m̄]. This operator does not preserve concavity. Note

that V̄(·, ω) ∈ V [0, m̄] as previously defined. Now we show that the ex-ante problem in

(2.6) and (2.8) defines an operator that maps the CM agent’s and the DM buyer’s value

functions, respectively, W(·, ω) = TDM
ω V̄(·, ω) and B(·, ω) = TDM

ω V̄(·, ω), back into the

set of continuous, increasing and concave functions: Tω : V [0, m̄] → V [0, m̄]. Since

TCM
ω and TDM

ω are monotone functional operators that satisfy discounting with factor

0 < β < 1, then the ex-ante problem in (2.6) and (2.8), which defines the composite oper-

ator Tω : V [0, m̄]→ V [0, m̄], clearly preserves these two properties. (The convexification

of the graph of Tω via lotteries in (2.8) preserves concavity of the image of the operator,

thus making it a self-map on V [0, m̄].) It can be shown that V [0, m̄] is a complete metric

space. Thus Tω : V [0, m̄] → V [0, m̄] satisfies Blackwell’s conditions, and has a unique

fixed point, V̄ (·, ω) = TωV̄ (·, ω), by Banach’s fixed point theorem.

Second, we verify the following three properties: (1) By Theorem 1 and Theorem 2,

the agent’s optimal policies are continuous, single-valued and monotone functions. This

implies, for fixed ω, that the Markov kernel P(s, ·) in the distributional operator (2.21)

is a probability measure, and, P(·, E) for all Borel subsets E ∈ B ([0, m̄]) is a measur-

able function. (2) Since agent’s policies are monotone, then P(s, ·) is increasing on [0, m̄].
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Thus the Markov kernel is a transition probability function. (3) The equilibrium policies

clearly dictate that the monotone mixing conditions of Hopenhayn and Prescott (1992)

are satisfied: Consider a DM buyer who has zero money balance. With non-zero proba-

bility either by pure luck (α) or by choosing a lottery that induces such an outcome, he

will enter the CM to work and to accumulate some positive money balance. Likewise,

consider an agent, either in the DM or CM with the highest possible initial balance of m̄.

Again, with non-zero probability, she will decumulate that balance, either by matching

and spending that balance down in the DM, or, by working less and consuming more in

the CM. These conditions, are sufficient, by Theorem 2 of Hopenhayn and Prescott (1992),

for the Markov operator (2.21) to have a unique fixed point—i.e., regardless of an initial

distribution of agents, the recursive operation on the initial distribution converges (in the

weak* topology) to the same long run distribution G.30

Third, the LHS of (2.20), viz. (1/ω), is clearly continuous in ω ∈ (0 + ∞) and is a

downward sloping parabola in the interior of (0,+∞). The market clearing condition

(2.20) is continuous on the RHS: (1) The integrand is clearly continuous in m; and, (2)

by Theorems (1) and (2), agents policy functions are continuous in m. By Theorem 1

via Equations (2.12) and (2.15) (evaluated at a stationary state ω = ω+1), demand for

real money balance is continuous in ω. Thus, the distribution G (·; ω) is continuous in

ω in the sense of convergence in the weak* topology (Stokey and Lucas, 1989, Theorem

12.13)—i.e., if ωn → ω?, then for each ωn ∈ {ωn}n∈N, the Markov operator (2.21) de-

fines a (weakly) convergent sequence of distributions: G (·; ωn) → G (·; ω?). The RHS

is strictly positive valued for all ω ∈ (0 + ∞) since agents’ policy functions are non-

negative valued and G (·; ω) is a non-degenerate probability measure. Since the RHS is

continuous, finite and positive in ω, and the LHS is a downward-sloping parabola with

values in (0 + ∞), then there must be at least one intersection point ω? ∈ (0 + ∞).

The three parts above establish that a SME exists.

F Algorithm for finding a SME

The following algorithm presumes the more general setting from Section A, which al-

lowed for a new parameter α ∈ [0, 1]. We compute a SME as follows.

1. Fix a guess ω and guess V̄ (·, ω) ∈ V [0, m̄].

2. Solve for CM policy and value functions:

• We know C? (m, ω) = C̄? already using Equation (2.14).

30Alternatively, one could check the more relaxed set of necessary and sufficient conditions of Kamihigashi
and Stachurski (2014, Theorem 2) to guarantee that there is a unique distribution for a given ω, in a steady
state SME.
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• For fixed C̄?, and, given guess of V̄ (·, ω), iterate on Bellman Equation (B.4)

solving a one-dimensional (1D) optimization problem over choice y? (·, ω).

– Note: By Equation (2.15), the solution y? (·, ω) = ȳ∗ (ω) should be a con-

stant with respect to m.

• Back out l?(m, ω) using the binding budget constraint in Equation (2.16).

• Store value function W? (·, ω).

3. Solve for DM policy and value functions:

• For each m ≤ k, set

– b? (m, ω) = x? (m, ω) = q? (m, ω) = 0

– B (m, ω) = βV̄ [φ(m, ω), ω+1],

where φ(m, ω) := (m + τ)/(1 + τω).

• For each m ∈ [k, m̄],

– Invert first-order condition (2.19) to obtain implicit b [m, x (m, ω) , ω].

– Plug the implicit expression for b [m, x (x, ω) , ω] into Bellman Equation

(2.17), and do a 1D optimization over choices x (m, ω).

– Get optimizer x? (m, ω) and corresponding value B? (m, ω) .

– Use previous step to now back out b? (m, ω).

4. Solve ex-ante decision problem:

• Given approximants W? (m, ω) and B? (m, ω), solve the lottery problem (2.6)

and (2.8).

• Get policies
{

π
j,?
1 (m, ω)

}
j∈J

and
{

zj,?
1 (m, ω) , zj,?

2 (m, ω)
}

j∈J
, where J is en-

dogenous to the solution of (2.6) and (2.8).

• Get value of the problem (2.6) and (2.8) as V? (·, ω).

5. Construct the approximant of the ex-ante value function, V̄? (·, ω) = (1− α)V? (·, ω)+

αW? (·, ω) .

6. Given policy functions from Steps 2-4, construct limiting distribution G (·, ω) solv-

ing the implicit Markov map (2.21). (See details in Section G on page OA-§.G. 30.)

• Check if market clearing condition (2.20) holds.

• If not,

– generate new guess and set ω ← ωnew;

– set V̄ (·, ω)← V̄? (·, ω); and

– repeat Steps 2-6 again until (2.20) holds.
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Algorithm 1 summarizes the steps above with reference to function names in our actual

Python implementation. Algorithm 1 is called SolveSteadyState in our Python class file

cssegmod.py.

Algorithm 1 Solving for an SME
Require: α ∈ [0, 1), ω > 0, V̄(·, ω) ∈ V [0, m̄], Nmax > 0

1: for n ≤ Nmax do
2: (W?, C̄?, l?, y?)← WorkerProblem(V̄, ω)
3: (B?, b?, x?, q?)← BuyerProblem(V̄, ω)
4: Ṽ ← max {B?(·, ω), W?(· − χ, ω)}
5:

(
V?,

{
z?,j, π?,j}

j∈J

)
← ConvexHull

[
graph

(
Ṽ
)]

6: V̄? ← αW? + (1− α)V?

7: v← (V̄, B, W)

8: p← 〈{π j,?
1 , zj,?

1 , zj,?
2 }j∈J , (b?, x?, y?, C̄?)〉

9: G ← Distribution(p, v)
10: ω? ← MarketClearing(G)
11: e← max {‖V̄? − V̄‖, ‖ω? −ω‖}
12: if e < ε then
13: STOP
14: else
15: (V̄, ω)← (V̄?, ω?)
16: CONTINUE
17: end if
18: end for

return p, v, G, ω?

F.1 A novel computational scheme

We solve for a SME following the pseudocode F. Recall that the directed search prob-

lem makes the value function Ṽ(·, ω) non-concave. Since there may exist lotteries that

make agents better off than playing pure strategies over participating in DM (as buyer)

or CM (as consumer/worker), we have to devise a means for finding these lotteries that

convexify the graph of the function Ṽ (·, ω).31

An existing way to do this in the literature is to use a grid Mg := {0 < · · · < m̄}
to approximate the function’s original domain of [0, m̄]. Then, around each finite ele-

ment of Mg, one must check if there is a linear segment that approximately convexifies

graph
[
Ṽ (·, ω)

]
.32 This approximation scheme works fine when we only have a lottery

where the lower bound in Mg is included, i.e., a lottery on a set like {z1, z2}, where z1 = 0,

31Interestingly, there is parallel similarity between our problem here and those in computational dynamic
games. In the latter, non-convexities may sometimes arise in equilibrium payoff sets, and convexification
of these payoff correspondence images are rationalized through a public randomization (sunspot) device,
instead of lotteries or behavior strategies (see, e.g., Kam and Stauber, 2016).

32See part (v) of the proof of Theorem 3.5 in Menzio et al. (2013) for an exact theoretical underpinning of
this scheme. We thank Amy Sun for sharing her MATLAB code for Menzio et al. (2013) which confirms this
usage.
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and, z2 < m̄. It becomes less accurate when lotteries may exist on upper segments of the

function, i.e., lotteries on sets like {z′1, z′2}, where 0 < z′1 < z′2 < m̄, but we have no prior

knowlege of what z′1 is. This is because in practice (on the computer) it is not feasible to

implement this check which is meant to be done at every element on the domain [0, m̄],

not its approximant Mg. As a result, its implementation on Mg may be prone to intro-

ducing non-negligible approximation errors, especially when the mesh of Mg is coarse.

Thus, one would have to make Mg very fine, but, this will come at the cost of the overall

SME solution time.

Instead, we propose a novel alternative here. We can exploit the property that Ṽ (·, ω)

has a bounded and convex domain, so then there exists a smallest convex set that con-

tains gṼ := graph
[
Ṽ (·, ω)

]
, i.e., conv

(
gṼ
)
. This set is indeed graph [V̄ (·, ω)]. We

utilize SciPy’s interface to the fast QHULL algorithm to back out a finite set of coordi-

nates representing the convex hull, i.e., graph [V̄ (·, ω)]. Given these points, we approx-

imate the function V̄ (·, ω) by interpolation on a chosen continuous basis function. We

use the family of linear B-splines available from SciPy’s interpolate class for this pur-

pose. As a residual of this exercise, we can very quickly and directly determine the entire

set of possible lotteries that exists with minimal loss of precision, for any given non-

convex/concave function Ṽ (·, ω).33

G Monte Carlo simulation of stationary distribution

We use a Monte Carlo method to approximate the steady-state distribution of agents at

each fixed value of the aggregate state ω, in the Distribution step in Algorithm 1 on

page OA-§.F. 29. Again, the following algorithm presumes the more general setting from

Section A, which allowed for a new parameter α ∈ [0, 1].

For any current outcome of an agent named (m, ω) we can evaluate her ex-post opti-

mal choices in either the CM (2.4), or the DM (2.5). The outcomes of the decision at each

current state for an agent is summarized in Algorithm 2. In words, these go as follows:

First, we must identify where the agent is currently in (DM or CM). Second, we evaluate

the corresponding decisions and record the agent’s end-of-period money balance as m′.

Associated with each realized identity m we would also have a record of the agent’s ac-

tions in that period, e.g., y? (m, ω) and l? (m, ω) if the agent was in the CM, or, x? (m, ω)

and b? (m, ω) if she was in the DM.

33Detailed comments on how this is done can be found in the method V in our Python class cssegmod.py.
We implement our solution in pure Python 2.7/3.4 (with OpenMPI parallelization of the agent decision
problems on 24 logical cores). We have only tested our solutions on a Dell Precision T7810 workstation (with
Intel Xeon E5-2680 v3, 2.50GHz, processors) running on the Centos 7.2 GNU/Linux operating system. In
all our experiments, we have monotone convergence towards a unique SME solution, regardless of initial
guesses on ω and V̄ (·, ω). The average time taken to find the SME is between 90 to 120 seconds, given our
hardware setting.
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Algorithm 2 ExPostDecisions( )
Require: ω, (B, W)← v, (b?, x?, y?)← p

1: if W(m− χ, ω) ≥ B(m, ω) then
2: m′ ← y?(m− χ, ω)
3: else
4: Get u ∼ U[0, 1]
5: if u ∈ [0, b?(m, ω)] then
6: Get x?(m, ω) > 0
7: Get b?(m, ω) > 0
8: m′ ← m− x?(m, ω)
9: else

10: x?(m, ω)← 0
11: b?(m, ω)← 0
12: m′ ← m
13: end if
14: end if

return m′

Algorithm 2 is then embedded in Algorithm 3 below, the Monte Carlo approximation

of the steady state distribution at ω. We begin, without loss, from an agent who had

just accumulated money balances at the end of a CM, and track the evolution of the

agent’s money balances over the horizon T → +∞. Theorem 3 implies that if ω is any

candidate equilibrium price, and G (·, ω) is the unique limiting distribution of agents

associated with the candidate equilibrium, then the agent will visit each of all possible

states (m, ω) ∈ suppG (·, ω) with frequency dG (m, ω), as T → +∞.

Algorithm 3 does the following:

1. Begin with an arbitrary agent m.

2. At the start of each date t ≤ T:

(a) The agent realizes the shock z ∼ (α, 1− α).

(b) Conditional on the shock z, the agent goes to the CM for sure (and costlessly),

or, makes the ex-ante lottery decision.

(c) If the agent has to solve the ex-ante decision problem, then we evaluate the

corresponding ex-post decisions of the agent.

The main output of Algorithm 3 is the list mT, which stores the stochastic realization

of an agent’s money balances each period. The long run distribution of the sample mT

is used to approximate G (·, ω). Algorithms 2 and 3 can be found in the Python class

cssegmod.py, respectively, as methods ExPostDecisions and Distribution.

Note that the function Distribution will be called each time we have an updated

guess of ω. Because the Monte-Carlo problem is serially dependent, the only way to

speed up the evaluations at this point is to compile it to machine code and execute it on
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the fly. The user will have the option to exploit Numba (a Python interface to the LLVM

just-in-time compiler).

Algorithm 3 Distribution( )

Require: v← (V̄, B, W), p← 〈{π j,?
1 , zj,?

1 , zj,?
2 }j∈J , (b?, x?, y?, C̄?)〉, T, ω

1: Get φ(m, ω)← m+τ
(1+τω)(1−δ)

2: Set mT ← ∅
3: m← y?(0, ω)
4: for t ≤ T do
5: m← φ(m, ω)
6: Get u ∼ U[0, 1]
7: if u ∈ [0, α] then
8: m′ ← y?(m, ω)
9: else

10: if ∃j ∈ J and m ∈
[
zj,?

1 (m, ω), zj,?
2 (m, ω)

]
then

11: Get u ∼ U[0, 1]
12: if u ∈

[
0, π

j,?
1 (m, ω)

]
then

13: m← zj,?
1 (m, ω)

14: else
15: m← zj,?

2 (m, ω)
16: end if
17: end if
18: m′ ← ExPostDecisions(m, ω, p, v)
19: end if
20: Set mT ← mT ∪ {m}
21: Set m← m′

22: end for
return mT

H Sample SME outcome for an agent

Figure 15 on page OA-§.H. 34 shows a subsample of an agent’s existence, for the baseline

economy. Corresponding to the DM/CM patterns of spending, we can also observe the

subsample’s evolution of money balances, in the panel with its vertical axis labelled m,

in Figure 15. Here, we can see that at t = 0, the agent has his initial real balance as some

m. He decides to be in the DM, succeeds in matching with a trading post, and spends

a fraction of the balance to consume some positive q. In the following period t = 1,

he begins with some positive balance—because of transfer τ/(ω (1 + τ)) > 0 combined

with his residual balance—but this amount land in the lottery region; and so the agents

plays the lottery. He realizes the high prize of z2 = 0.52 in t = 1, and so his money

balance is z2. He matches and gets to consume q > 0. (Hence, the record q1, x1, b1 > 0.)

A similar event realizes again in t = 2, so the agent again gets to consume in the DM. In
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t = 3, having spent his balance on consuming in the DM the previous period, the agent

realizes a low, i.e., z1 = 0, lottery payoff and his initial balance is thus zero. However,

the agent is able to borrow against his CM income, and thus decides to take a temporary

short asset position of −χ (although his recorded money balance is m = z1 = 0) and

enters the CM to work, repay the entry cost, consume in the CM, and save some money

balance.34 That is why we see a record of −1 for the figure panel labelled “match status”

for t = 3. Subsequently in t = 4, he begins again with positive balance from the last CM

trade. At this point, he decides to go shopping in the DM and again, spends it all in one

round. he wins the high prize in the lottery, and finds it profitable to pay the fixed cost χ,

enters the CM and works.

34See our earlier Remark 1 on page 17.
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Figure 15: Agent sample path (Benchmark economy). Match Status: 0 (No Match in DM),
1 (Match in DM), −1 (in CM).

In summary, we can observe the following from our simulation: Agents can trade

more than once in the DM sometimes. This depends on their luck of the draw in their

lottery outcomes. Agents must also pay a fixed cost to enter the CM to load up on money

balances. Depending on their money balance, they may sometimes find it worthwhile

to borrow against their CM income to pay the fixed cost of CM entry. Thus, we have an

equilibrium Baumol-Tobin type of money spending cycle in the model. Since agents en-

dogenously may not have complete consumption insurance, the pattern of consumption

in the DM, q in Figure 15, is not completely smooth.
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I Robustness and variations on the benchmark economy

This section elaborates in more detail the conclusions made in the paper. Here, we con-

sider two variations or robustness checks on our model assumptions.

First, we show that our insights above are robust to alternative parametrization of the

fixed-cost parameter χ.

Second, we consider an extreme assumption that agents face a zero-borrowing con-

straint when overcoming the fixed cost of CM entry, χ: This alternative economy is tan-

tamount to a reparametrization of the borrowing limit (2.7) in the benchmark setting.

We consider the extreme case of χ = 0 in the last part of this section. This effec-

tively allows agents to participate in the CM costlessly. This experiment illustrates that

the key DM intensive-versus-extensive margin trade-off is the main mechanism behind

the non-monotone relationship between inflation and money inequality (or consumption

inequality).

I.1 Two separate variations: Higher fixed cost and zero-borrowing

Consider first the second environment. The results are qualitatively similar, across in-

creasing inflation rates, to that of the benchmark economy (i.e., the economy with a natu-

ral short-sale constraint on overcoming the CM fixed cost). However, for any fixed infla-

tion rate, when one compares this alternative economy with its benchmark counterpart,

we have the following additional insights.

τ Benchmark Benchmark, 2× χ Zero-borrowing Limit

0.000000 0.509568 0.509569 0.525787
0.008394 0.508201 0.508201 0.524484
0.025000 0.505621 0.505621 0.518749

Table 3: Robustness and variations — Mean money holdings

τ Benchmark Benchmark, 2× χ Zero-borrowing Limit

0.000000 0.711928 0.711885 0.678093
0.008394 0.712490 0.712474 0.678659
0.025000 0.714158 0.714148 0.687622

Table 4: Robustness and variations — DM expected spending relative to holdings

From Table 3 and 4 we can see the following: In the zero-borrowing-limit economy,

average money balance is higher, and, equilibrium extensive margin effects in the DM

(i.e., on average how fast agents expend their given DM money holdings) are lower than

its corresponding benchmark economy.
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τ Benchmark Benchmark, 2× χ Zero-borrowing Limit

0.000000 0.330868 0.330855 0.333409
0.008394 0.331062 0.331057 0.333645
0.025000 0.331440 0.331435 0.333817

Table 5: Robustness and variations — CM participation rate

τ Benchmark Benchmark, 2× χ Zero-borrowing Limit

0.000000 -0.082472 -0.082479 -0.101590
0.008394 -0.080854 -0.080855 -0.099131
0.025000 -0.071332 -0.071332 -0.063506

Table 6: Robustness and variations — Skewness

However, from Tables 5, 6 and 7, we see that the participation rate in CM is higher,

but money distribution is less left-skewed or the Gini index is smaller.

The reason is as follows: In the zero-borrowing economy, agents have a stronger pre-

cautionary liquidity-risk insurance motive. Since they cannot borrow to overcome the

fixed cost of entering the CM to manage their liquidity needs, then whenever they are in

the CM, agents will tend to demand more real balances. Likewise, conditional on being

in the DM, agents expect to trade at a lower volume relative to their DM money holdings,

as they need to economize on the balance in order to possibly overcome the fixed cost of

re-entering the CM. This explains the on-average higher money balance (in comparison

to the benchmark economy) and the lower rate of trading in the DM. In return, agents

would like to go to the CM more often to demand additional precautionary liquidity.

That explains a relatively higher top end of the money distribution relative to the bottom

(i.e., a more left-skew distribution), and hence a lower Gini index, in comparison to the

benchmark economy’s outcome.

A similar reasoning also applies in the first alternative case where we doubled the

fixed cost in the benchmark economy.

I.2 Results from limit economy when x = 0

The figures below were experiments conducted with the benchmark economy, except for

χ = 0. It is clear that in the setting the same qualitative results arises as in the benchmark

τ Benchmark Benchmark, 2× χ Zero-borrowing Limit

0.000000 0.434360 0.434351 0.409190
0.008394 0.434528 0.434525 0.409407
0.025000 0.435441 0.435439 0.412800

Table 7: Robustness and variations — Gini index
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economy discussion in Section 5 in the main paper.

Figure 16: Comparative steady states — mean outcomes (Benchmark but for χ = 0).

Thus, it may have appeared that we complicated the model’s mechanism with an

additional CM-participation fixed cost parameter χ in the benchmark setting. However,

the robustness check shows that the same forces are at work even when χ = 0.

Theoretically, the ocassional CM-participation decision is still present even if χ = 0.

Why? As we discussed in the main paper, because the flow preference function of agents

is strictly concave, they would like to consume both CM and DM goods in their infinite

lifetimes. As a result agents will still transit from CM to DM recurrently, even when it

is completely costless to participate in the CM where markets are complete, and even

when in the DM, there is a risk that agents may not get to match with trading posts and

consume—i.e., they face a liquidity-holdings and insurance risk.
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Figure 17: Comparative steady states — distribution (Benchmark but for χ = 0)
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