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Abstract

We study (point) identification of preference coefficients in semiparametric discrete choice
models for bundles. The approach to the identification uses an “identification at infinity”
(Chamberlain (1986)) insight in combination with median independence restrictions on unob-
servables. We propose two-stage maximum score (MS) estimators and show their consistency.
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1 Introduction

In this paper, we study the point identification and estimation of preference coefficients in semi-
parametric multinomial choice models for bundles. Our paper tightly relates to the growing liter-
atures on the discrete choice models. The most influential early work is Manski (1975, 1985, 1988)
which provides a novel identification strategy of index parameters for the binary choice model and
leads to a widely used maximum score type estimator. In presence of multiple choices, very re-
cently, among others, Fox (2007), Pakes and Porter (2017), Ahn, Ichimura, Powell and Ruud (2018),
Shi, Shum and Shi (2018), Yan (2018), Khan, Ouyang and Tamer (2019) and Lewbel, Yan and Zhou
(2019) exploit the semiparametric identification and estimation of the multinomial choice models
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in a static or panel setting. Essentially, all these works could be regarded as extensions of Manski
(1975, 1985, 1988) in different perspectives to the multiple choices case. In this sense, our paper
fills in the gap in studying the semiparametric bundle choice model in the family of Manski’s
estimator.

One of the central empirical questions in the industrial organization and marketing research
is to investigate the substitutive or complimentary impact between choices of goods and explain
the bundle choice behavior of consumers. In empirical studies, Gentzkow (2007) estimates the
parametric bundle model in analysis of relationship between the print and online newspapers in
demand. Similarly within a Probit framework, Fan (2013) examines the ownership consolidation
in newspaper market where they allow households in demand side purchase two copies of news-
paper as a bundle choice. If deviating form the parametric specification, the choice and utilities
associated with bundles prevent us applying the existing knowledge in the semiparametric mul-
tiple choice models directly and it therefore creates special difficulties in identification of model
parameters. Sher and Kim (2013) and Fox and Lazzati (2017) are two theory papers rigorously
studying the (nonparametric) identification of bundle choice model. Our paper adopts the basic
model setup of Fox and Lazzati (2017). However, the identification strategy proposed in our paper
is substantially different from Fox and Lazzati (2007) and thus it contributes to the literature in the
following perspectives: 1. To our best of knowledge, we are the first paper to discuss the point
identification and estimation of bundle choice model in a semiparametric framework; 2. Fox and
Lazzati (2007)’s identification heavily relies on the existence of excluded variables. In contrast, we
achieve the point identification of preference parameters under median independence restriction
thus it allows ”full extent of heteroskedasticity” on unobservables.

The remainder of this paper is organized as follows. Section 2 presents a simple bundle choice
model and provides sufficient conditions on both observed covariates and unobservables that
secure identification. In Section 3, we propose two-stage MS estimators motivated by the identifi-
cation strategy and show their consistency. Section 4 extends our approach to models with a more
complex choice set. Section 5 concludes this paper. The proofs are collected in the Appendix.

For the ease of reference, the notations maintained throughout this paper are listed here.

Notation. All vectors are column vectors. Rp is a p-dimensional Euclidean space equipped with
the Euclidean norm k · k, and Rp

+ ⌘ {x 2 Rp|x � 0}. We reserve the letter i for indexing agents
and j for indexing alternatives. For notational convenience, we might suppress the subscript i in
the rest of this paper whenever it is clear from the context that all variables are for each agent. We
use P (·) and E[·] to denote probability and expectation, respectively. 1[·] is an indicator function
that equals one when the event in the brackets occurs, and zero otherwise. Symbols \, 0, ,, and
p! represent set difference, matrix transposition, if and only if, and convergence in probability,

respectively. For any (random) positive sequences {an} and {bn}, an = O(bn) (Op(bn)) means
that an/bn is bounded (bounded in probability) and an = o(bn) (op(bn)) means that an/bn ! 0

(an/bn
p! 0).
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2 Model and Identification

Consider a choice model1 where the choice set J consists of J = 3 mutually exclusive alternatives
(j 2 {0, 1, 2}) and a bundle of alternatives 1 and 2, i.e., J = {0, 1, 2, (1, 2)}. This simple model is
sufficient to illustrate our identification method. We discuss in Section 4 how our approach can be
modified to be applied to models with more alternatives and their bundles.

For ease of exposition, we re-number alternatives in J with 2-dimensional vectors of binary
indicators d = (d1, d2) 2 {0, 1}2, where d1 and d2 indicate if alternative 1 and 2 are chosen, respec-
tively. Then the choice set J can be one-to-one mapped to the set D = {(0, 0), (1, 0), (0, 1), (1, 1)}.
An agent chooses the alternative in D to maximize the latent utility

Ud =
2X

j=1

(vj + x
0
j� + ✏j) · dj + ⌘ · (w0

�) · d1 · d2, (2.1)

where vj 2 R only affects the utility associated to stand-alone alternative j, xj 2 Rk1 and w 2 Rk2

collect observed covariates different from v = (v1, v2)0, of which w is a vector of explanatory vari-
ables characterizing the interaction effects of the bundle (e.g., bundle discount)2, (✏1, ✏2, ⌘) 2 R3

captures unobserved (to econometrician) heterogeneous effects, and (�0
, �

0)0 2 Rk1+k2 are un-
known preference parameters to estimate3. Note that expression (2.1) is rather general. By prop-
erly re-organizing xj ’s and w, expression (2.1) can accommodate both alternative-specific and
agent-specific covariates. See Cameron and Trivedi (2005) pp. 498 for a more detailed discussion.

The specification of (2.1) parametrizes the nonparametric deterministic utilities in the model
considered by Fox and Lazzati (2017). The utility of choosing (0, 0) is normalized to zero, and
the utility of choosing (1, 0) ((0, 1)) is v1 + x

0
1� + ✏1 (v2 + x

0
2� + ✏2). Different from the regular

binary choice model, the agent might gain additional payoff if the bundle is selected, i.e., the
utility of choosing the bundle is the sum of the two stand-alone utilities plus the interaction term
⌘ · (w0

�) capturing either complementary (⌘ · (w0
�) � 0) or substitution (⌘ · (w0

�)  0) effects4. (✏1, ✏2)
are idiosyncratic shocks associated with each stand-alone alternative, and ⌘ reflects unobserved
heterogeneity for the bundle. For identification, we restrict ⌘ > 0, i.e., w0

� determines the sign of
the interaction term, and the presence of ⌘ allows agent-specific magnitudes.

Given the latent utility model (2.1), the observed dependent variable yd is of the form

yd = 1[Ud > Ud0 , 8d0 2 D \ d]. (2.2)
1Fox and Lazzati (2017) show that this choice model is mathematically equivalent to a certain class of binary games.
The approach developed in this paper can be applied to these game models.

2w and xj ’s may have common elements.
3Note that here we implicitly assume that the coefficient on vj is non-zero and normalize it to 1 without loss of generality
(w.l.o.g.). This serves as usual scale normalization essential for many semi- and non-parametric discrete choice models.
See, for example, Lewbel (2000) and Fox and Lazzati (2017), among many others.

4Gentzkow (2007) shows that this definition of complements and substitutes is equivalent to the classic definitions
based on the sign of cross demand elasticity.
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Let z ⌘ (v1, v2, x01, x
0
2, w

0)0. The probabilities of choosing d = (0, 0), (1, 0), (0, 1), and (1, 1) condi-
tional on z are expressed respectively as

P
�
max{v1 + x

0
1� + ✏1, v2 + x

0
2� + ✏2, v1 + v2 + (x1 + x2)

0
� + (✏1 + ✏2) + ⌘ · (w0

�)} < 0|z
�
,

P
�
max{0, v2 + x

0
2� + ✏2, v1 + v2 + (x1 + x2)

0
� + (✏1 + ✏2) + ⌘ · (w0

�)} < v1 + x
0
1� + ✏1|z

�
,

P
�
max{0, v1 + x

0
1� + ✏1, v1 + v2 + (x1 + x2)

0
� + (✏1 + ✏2) + ⌘ · (w0

�)} < v2 + x
0
2� + ✏2|z

�
,

P
�
max{0, v1 + x

0
1� + ✏1, v2 + x

0
2� + ✏2} < v1 + v2 + (x1 + x2)

0
� + (✏1 + ✏2) + ⌘ · (w0

�)|z
�
. (2.3)

Denote uj = vj+x
0
j� for j = 1, 2. Assuming that limv1!�1 P (u1+✏1 < 0|z) = limv1!�1 P (u1+

u2 + (✏1 + ✏2) + ⌘ · (w0
�) < 0|z) = 15, we deduce from (2.3) that

lim
v1!�1

P (y(0,0) = 1|z) = P (u2 + ✏2 < 0|z), (2.4)

lim
v1!�1

P (y(0,1) = 1|z) = P (u2 + ✏2 > 0|z), (2.5)

and limv1!�1 P (y(1,0) = 1|z) = limv1!�1 P (y(1,1) = 1|z) = 0. The intuition is straightforward.
If d1 = 0 with probability approaching 1 as v1 ! �1, then the agent chooses (1, 0) or (1, 1) with
probability approaching 0, and hence the bundle choice problem reduces to a standard binary
choice model (for alternative 2). If further Med(✏2|z, ⌘) = 0 holds true, we then establish the
following (conditional) identification inequality based on (2.4) and (2.5)

u2 = v2 + x
0
2� � 0 , lim

v1!�1
P (y(0,1) = 1|z) � lim

v1!�1
P (y(0,0) = 1|z). (2.6)

The derivation of (2.6) combines the insight of identification at infinity and identification at the
median. The former is used for identifying endogenous selection models and censoring models
(see e.g., Heckman (1990) and Chamberlain (1986)), and the latter is adopted in a wide range of
semiparametric discrete choice models in line with the seminal work of Manski (1975, 1985, 1988).

Similar identification inequality can be obtained for alternative 1 by letting v2 ! �1, i.e.,

u1 = v1 + x
0
1� � 0 , lim

v2!�1
P (y(1,0) = 1|z) � lim

v2!�1
P (y(0,0) = 1|z). (2.7)

Collectively, (2.6) and (2.7), in combination with the regularity conditions stated below, establish
the identification of �.

Once � is identified, we treat it as a constant vector and move on to identify �. Let E ⌘ {u1 =

u2 = 0}. We deduce from (2.3) that

P (y(0,0) = 1|z, E) = P (✏1 < 0, ✏2 < 0, ✏1 + ✏2 + ⌘ · (w0
�) < 0|z, E), (2.8)

and

P (y(1,1) = 1|z, E) = P (✏1 + ⌘ · (w0
�) > 0, ✏2 + ⌘ · (w0

�) > 0, ✏1 + ✏2 + ⌘ · (w0
�) > 0|z, E). (2.9)

5This implicitly assumes sufficient variation in v1 and continuity in its density.
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If P ((✏1, ✏2) < (0, 0)|z, ⌘) = P ((✏1, ✏2) > (0, 0)|z, ⌘)6 holds, then (2.8) and (2.9) imply the following
identification inequality for w0

�

w
0
� � 0 , P (y(1,1) = 1|z, E) � P (y(0,0) = 1|z, E). (2.10)

To identify � and � based on (2.6), (2.7), and (2.10), the following conditions are sufficient.

B1 The joint distribution of (✏1, ✏2, ⌘) conditional on z is absolutely continuous with respect to
the Lebesgue measure on R2 ⇥ R+, and Med(✏1|z, ⌘) = Med(✏2|z, ⌘) = 0.

B2 v1 (v2) has almost everywhere (a.e.) positive Lebesgue density on R conditional on x1 (x2)
and conditional on {v2 < �M} ({v1 < �M}) for all positive constant M .

B3 limv1!�1 P (u1+ ✏1 < 0|z) = limv2!�1 P (u2+ ✏2 < 0|z) = 1 and limv1!�1 P (u1+u2+(✏1+

✏2) + ⌘ · (w0
�) < 0|z) = limv2!�1 P (u1 + u2 + (✏1 + ✏2) + ⌘ · (w0

�) < 0|z) = 1.

B4 The support X1 (X2) of x1 (x2) conditional on {v2 < �M} ({v1 < �M}) for all positive
constant M is not contained in any proper linear subspace of Rk1 .

B5 � 2 B, where B is a compact subset of Rk1 .

R1 P ((✏1, ✏2) < (0, 0)|z, ⌘) = P ((✏1, ✏2) > (0, 0)|z, ⌘).

R2 Let w(1) denote the first element of w and w̃ denote the sub-vector comprising the remaining
elements of w. w(1) has a.e. positive Lebesgue density on R conditional on w̃ and conditional
on (v1 + x

0
1�, v2 + x

0
2�) in a neighborhood of (v1 + x

0
1�, v2 + x

0
2�) near zero.

R3 The support W̃ of w̃ conditional on (v1 + x
0
1�, v2 + x

0
2�) in a neighborhood of (v1 + x

0
1�, v2 +

x
0
2�) near zero is not contained in any proper linear subspace of Rk2�1.

R4 � = (�1, �̃0)0 2 R, where R = {r = (r1, ..., rk2)
0 2 Rk2 |krk = 1, r1 6= 0}.

As discussed above, our approach involves identification at infinity with median indepen-
dence restriction. Assumptions B1 - B3 are sufficient conditions for establishing the identification
inequalities (2.6) and (2.7). Assumption R1 places a ”median type restriction” on the joint dis-
tribution of (✏1, ✏2), from which the identification inequality (2.10) follows. Note that Assump-
tions B1 and R1 allow general correlation among (✏1, ✏2, ⌘) and flexible dependence of (✏1, ✏2, ⌘)
on observed covariates (e.g., conditional heteroskedasticity). This “distribution-free” property is
desirable in many applications using micro-level data.

Assumptions B2 and R2 are standard for MS type of estimators, which ensures the point iden-
tification, as opposed to a set identification. Assumptions B4 and R3 are familiar full-rank con-
ditions. Assumptions B5 and R4 are about the parameter space. We restrict the search of � in a
6Note that P ((✏1, ✏2) < (0, 0)|z, ⌘) = P ((✏1, ✏2, ✏1+✏2) < (0, 0, 0)|z, ⌘) and P ((✏1, ✏2) > (0, 0)|z, ⌘) = P ((✏1, ✏2, ✏1+✏2) >

(0, 0, 0)|z, ⌘).
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compact set. As the interaction effect is a multiple of the unobserved heterogeneity ⌘, � can only
be identified up to a scale. Following a substantial literature, we normalize k�k to 1 and assume
that the coefficient on w

(1) is non-zero.

Our identification results are stated in the following theorem, which is proved in Appendix.

Theorem 1. Suppose Assumptions B1 - B5 hold. Then � is identified. Furthermore, if Assumptions R1 -

R4 also hold, � is identified up to a scale.

Remark. The identification results do not tell the comparative importance of the stand-alone util-
ities and the interaction effects in determining the choice of the bundle as the scale of the latter is
controlled by ⌘. With additional stochastic restriction(s) on unobservables (✏1, ✏2, ⌘), the scale of ⌘
can be identified. For example, assume the joint PDF of (✏1, ✏2, ✏1 + ✏2) is symmetric around 0 con-
ditional on (z, ⌘). We can show that u1 + u2 + ⌘ · (w0

�) = 0 , P (y(0,0) = 1|z, u1 = u2) = P (y(1,1) =

1|z, u1 = u2). If we further assume that ⌘ is median independent of z with Med(⌘|z) = q⌘, then q⌘

can be identified in a local quantile regression framework with the knowledge of (x01�, x02�, w0
�).

A detailed and thorough discussion on the identification of ⌘ is outside the scope of this work. We
leave this topic to a separate paper.

3 Estimation

The identification inequalities established in (2.6), (2.7), and (2.10) translate into a two-stage MS
estimation procedure. Each of the two stages is described in turn below.

Assume a random sample of n observations is generated from the model (2.1)-(2.2). Let �n1
and �n2 denote two positive non-stochastic series such that �n1, �n2 ! 1 as n ! 1. In the first
stage, we construct the localized MS estimator �̂ for �, analogous to the MS estimator proposed
in Manski (1975, 1985), defined as the maximizer over the parameter space B, of the following
objective function:

Qn1(b) =
1

n

nX

i=1

�
1[vi2  ��n2]

�
yi(1,0)1[vi1 + x

0
i1b > 0] + yi(0,0)1[vi1 + x

0
i1b  0]

�

+1[vi1  ��n1]
�
yi(0,1)1[vi2 + x

0
i2b > 0] + yi(0,0)1[vi2 + x

0
i2b  0]

� 
. (3.1)

Recall that the identification of � is achieved at v1 + x
0
1� = v2 + x

0
2� = 0. In estimation, we use

the �̂ obtained in the first stage to replace � when constructing the indexes. Note that the proba-
bility measure of the conditioned set is zero in the presence of continuous regressors. Following
the literature, we use observations whose (v1, v2) and (x1, x2) make v1 + x

0
1� = v2 + x

0
2� = 0

approximately hold for estimation. To this end, we introduce a standard kernel function K(·, ·)
that satisfies Assumption C4 stated below and two smoothing parameters hn1, hn2 that satisfy
hn1, hn2 ! 0 as n ! 1. Then we propose the kernel weighted MS estimator �̂ of � maximizing
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the following objective function over the parameter space R:

Qn2(r) =
1

nhn1hn2

nX

i=1

K
 
vi1 + x

0
i1�̂

hn1
,
vi2 + x

0
i2�̂

hn2

!
�
yi(1,1)1[w

0
ir > 0] + yi(0,0)1[w

0
ir  0]

�
. (3.2)

To secure the consistency of �̂ and �̂, we need the following technical conditions.

C1 The data {(y0i, z0i)0}ni=1 are i.i.d. across i, where yi ⌘ (yi(0,0), yi(0,1), yi(1,0), yi(1,1))
0.

C2 �n1 and �n2 are sequences of positive numbers such that as n ! 1: (i) �n1 ! 1 and �n2 ! 1,
and (ii) nP (v1  ��n1) ! 1 and nP (v2  ��n2) ! 17.

C3 hn1 and hn2 are sequences of positive numbers such that as n ! 1: (i) k�̂ � �k/hn1 = op (1)

and k�̂ � �k/hn2 = op (1), (ii) nhn1hn2 ! 1, and (iii) nhn1hn2/ log n ! 1.

C4 K : R2 7! R+ is continuously differentiable, takes non-zero values only on [�1, 1]2, and has
bounded first derivatives.

R
R2 K (u) du = 1 and

R
R2 kukK (u) du < 1.

C5 Let ⌫ ⌘ (v1 + x
0
1�, v2 + x

0
2�)

0 and h(r) ⌘ y(1,1)1[w
0
r > 0] + y(0,0)1[w

0
r  0]. E[h(r)|⌫ = ·] is

continuously differentiable a.e. with bounded first derivatives.

C6 Let f⌫(·) denote the joint probability density function of ⌫. f⌫(·) is bounded from above on
its support, continuously differentiable with bounded first derivatives, and strictly positive
in a neighborhood of zero. Ekx1k < 1, Ekx2k < 1.

Assumptions C2 and C3 place mild restrictions on tuning parameters. Assumption C4 col-
lects regularity conditions for kernel function K, all of which are standard in the literature. These
assumptions, together with Assumptions C5 and C6, are needed for proving the uniform conver-
gence of the objective functions (3.1) and (3.2) to their population analogues.

The theorem below states that the two-stage procedure described in (3.1) and (3.2) gives con-
sistent estimators of � and �, whose proof is left to Appendix.

Theorem 2. Suppose Assumptions B1 - B5, R1 - R4, and C1 - C4 hold. Then we have �̂
p! � and �̂

p! �.

Remark. The process of showing the asymptotic distribution of �̂ and �̂ is rather involved and
outside of the scope of this paper. The proof is a combination of the techniques in Andrews and
Schafgans (1998), Kim and Pollard (1990), and Seo and Otsu (2018). To utilize the techniques
in Andrews and Schafgans (1998), we need the tail thickness restrictions on v1, v2, ✏1, and ✏2. The
convergence rates of �̂1 and �̂2 are slower than cube-root n, and the exactly rate depends on the rel-
ative tail thickness of v1,v2 to ✏1, ✏2. If the bias terms are asymptotic negligible and �n1 = �n2 = �n,
we conjecture that �̂ � � = Op([nmin{P (vi1  ��n1), P (vi2  ��n2)}]�1/3). If the generated �̂

7Assumption C2(ii) indicates that the choices of �n1 and �n2 rely on the tail behaviors of v1 and v2. For example, if v1 is
sub-Gaussian, Assumption C2(ii) requires that �n1 = o(

p
log n), while for sub-exponential v1, it is �n1 = o(log n).
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has no effects on the asymptotics on �̂, we conjecture that �̂ � � = Op((nh1h2)�1/3). It is possible
that adopting a smoothed MS approach (e.g., Horowitz (1992)) yields faster rates and asymptoti-
cally normal estimators. However, the inference based on smoothed estimators involves carefully
choosing new bandwidths and sufficiently smooth kernel functions. We leave this topic to future
research.

4 Extension to J > 3

Our approach can be applied to bundle choice models with J > 3. It suffices to illustrate the main
idea through the case with J = 4 (j 2 {0, 1, 2, 3}) as the same intuition runs through all general
cases with J > 3.

Consider the model with choice set J = {0, 1, 2, 3, (1, 2), (1, 3), (2, 3), (1, 2, 3)}, which can be
equivalently expressed as the set D ⌘ {d|d = (d1, d2, d3) 2 {0, 1}3}. An agent chooses d 2 D that
maximizes the latent utility

Ud =
3X

j=1

(vj + x
0
j� + ✏j) · dj + ⌘110 · (w0

1�1) · d1 · d2 + ⌘101 · (w0
2�2) · d1 · d3

+ ⌘011 · (w0
3�3) · d2 · d3 + ⌘111 · (w0

4�4) · d1 · d2 · d3 (4.1)

where w1, w2, w3, w4 2 Rk2 are observed covariates associated to each of the four bundles, and ⌘ ⌘
(⌘110, ⌘101, ⌘011, ⌘111)0 2 R4

+ capture bundle-specific unobserved heterogeneities. The specification
of (4.1) are analogous to (2.1) but accommodates a more complex choice set. We emphasize that vj
can only affect the stand-alone utility associated to alternative j, while xj ’s, j = 1, 2, 3, and wl’s,
l = 1, 2, 3, 4, may have common elements. In the rest of this section, let yd ⌘ 1[Ud > Ud0 , 8d0 2
D \ d], z ⌘ (v1, v2, v3, x01, x

0
2, x

0
3, w

0
1, w

0
2, w

0
3, w

0
4)

0, ✏ ⌘ (✏1, ✏2, ✏3)0, uj ⌘ vj + x
0
j� for j = 1, 2, 3,

�110 ⌘ ⌘110 · (w0
1�1), �101 ⌘ ⌘101 · (w0

2�2), �011 ⌘ ⌘011 · (w0
3�3), and �111 ⌘ ⌘111 · (w0

4�4).

To identify parameters � and �l’s in model (4.1), the following conditions are sufficient.

B1’ The joint distribution of (✏, ⌘) conditional on z is absolutely continuous with respect to the
Lebesgue measure on R3 ⇥ R4

+, and Med(✏j |z, ⌘) = 0 for all j = 1, 2, 3.

B2’ For all j = 1, 2, 3, vj has a.e. positive Lebesgue density on R conditional on xj and condi-
tional on {vm < �M} for all positive constant M and all m 6= j.

B3’ For all j = 1, 2, 3, (i) limvj!�1 P (uj+✏j < 0|z) = 1, (ii) limvj!�1 P (uj+um+(✏j+✏m)+�jm <

0|z) = 1 for all m 6= j, where �jm represents the interaction term associated with bundle
{j,m}, and (iii) limvj!�1 P (u1 + u2 + u3 + (✏1 + ✏2 + ✏3) + �111 < 0|z) = 1.

B4’ For all j = 1, 2, 3, the support Xj of xj conditional on {vm < �M} for all positive constant
M and all m 6= j is not contained in any proper linear subspace of Rk1 .
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B5’ � 2 B, where B is a compact subset of Rk1 .

R1’ (i) P ((✏1, ✏2) < (0, 0)|z, ⌘) = P ((✏1, ✏2) > (0, 0)|z, ⌘), (ii) P ((✏1, ✏3) < (0, 0)|z, ⌘) = P ((✏1, ✏3) >

(0, 0)|z, ⌘), (iii) P ((✏2, ✏3) < (0, 0)|z, ⌘) = P ((✏2, ✏3) > (0, 0)|z, ⌘), and (iv) P ((✏1, ✏2, ✏3) <

(0, 0, 0)|z, ⌘) = P ((✏1, ✏2, ✏3) > (0, 0, 0)|z, ⌘).

R2’ Let w(1) denote the first element of a vector w and w̃ denote the sub-vector comprising the
remaining elements of w. Then, (i) w(1) (w(2), w(3)) has a.e. positive Lebesgue density on
R conditional on w̃1 (w̃2, w̃3) and conditional on (u1, u2) ((u1, u3), (u2, u3)) in a neighbor-
hood of (u1, u2) ((u1, u3), (u2, u3)) near zero, (ii) w(4) has a.e. positive Lebesgue density on
R conditional on w̃4 and conditional on (u1, u2, u3, w0

1�1, w
0
2�2, w

0
3�3) in a neighborhood of

(u1, u2, u3, w0
1�1, w

0
2�2, w

0
3�3) near zero.

R3’ (i) The support W̃1 (W̃2, W̃3) of w̃1 (w̃2, w̃3) conditional on {v3 < �M} ({v2 < �M},
{v1 < �M}) for all positive constant M and conditional on (u1, u2) ((u1, u3), (u2, u3)) in
a neighborhood of (u1, u2) ((u1, u3), (u2, u3)) near zero is not contained in any proper linear
subspace of Rk2�1, and (ii) The support W̃4 of w̃4 conditional on (u1, u2, u3, w0

1�1, w
0
2�2, w

0
3�3)

in a neighborhood of (u1, u2, u3, w0
1�1, w

0
2�2, w

0
3�3) near zero is not contained in any proper

linear subspace of Rk2�1.

R4’ �l 2 R for all l = 1, 2, 3, 4, where R = {r = (r1, ..., rk2)
0 2 Rk2 |krk = 1, r1 6= 0}.

Assumptions B1’ - B5’ and R1’ - R4’ are parallel to Assumptions B1 - B5 and R1 - R4. Next we
outline how these assumptions can help achieve the identification of � and �l’s.

First, note that Assumption B3’ leads to

lim
v2,v3!�1

P (y(1,0,0) = 1|z) = P (u1 + ✏1 > 0|z) and lim
v2,v3!�1

P (y(0,0,0) = 1|z) = P (u1 + ✏1 < 0|z).

Together with Assumption B1’, they imply that

u1 = v1 + x
0
1� � 0 , lim

v2,v3!�1
P (y(1,0,0) = 1|z) � lim

v2,v3!�1
P (y(0,0,0) = 1|z). (4.2)

Similarly, we can show

u2 = v2 + x
0
2� � 0 , lim

v1,v3!�1
P (y(0,1,0) = 1|z) � lim

v1,v3!�1
P (y(0,0,0) = 1|z), (4.3)

and
u3 = v3 + x

0
3� � 0 , lim

v1,v2!�1
P (y(0,0,1) = 1|z) � lim

v1,v2!�1
P (y(0,0,0) = 1|z). (4.4)

Then using identification inequalities (4.2) - (4.4) in combination of regularity conditions B2’ and
B4’, � can be identified using similar arguments for proving Theorem 1.

To identify �1, we first let v3 ! �1 so that the model reduces to the J = 3 case by Assumption
B3’. Then conditioning on E1 ⌘ {u1 = u2 = 0}, we write

lim
v3!�1

P (y(1,1,0) = 1|z, E1) = P (✏1 + �110 > 0, ✏2 + �110 > 0, ✏1 + ✏2 + �110 > 0|z, E1),
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and
lim

v3!�1
P (y(0,0,0) = 1|z, E1) = P (✏1 < 0, ✏2 < 0, ✏1 + ✏2 + �110 < 0|z, E1).

It then follows from Assumption R1’ that

w
0
1�1 � 0 , lim

v3!�1
P (y(1,1,0) = 1|z, E1) � lim

v3!�1
P (y(0,0,0) = 1|z, E1), (4.5)

The identification inequality (4.5), along with regularity conditions R2’ and R3’, can be used to
identify �1 (up to a scale). Similar ideas apply to the identification of �2 and �3.

With �, �1, �2, and �3 identified, �4 can be identified on the set E4 ⌘ {u1 = u2 = u3 = 0, w0
1�1 =

w
0
2�2 = w

0
3�3 = 0}. Specifically, under Assumption R1’, we have

w
0
4�4 � 0 , P (y(1,1,1) = 1|z, E4) � P (y(0,0,0) = 1|z, E4) (4.6)

Then using similar arguments as those used for identifying � in Section 2, we can establish the
identification of �4 by (4.6) and Assumptions R2’ and R3’.

The theorem below summarizes our identification results for model (4.1). The proof is omitted
as it uses similar arguments for proving Theorem 1.

Theorem 3. Suppose Assumptions B1’ - B5’ hold. Then � is identified. Furthermore, if Assumptions R1’

- R4’ also hold, �l, l = 1, 2, 3, 4, are identified up to a scale.

5 Conclusions

This paper studies (point) identification and estimation of preference coefficients in semiparamet-
ric discrete choice models for bundles, by means of a combination of “identification at infinity”
and median independence restrictions. We provide estimators and show their consistency. This
paper leaves some open questions, e.g., the asymptotics and small sample properties of the esti-
mators. We leave these for future research.
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A Appendix

Proof of Theorem 1. It suffices to show the identification of � based on identification inequality (2.6).
By the dominated convergence theorem (DCT), Assumptions B3 and B1, (2.6) implies that � max-
imizes objective function Q1(b) ⌘ limv1!�1 E[(P (y(0,1) = 1|z)�P (y(0,0) = 1|z)) · sgn(v2 + x

0
2b)|v1]

where sgn(·) denote the sign function. To show that � attains a unique maximum, let b 2 B
such that Q1(b) = Q1(�). We want to show that b = � must hold. To see this, first note that if
limv1!�1 P [(x02� < �v2 < x

0
2b) [ (x02b < �v2 < x

0
2�)|v1] > 0, � and b yield different values of the

sgn(·) function in Q1(·) with strictly positive probability, and thus Q1(b) < Q1(�). This implies
that for all b satisfying Q1(b) = Q1(�), limv1!�1 P [(x02� < �v2 < x

0
2b)[(x02b < �v2 < x

0
2�)|v1] = 0

must hold, which is equivalent to limv1!�1 P (x02� = x
0
2b|v1) = 1 under Assumption B2. Then the

desired result follows from Assumption B4.
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Next, we prove the identification of �. Note that by Assumption R1, (2.10) implies that �

maximizes objective function Q2(r) ⌘ E[(P (y(1,1) = 1|z, E)� P (y(0,0) = 1|z, E)) · sgn(w0
�)|E ]. The

remaining task is to show that � is unique in R, i.e., Q2(r) = Q2(�) implies r = �. Here we assume
�1 > 0 w.l.o.g. as the case �1 < 0 is symmetric.

First note that for any r 2 R such that Q2(r) = Q2(�), r1 > 0 must hold, for otherwise by
Assumption R2 we have P (w1r1+w̃

0
r̃ < 0 < w1�1+w̃

0
�̃|E) = P (w1 > �w̃

0
r̃/r1, w1 > �w̃

0
�̃/�1|E) >

0. Then � and r yield different realized values of the sign function in Q2(·) with strictly positive
probability, and thus Q2(�) > Q2(r).

Focus on the case with r1 > 0 to write

P ([w1r1 + w̃
0
r̃ < 0 < w1�1 + w̃

0
�̃] [ [w1�1 + w̃

0
�̃ < 0 < w1r1 + w̃

0
r̃]|E)

=P ([�w̃
0
�̃/�1 < w1 < �w̃

0
r̃/r1] [ [�w̃

0
r̃/r1 < w1 < �w̃

0
�̃/�1]|E),

which implies that to make Q2(r) = Q2(�) hold we must have P (w̃0
r̃/r1 = w̃

0
�̃/�1|E) = 1 by

Assumption R2. However, whenever r is not a scalar multiple of �, P (w̃0
r̃/r1 = w̃

0
�̃/�1|E) = 1

implies that W̃ is contained in a proper linear subspace of Rk2�1 a.e., violating Assumption R3.
As a result, we must have r being a scalar multiple of �, which leads to the desired result r = � as
krk = k�k = 1 by the construction of the parameter space R in Assumption R4.

Proof of Theorem 2. We use the idea of Theorem 2.1 in Newey and McFadden (1994) to show the
consistency. Note that this theorem requires two conditions. The first one is that the objective
function uniformly converges to the population of the objective function. The second one is that
the true value of parameters uniquely maximizes the population of the objective function.

To ease technical proof, we assume that P (v1 = �1) , P (v2 = �1) > 0. In the case when
P (vj = �1) = 0, we need nP (vij  ��nj) ! 1 so that the number of the observations used
for estimation tends to infinity and the objective function is not degenerated. By Theorem 1, �
uniquely maximizes

E
�
1
⇥
v1 + x

0
1b > 0

⇤
1 [y = (1, 0)] + 1

⇥
v1 + x

0
1b  0

⇤
1 [yi = (0, 0)] |v2 = �1

�

+ E
�
1
⇥
v2 + x

0
2b > 0

⇤
1 [y = (0, 1)] + 1

⇥
v2 + x

0
2b  0

⇤
1 [yi = (0, 0)] |v1 = �1

�
.

That is equivalent to that � uniquely maximizes

E
�
1
⇥
v1 + x

0
1b > 0

⇤
1 [y = (1, 0)] 1 [v2 = �1] + 1

⇥
v1 + x

0
1b  0

⇤
1 [yi = (0, 0)] 1 [v2 = �1]

�

+ E
�
1
⇥
v2 + x

0
2b > 0

⇤
1 [y = (0, 1)] 1 [v1 = �1] + 1

⇥
v2 + x

0
2b  0

⇤
1 [yi = (0, 0)] 1 [v1 = �1]

�
.

The sample objective function obviously satisfies the technical conditions in Kim and Pollard
(1990) for the uniform convergence, by Assumptions B5, C1, and C2. Using the same arguments
in Kim and Pollard (1990), we have

n
�1

nX

i=1

�
1
⇥
vi1 + x

0
i1b > 0

⇤
1 [yi = (1, 0)] 1 [vi2  ��n2] + 1

⇥
vi1 + x

0
i1b  0

⇤
1 [yi = (0, 0)] 1 [vi2  ��n2]

 

P! E
�
1
⇥
v1 + x

0
1b > 0

⇤
1 [y = (1, 0)] 1 [v2 = �1] + 1

⇥
v1 + x

0
1b  0

⇤
1 [yi = (0, 0)] 1 [v2 = �1]

�
,
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and

n
�1

nX

i=1

�
1
⇥
vi2 + x

0
i2b > 0

⇤
1 [yi = (0, 1)] 1 [vi1  ��n1] + 1

⇥
vi2 + x

0
i2b  0

⇤
1 [yi = (0, 0)] 1 [vi1  ��n1]

 

P! E
�
1
⇥
v2 + x

0
2b > 0

⇤
1 [y = (0, 1)] 1 [v1 = �1] + 1

⇥
v2 + x

0
2b  0

⇤
1 [yi = (0, 0)] 1 [v1 = �1]

�
,

uniformly over the parameter space of �. Then by Theorem 2.1 in Newey and McFadden (1994),

�̂
P! �.

If we know the true values of �,then �̂ may be obtained from maximizing

n
�1

nX

i=1

1

h1h2
K
✓
vi1 + x

0
i1�

h1
,
vi2 + x

0
i2�

h2

◆�
1 [yi = (1, 1)] 1

⇥
!
0
ir > 0

⇤
+ 1 [yi = (0, 0)] 1

⇥
!
0
ir  0

⇤ 
.

This infeasible sample objective function is a special case in Seo and Otsu (2018). Using the ar-
guments in Seo and Otsu (2018) and by Assumptions B5, C1, C3 and C4, the above uniformly
converges to

E
⇥�

1 [yi = (1, 1)] 1
⇥
!
0
ir > 0

⇤
+ 1 [yi = (0, 0)] 1

⇥
!
0
ir  0

⇤ 
|u1 = 0, u2 = 0

⇤
fu1u2 (0, 0) . (A.1)

Assumptions C3 and C4 imply that

n
�1

nX

i=1

1

h1h2

"
K
 
vi1 + x

0
i1�̂

h1
,
vi2 + x

0
i2�̂

h2

!
�K

✓
vi1 + x

0
i1�

h1
,
vi2 + x

0
i2�

h2

◆#
= oP (1) ,

and it is not a function of r. Combing the results so far yields that

n
�1

nX

i=1

1

h1h2
K
 
vi1 + x

0
i1�̂

h1
,
vi2 + x

0
i2�̂

h2

!
�
1 [yi = (1, 1)] 1

⇥
!
0
ir > 0

⇤
+ 1 [yi = (0, 0)] 1

⇥
!
0
ir  0

⇤ 

converges to equation (A.1) uniformly for r in Bk2 .

By Theorem 2, � uniquely maximizes(A.1) in Bk2 . Applying Theorem 2.1 in Newey and Mc-
Fadden (1994) again delivers

�̂
P! �.
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