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Abstract

We study the use of mixed strategies in games by ambiguity averse agents with a preference for

randomization. Applying the decision theoretic model of Saito (2015) to games, we establish

that the set of rationalizable strategies grows larger as preferences for randomization weaken.

An agent’s preference for randomization is partially observable: given the behavior of an agent

in a game, we can determine an upper bound on the strength of randomization preferences

for that agent. Notably, data in previous experiments on ambiguity aversion in games is not

consistent with a maximal preference for randomization for approximately 30% of subjects.
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1 Introduction

For an agent in a normal form game the behavior of an opponent is, even in the case where the

game form and payoffs are common knowledge, a source of ambiguity. Given the well documented

prevalence of ambiguity aversion (see the review by Machina and Siniscalchi (2013)), understanding

the role of, and response to, strategic ambiguity in decision making is a first-order problem in

understanding strategic behavior. This paper studies the role of mixed strategies, and preferences

for randomization, in determining the set of rationalizable outcomes for ambiguity averse agents in

normal form games.

Mixed strategies are particularly important for ambiguity averse agents. Suppose that an agent

has access to one action that performs well when her opponent plays Up but poorly when her

opponent plays Down, and a second action that performs well against Down but poorly against

Up. If the agent can mix between these two actions, the agent can generate a strategy that on

average performs reasonably against either Up or Down. A mixed strategy can, therefore, form

an ex-ante hedge against strategic ambiguity and, potentially, eliminate the effects of strategic

ambiguity.

There are two stylized facts from the recent experimental economics literature that are partic-

ularly relevant: (1) that ambiguity averse subjects play games differently than ambiguity neutral

agents, with ambiguity averse subjects choosing ‘safe’ strategies more frequently, and (2) that sub-

jects display a persistent preference for randomization.1 The previous literature on rationalizabiilty

with ambiguity averse agents can be split into two categories: The first is consistent with (1) but

not (2), and the second is consistent with (2) but not (1).2 In contrast, this paper presents a model

that is consistent with both (1) and (2).

We assume throughout that ambiguity preferences can be represented by Maxmin Expected

Utility (Gilboa and Schmeidler, 1989). That is, each agent holds a set valued belief containing all

strategies that are (subjectively) considered feasible for the opponent, and then seeks to maximize

1For example, Calford (2020) and Li et al. (2019) provide evidence that ambiguity averse and ambiguity neutral

subjects behave differently in games, while Ivanov (2011) uses behavior in games to estimate ambiguity preferences.

Agranov and Ortoleva (2017) document a persistent preference for randomization in lottery tasks, and Agranov et al.

(2020) also find a preference for randomization in games.
2See below for references and extensive discussion. Note that Battigalli et al. (2016) partially straddle this divide

by using a non-standard implementation of mixed strategies. For now, we note that Battigalli et al. (2016) do not

allow for agents to hold a strict preference for randomizing over strategies using an external randomization device,

but defer the discussion until Section 6.

2



the minimum utility against strategies in the belief set. Maxmin Expected Utility has been pre-

viously applied to games in both theoretical (Lo, 2009) and experimental (Calford, 2020) settings

and nests standard Expected Utility as a special case.

1.1 An illustrative example

R P C

R 6, 3 2, x 0, 0

P x, 2 x, x x, 2

C 0, 0 2, x 3, 6

Figure 1: Modified Battle of the Sexes game. 0 < x < 2.

Consider the modernized Battle of the Sexes game in Figure 1. Rowena and Colin have agreed

to go on a date to either location R or C. Rowena prefers the date occurs at location R, and

Colin prefers location C. Unfortunately, neither person can remember the location at which they

agreed to meet. However, both Colin and Rowena own mobile phones and each may call the other

party to confirm their plans (action P ). Calling the other person ensures that the date goes ahead

but also involves a cost as it reveals, embarrassingly, that the caller was not able to remember the

plans for the date. The outcome of the phone call has some fixed utility, 0 < x < 2, for the caller

and a slightly higher utility, 2, for the receiver. If neither Rowena or Colin chooses to call the

other party, then they risk attending differing locations and earning a payoff of 0. If both players

have standard Expected Utility preferences then the set of rationalizable outcomes for this game is

{(R,R), (R,C), (C,R), (C,C)}.3

Consider the literature that is consistent with (1) but not (2). This literature assumes that

agents may only select pure actions, and that mixing is not feasible (see Epstein (1997), for ex-

ample).4 Clearly, R and C are justifiable for each player given they are best responses to R and

C, respectively. The strategy P can be justified by the case where Rowena faces complete uncer-

tainty about the strategy of Colin. Given Rowena’s MEU preferences, she considers the worst case

scenario for each of her strategies. If she plays R, she fears that Colin will play C and therefore

assigns a utility of 0 to R. If she plays C, she fears that Colin will play R and therefore assigns

a utility of 0 to C. P earns a safe payoff of x > 0 and is therefore the best response to complete

3For Rowena the strategy 1
3
R + 2

3
C strictly dominates P , and for Colin 2

3
R + 1

3
C strictly dominates P , where

1
3
R+ 2

3
C denotes the mixed strategy that plays R with probability 1

3
and C with probability 2

3
.

4Mixed strategies are given a beliefs interpretation in this literature: while each individual agent must use a pure

strategy, the agent may still form beliefs about the relative proportions each pure strategy will be used by others.
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uncertainty. All strategies are justifiable, and the entire game is therefore rationalizable.

Next, consider the literature that is consistent with (2) but not (1). This literature allows agents

to play explicitly mixed strategies and assumes that agents have a maximal preference for mixing

(see Chen and Luo (2012), for example).5 Intuitively, the preference for mixing arises because the

agent believes mixing eliminates the effects of ambiguity and, being ambiguity averse, the agent

values the elimination of ambiguity. A maximal preference for mixing describes the case where the

agent considers it feasible for mixing to fully eliminate the effects of ambiguity.

Consider again Rowena’s strategy 1
3R+ 2

3C. Given the assumption of a maximal preference for

mixing, this strategy provides Rowena with a complete hedge against the uncertainty generated

by Colin’s behavior because it provides a constant expected payoff. If Colin plays R, this strategy

earns, on average, a utility of 2. If Colin plays C, this strategy earns, on average, a utility of 2.

And, of course, if Colin plays P , this strategy earns a utility of 2. 1
3R + 2

3C therefore strictly

dominates P , which pays only x < 2, and the set of rationalizable strategies is the same as for an

Expected Utility agent.

1.2 When does mixing provide a hedge against ambiguity?

Is it, however, reasonable to assume that 1
3R+ 2

3C provides Rowena with a complete hedge against

ambiguity? Suppose that, for the sake of argument, a date at location R requires Rowena to wear

a cocktail dress while location C requires casual attire. In order to implement her mixed strategy

Rowena must resolve her randomization, then get dressed, and then attend either location R or C.

Once she is dressed, Rowena is again exposed to ambiguity.6

Recent advances in decision theory (Saito, 2015; Ke and Zhang, 2020) argue that the degree to

which 1
3R + 2

3C provides Rowena with a hedge against ambiguity is subjective and equivalent to

Rowena’s strength of preference for randomization. The stronger Rowena’s preference for random-

ization, the greater her subjective sense that 1
3R+ 2

3C generates a hedge against the uncertainty of

5Formally, Chen and Luo (2012) consider a more general class of games where each player has a compact Hausdorff

strategy space. In the special case where the strategy space is a simplex in a finite-dimensional Euclidian space, then

the strategy space can be interpreted as the set of mixed strategies associated with a finite game. In this special case,

Chen and Lou’s assumption that preferences satisfy a “concave-like” condition implies a preference for mixing in the

underlying finite game. This interpretation of mixed strategies is discussed further in Section 6.
6Similar arguments regarding the timing of the resolution of uncertainty can be found in the decision theory

literature. See Bade (2015), Baillon et al. (2019), Eichberger and Kelsey (1996) and Epstein et al. (2007) for

examples.
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Colin’s strategy choice. Here, we study the effects of the strength of preference for randomization

on the set of rationalizable strategies.

Following Saito (2015), we denote Rowena’s preference for randomization by 0 ≤ δ ≤ 1 where

δ = 1 implies that mixing provides a complete hedge against ambiguity and δ = 0 implies that

mixing provides no hedge against ambiguity. The utility of a mixed strategy is taken to be a linear

combination of the utility provided under the case where mixing provides no hedge and the case

where mixing provides a full hedge, with the weights afforded to each case determined by δ.7 In our

example, the utility of 1
3R+ 2

3C, when Rowena faces complete uncertainty about Colin’s behavior,

is given by 2δ. It is, therefore, the case that 1
3R+ 2

3C strictly dominates P whenever 2δ > x. The

set of rationalizable strategies is {(R,R), (R,C), (C,R), (C,C)} when δ > x
2 and the entire game

when δ ≤ x
2 .

We, therefore, identify behavior that is consistent with stylized facts (1) and (2). The safe

strategy, P , is rationalizable when δ is small, agents have a preference for randomization whenever

δ > 0, and agents may use mixed strategies to hedge against strategic uncertainty when δ is large.

Further, δ is partially recoverable from observable behavior: if, for example, Rowena is observed to

play P , then we must conclude that δ ≤ x
2 .

1.3 The main result

In the main result of this paper we establish, for finite games, that the set of rationalizable strate-

gies weakly increases as preference for randomization decreases. More formally, denote the set of

rationalizable outcomes when agents have preference parameter δ as Zδ. Corollary 1 states that

Zδ ⊆ Zδ′ for δ ≥ δ′. In the extreme case of δ = 1, Z1 coincides with the standard notion of corre-

lated rationalizability (and Chen and Luo (2012)). On the other extreme, δ = 0, Z0 is consistent

with Epstein (1997).

The intuition underlying this result is remarkably simple. Because δ captures preference for

mixing, the utility of a pure strategy is independent of δ and the utility of a mixed strategy is

(weakly) increasing in δ. Therefore, as δ increases, fewer pure strategies remain as best responses.

Lemma 3 from Pearce (1984) continues to hold in our environment, and rules out the possibility

that a strategy is justifiable only when used as part of a mixed strategy. Therefore, a strategy

is justifiable if and only if it is a pure best response to some belief. Hence, as δ increases, less

strategies are justifiable.

7See Section 2 for definitions and details, and Saito (2015) for an axiomatic foundation.
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The two most closely related papers to this one are Battigalli et al. (2016) and Chen and Luo

(2012). Battigalli et al. (2016) show that the set of rationalizable strategies increases with ambiguity

aversion in the smooth ambiguity aversion model (Klibanoff et al., 2005). Our result is distinct:

here, the underlying ambiguity aversion is constant but the degree to which mixed strategies provide

a hedge against ambiguity varies. Chen and Luo (2012) study rationalizability with a general class

of preferences, but impose a maximal preference for mixing. This paper considers a more restricted

class of preferences, but allows for weaker preferences for mixing.

The paper proceeds as follows. Section 2 introduces Saito (2015) preferences in the context of

games. Section 3 presents the main result. Section 4 addresses the observability of δ, and Section 5

considers the case of heterogeneous δ. Section 6 discusses the interpretation of mixed strategies for

agents with ambiguity averse preferences and Section 7 concludes.

2 Ambiguity aversion and preferences over randomization in games

We define a game by G = 〈I, (Ai)i∈I , (vi)i∈I , δ〉 where I = {1, . . . , n} is the set of players, Ai is a

finite set of actions for player i, vi : ×j∈NAj → R is a von-Nuemann Morgenstern utility function

over outcomes, and δ is a preference parameter defined below.8 Let A = ×j∈NAj be the set of

action profiles and A−i = ×j 6=i∈NAj be the set of action profiles of players other than i.

We seek to apply the decision theoretic model of Saito (2015), which builds on the canonical

Maxmin Expected Utility model of Gilboa and Schmeidler (1989). The model of Gilboa and

Schmeidler (1989) posits that agents entertain a set of possible beliefs and calculate the utility of

an action with respect to the belief that minimizes the utility of that action. Saito (2015) defines

utility to be a weighted average of the Maxmin Expected Utility when randomization is assumed

to not provide a hedge against uncertainty and the Maxmin Expected Utility when randomization

does provide a hedge against uncertainty.

To apply Saito (2015) to games, we suppose that A−i forms the state space for player i, whose

set of feasible acts is Ai. The (set of) beliefs for player i is given by Φi ⊆ ∆(A−i), and we restrict

Φi to be closed and convex. We denote the set of all closed and convex subsets of ∆(A−i) by P and

note that P is a compact metric space with respect to the Hausdorff metric. A (mixed) strategy

for player i is denoted by σi ∈ ∆(Ai), and we define σ = ×i∈Nσi and Φ = ×i∈NΦi.
9

8For convenience, we assume that δ is homogenous across players. We discuss the case of heterogeneous δ in

Section 5.
9Saito (2015) considers the primitives of behavior to be a set of feasible actions, rather than an explicit random-
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The utility of player i with preference parameter δ, beliefs Φi, and playing mixed strategy σi is

given by:

U(σi,Φi, δ) = δu(σi) + (1− δ)
∑
ai∈Ai

σi(ai)u(ai) (1)

where

u(σi) = min
φ∈Φi

∑
a−i∈A−i

φ(a−i)
∑
ai∈Ai

σi(ai)v(ai, a−i)

and, with an abuse of notation,

u(ai) = min
φ∈Φi

∑
a−i∈A−i

φ(a−i)v(ai, a−i).

δ captures the agent’s subjective beliefs regarding the extent to which mixed strategies provide

a hedge against ambiguity: if δ = 1 then randomization fully eliminates ambiguity, and if δ = 0

then randomization provides no hedge against ambiguity.10

Intuitively, when δ = 0 the agent has Maxmin expected utility preferences over the set of

pure strategies, and mixed strategies are evaluated as a linear combination of the payoffs of the

underlying pure strategies. Consequently, the agent will only play mixed strategies when they are

indifferent between two (or more) pure strategies. When δ = 1, the agent has convex preferences

over mixed strategies and hence may strictly prefer a mixed strategy over any of the pure strategies

in the support of that mixed strategy. The intermediate cases are taken to be a weighted average

of the δ = 0 and δ = 1 cases, with the weight determined by δ.

We shall write Σ∗i (Φi, δ) = {σi : σi ∈ arg maxσ′i∈∆(Ai) U(σ′i,Φi, δ)} to be the set of mixed

strategies that are a best response to beliefs Φi.

3 Rationalizability

We define justifiable and rationalizable strategies in the standard way. A strategy is justifiable if

there exists some beliefs for which the strategy lies in the support of the best response, and a profile

ization, under the contention that only the outcomes of a randomization, and not the randomization itself, can be

observed. Here we take mixed strategies to be the primitive of choice, but note that we do not at any stage require

the mixed strategy to be directly observable. As is standard, the definition of rationalizability used here specifies the

set of pure strategies that are rationalizable.
10The case of δ = 1 is analogous to interpreting mixing as an ex-post randomization in the decision theoretic

literature, and δ = 0 is analogous to interpreting mixing as an ex-ante randomization.
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of strategies is rationalizable if each component is justifiable when beliefs are restricted to only the

opponents’ rationalizable strategies.

Definition 1. A strategy ai is justifiable with respect to beliefs Φi if ai ∈ supp
(
Σ∗i (Φi, δ)

)
.

Definition 2. A strategy ai is justifiable if there exists a Φi ⊆ ∆(A−i) such that ai is justifiable

with respect to Φi.

Definition 3. The set of rationalizable strategies is the largest set Z = ×i∈NZi ⊆ ×i∈NAi such

that for every k ∈ N each ak ∈ Zk is justifiable with respect to beliefs Φk where Φk ⊆ ∆(Z−k).

To emphasize the dependence of the rationalizable set on the underlying parameter δ, we will

sometimes write Zδ to denote the set of rationalizable strategies. When δ = 1 this definition of

rationalizability collapses to the standard notion of correlated rationalizability, given that beliefs

are not restricted to be stochastically independent. When δ = 0 this definition collapses to Epstein

(1997) rationalizability for Maxmin Expected Utility agents. Further, note that, following standard

arguments, the set of rationalizable strategies can be found by iterated elimination of non-justifiable

strategies.

Result 1. ai ∈ Z1 if and only if ai is rationalizable for a Subjective Expected Utility agent.

Proof. First, we demonstrate that if strategy ai is justifiable with respect to beliefs Φi then it is

justifiable for a SEU agent.

When δ = 1, preferences reduce to

U(σi,Φi, 1) = min
φi∈Φi

∑
a−i∈A−i

φ(a−i)
∑
ai∈Ai

σ(ai)v(ai, a−i)

= min
φi∈Φi

∑
a−i∈A−i

∑
ai∈Ai

φ(a−i)σ(ai)v(ai, a−i)

Let arg maxσ∈∆(Ai) U(σi,Φi, 1) = σ∗i , and let φ∗i be the utility minimizing belief for U(σ∗i ,Φi, 1).

Clearly, σ∗i is also the best response for an agent with Expected Utility preferences and belief φ∗i .

Next we show that if ai is justifiable for an SEU agent then it is justifiable with respect to some

beliefs Φi. Suppose that σ∗∗ is the best response for an Expected Utility agent with beliefs φ∗∗i .

Let Φ∗∗i = {φ∗∗i }. Then σ∗∗ ∈ arg maxσi∈∆(Ai) U(σi,Φ
∗∗
i , 1).

Finally, equivalence of the sets of justifiable strategies implies equivalence of the set of correlated

rationalizable strategies.
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In the following, we use the shorthand “Epstein (1997) rationalizability” to refer to the specific

application of Epstein’s general formulation to the case of Maxmin Expected Utility agents.

Result 2. ai ∈ Z0 if and only if ai is Epstein (1997) rationalizable.

Proof. Immediate.

Next we show that a result from Pearce (1984), that any undominated strategy must be a pure

best response to some beliefs, extends to the current environment. That Pearce’s result extends to

our environment is not without surprise: given a preference for mixing, it appears plausible that a

strategy might only be justifiable when used as part of a mixed strategy to build a hedge against

uncertainty. It turns out, however, that a strategy is only useful as a hedge against uncertainty if

that strategy is also able to ‘stand on its own’ for at least one set of beliefs.

Lemma 1. A pure strategy ai is undominated if and only if there exists Φi such that, for all

σi ∈ ∆(Ai), U(ai,Φi, δ) ≥ U(σi,Φi, δ).

Proof. The ‘only if’ statement is obvious. The proof of the ‘if’ statement follows. The proof follows

the proof of Lemma 3 in Pearce (1984) closely.

We prove the contrapositive. Suppose that α is never a best response: i.e. ∀ Φi, ∃ σi ∈ ∆(Ai),

U(α,Φi, δ) < U(σi,Φi, δ). Then there exists a function b(Φi) : P → ∆(Ai) such that, for all Φi,

U(b(Φi),Φi, δ) > U(α,Φi, δ).

Consider the following zero-sum game, played between players 1 and 2. The set of (pure)

strategies for player 1 is S1 = Ai and the set of (pure) strategies for player 2 is S2 = P, and

representative mixed strategies are denoted by σ1 and σ2 respectively. The payoffs for player 1

are given by U1(σ1, σ2) = U(σ1, σ2, δ) − U(α, σ2, δ), and the payoffs for player 2 are given by

U2(σ1, σ2) = −U1(σ1, σ). Existence of a Nash equilibrium in this zero-sum game is guaranteed by

the existence theorem of Zhou et al. (2011), given that S1 and S2 are compact metric spaces and

the utility functions are continuous. Let (σ∗1, σ
∗
2) denote a Nash equilibrium of this game. Then,

for any σ2 ∈ P:
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U1(σ∗1, σ2) ≥ U1(σ∗1, σ
∗
2)

≥ U1(b(σ∗2), σ∗2)

> U1(α, σ∗2)

= 0

where the final line is implied by the construction of the zero-sum game. Further, U1(σ∗1, σ2) > 0

for all σ2 ∈ P implies that U(σ∗1,Φi, δ) > U(α,Φi, δ) for all Φi ∈ P. Therefore, α is dominated.

Theorem 1. Suppose that δ ≥ δ′. If ai ∈ Ai is justifiable at δ then it is also justifiable at δ′.

Proof. First, Lemma 1 implies that ai must be a pure strategy best response for some beliefs at δ.

That is, there exists a Φi such that, for all σ ∈ ∆(Ai), U(ai,Φi, δ) ≥ U(σ,Φi, δ). Next, note that

U(σ,Φi, δ) is weakly decreasing in the third argument (because utility for mixed strategies falls

as preference for mixing decreases) and U(ai,Φi, δ) is independent of the third argument (because

utility for a pure strategy is independent of any preference for mixing). Therefore, for all σ ∈ ∆(Ai),

U(ai,Φi, δ
′) ≥ U(σ,Φi, δ

′).

The proof is straightforward. Given Lemma 1, a strategy is justifiable if and only if it is a pure

best response to some beliefs. The utility from playing any pure strategy is independent of δ, while

the utility of a mixed strategy is weakly decreasing in δ. Therefore, if ai is justifiable at δ then it

must also be justifiable at δ′ ≤ δ. The converse is false.

Corollary 1. Suppose that δ ≥ δ′. Then Zδ ⊆ Zδ′.

Proof. Follows by application of iterated elimination of non-justifiable strategies.

The cardinality of the set of justifiable strategies, and therefore cardinality of the set of ra-

tionalizable strategies decreases in δ. There is a clear relationship between this result and the

main result of Battigalli et al. (2016), who demonstrate that the cardinality of the set of justifiable

strategies increases with ambiguity aversion in the smooth ambiguity aversion model of Klibanoff

et al. (2005). Here, however, ambiguity preferences are held constant. Instead the expression of

ambiguity preferences changes with δ: an agent with large δ need not play a “safe” strategy becuase

they may hedge their ambiguity via mixing.
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4 Observability of model parameters

Theorem 1 implies that δ is partially observable. Specifically, suppose that there exists a strategy

ai that is justifiable for all δ ≤ δ1 but not justifiable for δ > δ1. Then, if we observe ai being played,

and assume that the agent is rational (in the sense of maximizing utility as defined in Equation 1),

we must conclude that δ ≤ δ1. In addition, suppose that a′i is rationalizable for all δ ≤ δ1 but not

rationalizable for δ > δ1. Then, if we observe a′i being played, and assume rationality and common

knowledge of rationality, we must conclude that δ ≤ δ1.

To illustrate, consider the following game (Figure 2) from Calford (2020) where payoffs have

been normalized to lie between 0 and 1.

X (0.66) Y (0.34)

A (0.63) 1, 4
5 0, 0

B (0.09) 0, 4
5 1, 0

C (0.28) 4
11 , 0

4
11 , 1

Figure 2: Example from Calford (2020). Payoffs are normalized to lie between 0 and 1 and the proportion of

subjects choosing each strategy is given in parentheses.

In this game, C is justifiable if and only if δ ≤ 8
11 and B is rationalizable if and only if δ ≤ 8

11 .

Therefore, if we assume rationality we can conclude that at least 28% of subjects have δ ≤ 8
11

and if we assume common knowledge of rationality then we can conclude that at least 37% of

subjects have δ ≤ 8
11 .11 We can conclude that, given the stated assumptions, that at most 63% of

subjects have δ = 1. Of course, this proportion could be considerably lower, given that (A,X) is

rationalizable even for subjects with δ = 0.

Other experimental studies produce similar conclusions. Consider the game in Figure 3, from

Kelsey and le Roux (2015), where, again, payoffs have been normalized to lie between 0 and 1.

Strategy R is dominated by a mix between L and M whenever δ > 4
5 . Given that 30% of subjects

play R we can conclude, given an assumption of rationality, that at least 30% of subjects have

δ ≤ 4
5 .

11Note that the assumption of rationality with respect to the preferences outlined in Equation 1 implicitly assumes

risk neutrality, given that payoffs in the original experiment represented monetary payoffs to subjects. However,

risk preferences cannot explain the substantial fraction of row players who fail to choose the unique correlated

rationalizable strategy in this game. To see this, we can restrict the sample to only those subjects who exhibit both

ambiguity aversion and low levels of risk aversion – i.e. the subjects who would be the most likely to use mixing as

a hedge against strategic uncertainty. Among this subsample, the proportion of subjects choosing A is 58%.
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L (0.40) M (0.30) R (0.30)

T (0.50) 0, 0 1, 1
3

1
6 ,

1
5

B (0.50) 1
3 , 1 0, 0 11

60 ,
1
5

Figure 3: Example two from Kelsey and le Roux (2015). Payoffs are normalized to lie between 0 and 1 and the

proportion of subjects choosing each strategy is given in parentheses.

5 Heterogeneous preferences for randomization

In previous sections we considered only a homogeneous preference for randomization across all

players; here we consider the case of heterogeneous preferences for randomization.

The main results, including Theorem 1, all go through with heterogeneous preferences for

randomization. Suppose that player i has preference parameter δi. Then the set of rationalizable

strategies weakly increases as δi decreases, holding δj constant for j 6= i.

Changes in δ for different players may have drastically different effects on the set of rational-

izable strategies, however. Consider again the game in Figure 2. Suppose that the row player

has preference for randomization δR, and the column player δC . The rationalizable set is {A,X} if

δR > 8
11 and the entire game if δR ≤ 8

11 . Importantly, note that the rationalizable set is independent

of δC .

To see this notice that, for any value of δC , Y is rationalizable only if C is rationalizable. For

the row player, C is justifiable with respect to ΦR = {φ : 0 ≤ φ(X) ≤ 1} if δR ≤ 8
11 and C is

dominated by σ(A) = σ(B) = 1
2 if δ > 8

11 . Further, when C is justifiable then all strategies are

justifiable and the entire game is rationalizable. When C is not justifiable then iterated elimination

implies that Y is not rationalizable which implies that B is not rationalizable.

6 Internal and external mixed strategies

Battigalli et al. (2016) (henceforth BCVMM) allow for two types of mixed strategies.12 Primarily,

they consider only mixed strategies that are defined in the action space of the game; we will

refer to these as internal mixed strategies. To complete some of their proofs, they require a more

standard form of mixed strategy; we will refer to these as external mixed strategies given they are

mixed strategies that the agent can implement externally, by randomizing over the pre-defined set of

12The working paper version of Battigalli et al. (2016) contains a more substantial discussion of mixed strategies

than does the final published version.
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available strategies. BCVMM assume that agents have a preference for randomization over internal

mixed strategies, but do not have a preference for randomization over external mixed strategies.

The main result of BCVMM is that the set of justifiable strategies grows as ambiguity aversion

increases in the smooth ambiguity aversion model (Klibanoff et al. (2005)). However, if the action

space includes all possible internal mixed strategies (e.g. the strategy space is a simplex representing

the mixed extension of a finite game) then the main result of BCVMM collapses and the set of

justifiable strategies is independent of ambiguity preference. Thus, the BCVMM result relies on

a restriction of the preference for mixing – via the assumption that there is no preference for

randomization over external mixed strategies, and by restricting the availability of internal mixed

strategies.

Chen and Luo (2012) apply a similar approach to mixing. In the case where Chen and Luo

(2012) apply their model to finite games (i.e. the strategy space is a simplex in a finite-dimensional

Euclidian space) the most natural interpretation is that mixed strategies are internal mixed strate-

gies. Chen and Luo (2012) assume that preferences satisfy a “concave-like” condition that implies

a maximal preference for mixing over these internal mixed strategies. In this case, the game is then

isomorphic to a standard finite game with external mixed strategies and a maximal preference for

randomization. The assumption that agents have a maximal preference for mixing leads to their

main result: that the set of rationalizable strategies for ambiguity averse and ambiguity neutral

agents are identical.

The position taken in this paper is that it is never possible to prevent an agent from using an

external mixed strategy. That is, in every game, whether a laboratory experiment or real-world

interaction, agents can always randomize before playing the game by either consulting a random-

ization device or randomizing inside their own heads. Further, preferences for randomization over

external mixed strategies are subjective and cannot be restricted by the game designer. Therefore,

we must at least allow for the possibility that agents have a preference for randomization with

respect to external mixed strategies.

It would be, however, possible to reinterpret the framework used here to accommodate internal

mixed strategies. To do so requires that the payoff associated with any internal mixed strategy

is defined to be consistent with Equation 1. This implies that the game theorist must specify

the strength of preference for randomization as part of the game. In most settings, including lab

experiments, it would be unusual for the game theorist to have knowledge of δ prior to the game

being played. In such an environment, it seems more natural for the game theorist to define only

the payoffs of outcomes and allow the agents to choose, or not choose, to implement external mixed

13



strategies as desired.

7 Conclusion

In this paper, we apply a model with ambiguity averse preferences and partial preference for

randomization (Saito, 2015) to game theory. We prove that the set of rationalizable strategies

increases (in the sense of set inclusion) as preference for randomization decreases. Using carefully

designed games, such as those studied in Calford (2020), it is possible to partially identify the

preference for randomization of an ambiguity averse subject in a game theoretic experiment.
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