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Abstract

We propose a new approach to the semiparametric analysis of panel data binary choice models
with fixed effects and dynamics (lagged dependent variables). The model we consider has the
same random utility framework as in Honoré and Kyriazidou (2000). We demonstrate that,
with additional serial dependence conditions on the process of deterministic utility and tail
restrictions on the error distribution, the (point) identification of the model can proceed in two
steps, and only requires matching the value of an index function of explanatory variables over
time, as opposed to that of each explanatory variable. Our identification approach motivates
an easily implementable, two-step maximum score (2SMS) procedure – producing estimators
whose rates of convergence, in contrast to Honoré and Kyriazidou’s (2000) methods, are inde-
pendent of the model dimension. We then derive the asymptotic properties of the 2SMS pro-
cedure and propose bootstrap-based distributional approximations for inference. Monte Carlo
evidence indicates that our procedure performs adequately in finite samples. We then apply
the proposed estimators to study labor market dependence and the effects of health shocks,
using data from the Household, Income and Labor Dynamics in Australia (HILDA) survey.
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1 Introduction

In this paper, we propose a novel two-step estimation method for panel data binary choice models
with fixed effects and dynamics. Specifically, we consider binary choice models of the form:

yit = 1
⇥
x0it� + �yit�1 + ↵i � ✏it > 0

⇤
, i = 1, ..., n, t = 1, ..., T 1, (1.1)

where T is small and n is large, xit is a K⇥1 vector of (time-varying) explanatory variables2, yit�1

is the lagged dependent variable, ↵i represents a time-invariant, individual-specific (fixed) effect,
and ✏it is an idiosyncratic error term. Both ↵i and ✏it are unobservable to the econometrician.
Interest centers on estimating the preference parameter ✓ ⌘ (�0, �)0. yi0 is assumed to be observed,
although the model is not specified in the initial period 0. In the literature, lagged terms yit�1

and fixed effect ↵i are referred to as the “state dependence” (see Heckman (1981a,b)) and the
“unobservable heterogeneity”, respectively. The co-existence of these two terms complicates the
identification and estimation of ✓ due to the multiple sources of persistence in yit.

This paper resembles other panel data discrete response literature using fixed effects methods,
in that there are no restrictions imposed on the distribution of ↵i, conditional on the observed
explanatory variables. Rasch (1960, 1961) and Andersen (1970) demonstrate that, in the absence
of state dependence (yit�1), � can be estimated by conditional maximum likelihood method if ✏it
is assumed to be independent of all the other covariates and i.i.d. across both time periods and
individuals with a logistic distribution. The fixed effects approach presented in Manski (1987)
enables the identification of � without the parametric and serial independence restrictions placed
on ✏it. Chamberlain (2010) shows that, outside of the logistic case, these “static” binary choice
models have zero information bound and the identification requires at least one of the observed
covariates having unbounded support.

In the presence of lagged dependent variables, the conditional maximum likelihood method
can be used to estimate �, provided that there are no other explanatory variables xit and that
there are at least four observations (T � 3) per individual3 (see Chamberlain (1985) and Magnac
(2000)). For more general model with xit, Honoré and Kyriazidou (2000) (referred to as HK hence-
forth) proposed a conditional maximum likelihood estimator (CMLE) for model (1.1) with logistic
errors and T � 3. Hahn (2001) examined the semiparametric efficiency of the CMLE proposed
in HK. Bartolucci and Nigro (2010, 2012) demonstrated that the dynamic Logit model for binary
panel data may be approximated by a quadratic exponential model. Aguirregabiria, Gu, and Luo
(2018) studied dynamic panel data Logit models with forward-looking decision-making process,
by deriving the minimal sufficient statistics for the unobserved fixed effect.

HK were the first to consider the semiparametric identification and estimation of model (1.1).
They demonstrated that ✓ could be identified if, in addition to assumptions analogous to the ones
1The identification approach and estimation method presented in this paper can be applied to models with unbalanced
panels as long as the unbalancedness is not the result of endogenous attrition.

2Any time-invariant covariates can be thought of as being part of the fixed effect ↵i.
3Throughout this paper, this means that the data contains yi0 and (yi1, yi2, yi3, xi1, xi2, xi3) for each individual i.
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in Manski (1987), all explanatory variables are strictly exogenous, ✏it’s are serially independent,
and T � 3. However, their proposed estimator requires matching all explanatory variables over
time, and so rules out time-specific effects. Further, the rate of convergence of their estimator
decreases as the number of continuous regressors increases and is slower than the standard maxi-
mum score rate derived by Kim and Pollard (1990).

There are several alternative fixed effects approaches to the semi- and nonparametric analysis
of dynamic binary choice models. Honoré and Lewbel (2002) proposed an identification strategy
for a general (static and dynamic) framework which requires an exclusion restriction (excluded
regressor) that one of the explanatory variables is independent of (↵i, ✏it), conditional on the other
regressors including yit�1. More recently, Chen, Khan, and Tang (2018, 2019) showed that the
exclusion restriction in Honoré and Lewbel (2002) implicitly required (conditional) serial inde-
pendence of the excluded regressor in a dynamic setting4. Similarly, Williams (2019) studied non-
parametric identification of dynamic binary choice models satisfying certain initial conditions, in
addition to restrictions on the dynamic process for observed covariates, conditional on ↵i. In the
absence of excluded regressors, Khan, Ponomareva, and Tamer (2019) established the sharp iden-
tified sets of ✓ under various (weaker) stochastic restrictions on ✏it, and provided corresponding
sufficient conditions for point identifying ✓ on certain subsets of the support of regressors charac-
terized by a series of moment inequalities.

This paper takes one step in the direction of HK, in the sense that we provide sufficient condi-
tions under which model (1.1) can be identified and estimated without the necessity of matching
each of the explanatory variables over time, provided that at least five observations per individ-
ual are observed (i.e., T � 4)5. The key insight thereof is that the identification of ✓ can proceed
in two steps. First, � can be identified based on sequences of {yit}, for which yis�1 = yit�1 and
yis+1 = yit+1 for some 1  s < t  T � 1 with t � s+2, if the distribution of explanatory variables
xit satisfies certain serial dependence and stochastic dominance restrictions. Then, with identified
�, the identification of � can be achieved by simply matching x0it� over time. We propose an esti-
mation procedure for � and �, establish the asymptotics for our estimators, and provide ways of
inference using sampling methods. We investigate their small sample properties via Monte Carlo
experiments.

As demonstrated by Honoré and Tamer (2006)6, matching exogenous utilities over time is es-
sential for the point identification of dynamic discrete choice models. However, the approach de-
veloped in this paper involves matching an identified linear combination of xit, rather than HK’s
matching each component of xit. Consequently, in contrast to the results presented by HK, the
4Chen, Khan, and Tang (2019) outlined a method, based on adopting the approach in Honoré and Lewbel (2002), to
allow for certain serial correlation (e.g., AR(1)) in the excluded regressor.

5Namely, at least yi0 and (yi1, yi2, yi3, yi4, xi1, xi2, xi3, xi4) are observed for each individual i. This is a restriction on
the minimum panel length, which is satisfied for many longitudinal panel data sets, such as the HILDA data used for
the empirical application in Section 7 of this paper.

6More precisely, Honoré and Tamer (2006) provided examples of point identification fails when it is impossible to match
xit over time.
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rates of convergence of our proposed estimators are independent of the dimension of the regres-
sor space, making the present paper a useful alternative to HK, especially for models with higher
dimensional design. Moreover, HK’s approach implicitly requires each component of xit to have a
time-varying overlap support. This is a restrictive condition, as it rules out explanatory variables,
such as time-specific intercepts. The support restriction of this type can be relaxed when the iden-
tification only requires matching the index x0it�, so our procedure enables the econometrician to
identify and estimate time-specific effects via including time dummies.

It is known that panel data binary choice models with unobserved heterogeneity and dynam-
ics can be estimated by the random effects or correlated random coefficients approach. Exam-
ples include Arellano and Carrasco (2003), Wooldridge (2005), and Honoré and Tamer (2006). In
addition to preference parameters, these approaches often allow the econometrician to calculate
other quantities of interest, such as choice probabilities and marginal effects. However, these ap-
proaches require the specification of the statistical relation between the explanatory variables and
↵i. Further, they also require one to specify the distribution of yi0, conditional on the observed
explanatory variables and ↵i, which raises the so-called initial condition problem. Conversely, the
fixed effects approaches attempt to estimate preference parameters without making these subtle
specifications. Finally, there is also literature exploring the identification and estimation of various
partial effects in panel data models. See, for example, Altonji and Matzkin (2005), Chernozhukov,
Fernández-Val, Hahn, and Newey (2013), and Torgovitsky (2019), among others.

Dynamic binary choice models have a wide range of applications. Contemporary empirical lit-
erature includes studies of labor force participation (Corcoran and Hill (1985), Hyslop (1999), Lee
and Tae (2005), and Damrongplasit, Hsiao, and Zhao (2018)), poverty dynamics (Biewen (2009)),
health status (Contoyannis, Jones, and Rice (2004) and Halliday (2008)), educational attainment
(Cameron and Heckman (1998, 2001)), stock market participation (Alessie, Hochguertel, and Soest
(2004)), product purchase behaviour (Chintagunta, Kyriazidou, and Perktold (2001)), welfare par-
ticipation (Chay, Hoynes, and Hyslop (1999)), and firm behavior (Roberts and Tybout (1997) and
Kerr, Lincoln, and Mishra (2014)). Most applications have typically employed parametric forms
of the model (1.1), such as Logit and Probit, or random effects assumptions. The robustness from
the distribution-free and fixed effects specification makes the approach proposed in this paper a
competitive alternative to existing parametric and random effects methods.

The remainder of this paper is organized as follows. Section 2 establishes the identification
of ✓ under different sets of sufficient conditions, based on which, a 2SMS procedure is proposed
in Section 3. Sections 4 and 5 derive asymptotic properties of the 2SMS estimator and proposes
bootstrap-based inference methods. We present the results of Monte Carlo experiments in Section
6 investigating the finite-sample performance of the proposed method, and illustrate its empirical
application in Section 7 using HILDA data. Section 8 concludes the paper. All proofs and tables
are collected in Appendix.

For ease of reference, the notations maintained throughout this paper are listed here.
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Notation. All vectors are column vectors. Rp is a p-dimensional Euclidean space equipped with
the Euclidean norm k · k2. We reserve letter i 2 N ⌘ {1, ..., n} for indexing individuals, and letters
s, t 2 T ⌘ {1, ..., T} for indexing time periods. An observation is indexed by (i, t). To simplify
the notation, we will suppress the subscript i in the rest of this paper whenever it is clear from the
context that all variables are for each individual. Vector xits denotes xit � xis. The first element
of xits is denoted by xits,1 and the sub-vector comprising its remaining elements is denoted by
x̃its. Following a substantial panel literature, we use the notation ⇠t to denote (⇠01, ..., ⇠

0
t)
0. F⇣|· and

f⇣|· denote, respectively, the conditional cumulative distribution function (CDF) and probability
density function (PDF) of a random vector ⇣ conditional on ·. For two random vectors, u and v,
the notation u

d
= v|· means that u and u have identical distribution, conditional on ·, and u ? v|·

means that u and u are independent conditional on ·. We use P (·) and E[·] to denote probability
and expectation, respectively. Function 1[·] is an indicator function that equals one when the
event in the brackets is true, and zero otherwise. Symbols \, 0, /, ,, d!, and P! represent set
difference, matrix transposition, proportionality, “if and only if”, convergence in distribution, and
convergence in probability, respectively. For any (random) positive sequences, {an} and {bn}, an =

O(bn) (OP (bn)) means that an/bn is bounded (bounded in probability) and an = o(bn) (oP (bn))
means that an/bn ! 0 (an/bn

P! 0).

2 Identification

This section provides sufficient conditions for identifying the parameter ✓ with no need of match-
ing observed covariates xit over time. Under these assumptions, we derive a set of identification
inequalities that can be taken to data for (point) estimation and inference on the parameter ✓.

Note that we use the following notations in this section. xT ⌘ (x01, ..., x
0
T )

0, ✏T ⌘ (✏1, ..., ✏T )
0,

and xts ⌘ xt � xs. The first element of xts is denoted by xts,1 and the sub-vector comprising its
remaining elements is denoted by x̃ts.

Suppose that a random sample from a population of independent individuals is observed for
T + 1 (= |T [ {0}|) periods. Recall that, for all t 2 T ,

yt = 1
⇥
x0t� + �yt�1 + ↵� ✏t > 0

⇤
. (2.1)

Note that the model is incomplete – in the sense that it does not specify the relationship between
y0 and (xT ,↵, ✏T ). This is known as the initial condition problem in panel data literature. This
paper employs a fixed effects approach, in which we attempt to estimate ✓ without making any
assumptions on the distribution of ↵, conditional on explanatory variables. This helps us to avoid
explicitly specifying the functional form of p0(xT ,↵) ⌘ P (y0 = 1|xT ,↵), and so circumvents the
initial condition problem.

As mentioned, we impose no restriction on F↵|xT , but place the following restrictions on ob-
served covariates xT and unobserved idiosyncratic errors ✏T :
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Assumption A. For all ↵ and s, t 2 T ,

(a) (i) ✏T ? (xT , y0)|↵, (ii) ✏s ? ✏t|↵, and (iii) ✏s
d
= ✏t|↵.

(b) F✏t|↵ is absolutely continuous with PDF f✏t|↵ and support R.

(c) (i) Without loss of generality (w.l.o.g.), xts,1 has almost everywhere (a.e.) positive probability
density on R, conditional on x̃ts and ↵, and (ii) the coefficient �1 on xts,1 is nonzero.

(d) The support Xts of Fxts|↵ is not contained in any proper linear subspace of RK .

(e) ✓ = (�0, �)0 2 B ⇥ int(R), where B ⌘ {b = (b1, ..., bK)0 2 RK |kbk2 = 1, b1 6= 0} and R is a
compact subset of R.

Assumption A places the same set of restrictions on the joint distribution of (xT ,↵, ✏T ) as
HK. While not explicitly stated in their Theorem 4, HK used Assumption A(a), the exogeneity
of (xT , y0) and serial independence of {✏t}, conditional on ↵, to derive the moment inequalities
used for the identification. Note that Assumption A(a) implies that the fixed effects ↵ pick up
two types of dependence in the model: the dependence over time in the unobservables and the
dependence between explanatory variables and unobservables. As a result, in model (2.1), ✏t is in-
dependent of

�
xT , yt�1

�
, conditional on ↵. Besides, Assumption A(a) is a special case of the group

homogeneity restriction, ✏s
d
= ✏t|(xs, xt,↵), imposed in Manski (1987), Pakes and Porter (2016),

and Shi, Shum, and Song (2018) for identifying static discrete choice models (without controlling
the lagged term yt�1 in the model). This enables us to suppress the time subscript t in F✏t|↵ and
f✏t|↵ in the rest of this paper without ambiguity. Assumption A(b) is a regularity condition to
ensure that both ys 6= yt and ys = yt occur with positive probabilities for all ↵ and s, t 2 T .

It is known and documented in the relevant literature (see, e.g., Lemma 1 of Manski (1985)),
that to establish the point identification of the parameter ✓ in a “distribution-free” setting, xt also
needs to satisfy certain regularity conditions. Assumption A(c) requires the existence of a relevant,
continuous regressor, with large support, which is a standard restriction imposed in maximum
score type estimators. Assumption A(d) is the familiar full-rank condition. Assumptions A(c) and
A(d) are identical to Assumption 2 of Manski (1987).

Assumption A(e) is for scale normalization and parameter space. This is a typical practice for
discrete choice models because the identification of ✓ is only up to scale. In the semiparametric
framework, where no parametric form of F✏|↵ is specified, identification is often achieved by nor-
malizing the magnitude of the regression coefficients. Assumption A(e) assumes that � is on the
unit circle and has nonzero first element �17.

HK demonstrated that, if T � 3, ✓ can be identified under Assumption A8. Their proposed
approach requires matching all exogenous covariates over time, and results in an estimator with a
7It will be made clear that our procedure identifies � and � sequentially, so it is more convenient to normalize the scale
of � rather than that of ✓, as in HK.

8As is stated in HK, Assumption A is not sufficient for point identifying ✓ if T < 3.
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rate that declines as the number of exogenous covariates increases. The main contribution of this
paper is the provision of a set of supplementary conditions, under which the identification of ✓
can escape from the necessity of element-by-element matching. Specifically, our approach is based
on the following monotonic relationship between a conditional choice probability and an index of
the exogenous covariates: For some s, t 2 T such that t� s � 2,

P (yt = 1|xs, xt, ys�1 = yt�1, ys+1 = yt+1,↵) � P (ys = 1|xs, xt, ys�1 = yt�1, ys+1 = yt+1,↵)

,
x0t� � x0s�. (2.2)

Note that (2.2) implicitly requires that there are at least five (T � 4) observations per individual
observed by the econometrician (i.e., s = 1, t = 3, and s+ 1 = t� 1 = 2).

The idea is straightforward. By matching the statuses of the previous (ys�1 = yt�1) and sub-
sequent (ys+1 = yt+1) periods, we want the state dependence between ys and yt to be cut off in a
symmetric manner, so the (conditional) probabilities of choosing 1 in periods s and t to be solely
rank ordered by indexes x0s� and x0t�. However, to reach this conclusion, two concerns related to
conditioning on the states one period ahead (ys+1 and yt+1) have to first be addressed. First, xs
(xt) may affect the value of yt+1 (ys+1) via its serial dependence on xt+1 (xs+1). Second, the depen-
dence between xt and yt+1 (via xt+1) may change dramatically over time. Both require additional
restrictions to be placed on the serial dependence of the stochastic process of xt.

The following condition, together with Assumption A, is sufficient to ensure (2.2).

Assumption SI. For all s, t 2 T , (a) xs ? xt|↵, and (b) xs
d
= xt|↵.

Assumption SI imposes strong restriction on the dynamic process of the covariate sequence,
which requires the process {xt} to be serially independent and strictly stationary9, conditional on
the individual-specific effects ↵. In a dynamic fixed effects economic model, ↵ collects all time-
invariant covariates, as well as unobserved individual preferences, abilities, or character traits.
In such models, if xt only includes observed individual characteristics naturally correlated with
↵, it may be reasonable to further assume that the serial dependence in the process {xt} is also
derived from ↵. If xt contains covariates related to some institutional factors that leads to ex-
ogenous variation in, for example, costs of participation, across individuals, Assumption SI may
be approximately satisfied by using the differencing, demeaning, or de-trending transformation
of these variables. This applies to cases where {xt} exhibits some long-run equilibrium (trend,
9In a separate work, we study the identification of ✓ with Assumption SI(a) being replaced by xs ? xt|↵ for all |t�s| > ◆

with some ◆ > 1. That is, xs ? xt|↵ holds if s and t are sufficiently separated from each other. This condition is
satisfied for all MA(q) processes with q  ◆. In the more general case of {xt} being stationary ARMA process, the
serial dependence of {xt} decays at an exponential rate. This condition is approximately satisfied for all s, t with
|t � s| large enough. The identification approach needs a first step identifying the order of {xt}, requires a minimum
length of the panel depending on this order, and adopts an objective function different from the one studied in this
paper. Due to space constraints, we do not delve into the details of this approach here. For interested readers, a brief
note is available upon request.
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deterministic or stochastic). The transformed regressor then measures the deviation of xt from
its long-run equilibrium (trend), which, in some cases10, is assumed to be a white noise process
affecting the short-run dynamics of the model.

HK implicitly assume that the support of xt is overlapping over time, so the differences in
regressors across different time periods have a positive density in a neighborhood of 0. If xt varies
across individuals as well as over time11, Assumption SI requires the distribution of xt to be time
stationary, conditional on ↵. However, evidence presented in Honoré and Tamer (2006) implies
that some additional assumption is needed, to achieve point identification without doing element-
by-element match, as in HK.

Further, we try to relax the conditional serial independence assumption and provide the fol-
lowing sufficient, high-level condition, that permits some limited dependence of the covariates,
for the identification. We also provide a sufficient (but not necessary) condition in Proposition 2.1
that can imply this high-level condition.

Assumption SD. For all ↵ and s, t 2 T ,

(a) f✏|↵(·)/F✏|↵(·) is a non-increasing function, or equivalently, f✏|↵(·)/[1 � F✏|↵(·)] is a non-
decreasing function.

(b) Let wt ⌘ x0t�. The following stochastic dominance conditions hold for all v 2 R and d0, d1 2
{0, 1}: If wt � ws, then

Fws+1|ws,wt,ys�1=yt�1=d0,ys+1=yt+1=d1,↵(v) � Fwt+1|ws,wt,ys�1=yt�1=d0,ys+1=yt+1=d1,↵(v),

and if wt  ws, then

Fws+1|ws,wt,ys�1=yt�1=d0,ys+1=yt+1=d1,↵(v)  Fwt+1|ws,wt,ys�1=yt�1=d0,ys+1=yt+1=d1,↵(v).

Assumption SD(a) says that F✏|↵ has decreasing inverse Mills ratio, which, together with As-
sumption SD(b), guarantees the monotonic relation in (2.2). Assumption SD(a) is satisfied by
many common continuous distributions, such as Gaussian, logistic, Laplace, uniform, gamma,
log-normal, Gumbel, and Weibull12. However, this property fails if F✏|↵ has heavy tails (e.g., stu-
dent’s t-distribution and Cauchy distribution)13. Note that Assumption SD(a) is a key condition
10As an example, consider a case where {xt} is a random-walk-plus-drift process (i.e., xt = x0 + a0t +

Pt
⌧=1 e⌧ ).

Although {xt} violates Assumption SI, its first differencing �xt = xt � xt�1 = a0 + et is i.i.d. over time.
11If xt only varies over time but is equal for all individuals for given t, Assumption SI is neither weaker nor stronger

than HK’s overlapping support condition. For example, consider time effects �t. HK’s approach requires �s = �t for
all s, t 2 T , while Assumption SI implies i.i.d. �t conditional on ↵, two extremes of the spectrum of serial dependence.

12In a mixture model, e.g.,

f✏|↵(e) =
MX

m=1

⇡mf✏|↵(e;#m)

with mixing proportions ⇡m,
PM

m=1 ⇡m = 1, where each component density has a different parameter vector #m,
Assumption SD(a) holds for F✏t|↵(·) if it is satisfied by all component distributions F✏|↵(·;#m).

13More precisely, Assumption SD(a) does not hold globally for these distributions. For example, it is not hard to find
that this assumption holds for t and Cauchy on [�L,1) for some positive L.
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imposed in McFadden (1976) and Silvapulle (1981) for both � logF✏|↵(·) and � log(1� F✏|↵(·)) be-
ing convex, which guarantees a unique solution for MLE in cross-sectional models with errors
having general distribution.

In model (2.1), the exogenous utility wt affects the value of yt+1 via yt and its serial dependence
with wt+1, conditioning on ↵. The former is explicitly captured by the coefficient �. For the latter,
Assumption SD(b) restricts the serial dependence of {wt}. It says that, conditional on ↵ and the
same “initial” and “ending” statuses (ys�1 = yt�1, ys+1 = yt+1), if the value of wt is higher than
that of ws, then wt+1 has a better chance of taking a large value than ws+1. This restriction rules out
the case in which high utility in one period has negative effects on the utility in the next period.
This assumption is more likely to hold in applications where {wt} represents a positively auto-
correlated stochastic proccess of the “utility”, “benefits”, or “profits” of a decision. Assumption
SD(b) is high level, for which a sufficient, but not necessary, condition is that the joint distribution
of wT is exchangeable, conditional on ↵, which is formally stated in Proposition 2.1 below. Similar
exchangeability assumptions were imposed in Altonji and Matzkin (2005) and Chen, Khan, and
Tang (2018). Assumption SD(b) can be thought of as a conditional “first-order stochastic domi-
nance” condition, which implies that, for any non-decreasing (non-increasing) function u(·),
Z

u(v)dFws+1|ws=w,wt=w0,ys�1=yt�1,ys+1=yt+1,↵(v) 
Z

u(v)dFwt+1|ws=w,wt=w0,ys�1=yt�1,ys+1=yt+1,↵(v)

(
R
u(v)dFws+1|ws=w,wt=w0,ys�1=yt�1,ys+1=yt+1,↵(v) �

R
u(v)dFwt+1|ws=w,wt=w0,ys�1=yt�1,ys+1=yt+1,↵(v))

whenever w0 � w. The property is needed for establishing the monotonic relation in (2.2).

Proposition 2.1. Suppose that Assumption A is satisfied. Then Assumption SD(b) holds with
equality, if the joint PDF of wT conditional on ↵ is exchangeable, i.e.,

fwT |↵(!1, ...,!T ) = fwT |↵(!⇡(1), ...,!⇡(T ))

for all permutations {⇡(1), ...,⇡(T )} defined on the set T .

The proof of Proposition 2.1 can be found in Appendix A.

Remark 2.1. Assumption SD relaxes the serial independence and stationarity restrictions imposed
by Assumption SI. To achieve the identification, we do need to restrict the tail behavior of the
idiosyncratic error ✏t, conditional on ↵.

Remark 2.2. A few remarks are in order about how our identification conditions are related to
the existing literature. First, compared with HK, our approach relies on additional assumptions
restricting the serial dependence of strictly exogenous regressors xt and requires T � 4. These
conditions make identification without element-by-element matching of xt possible. Second, our
identification conditions are non-nested with those in the literature assuming exclusion restric-
tions, such as Honoré and Lewbel (2002), Chen, Khan, and Tang (2018, 2019), and Williams (2019).
Chen, Khan, and Tang (2018, 2019) showed that Honoré and Lewbel (2002) essentially required the
serial independence of the excluded regressor. Williams (2019) requires that the other strictly ex-
ogenous regressors are conditionally independent of the past values of the excluded regressor. In
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addition to specific restrictions on the dynamic process for the covariates, the identification results
of these papers rely on the existence of at least one “excluded regressor” conditionally indepen-
dent of the individual fixed effects ↵. Conversely, our approach allows for arbitrary correlation
between xt and ↵.

Given either of these two sets of sufficient conditions, the identification of ✓ proceeds in two
steps. Proposition 2.2 demonstrates that � can be identified based on moment inequality (2.2), and
Proposition 2.3 establishes the identification of � by matching the value of the index function x0t�

in different time periods.

Proposition 2.2 (Identification of �). For all s, t 2 T such that t � s+ 2, define

Q1(b) =E {[P (yt = 1|xs, xt, ys�1 = yt�1, ys+1 = yt+1)� P (ys = 1|xs, xt, ys�1 = yt�1, ys+1 = yt+1)]

⇥sgn(x0tsb)
 
.

Suppose Assumption A holds. If either Assumption SI or Assumption SD also holds, then Q1(�) >

Q1(b) for all b 2 B \ {�}.

The proof of Proposition 2.2 can be found in Appendix A.

Remark 2.3. For the case with t = s + 2, the population objective function Q1(b) reduces to
E{[P (yt = 1|xs, xt, yt�3 = yt�1 = yt+1) � P (ys = 1|xs, xt, yt�3 = yt�1 = yt+1)]sgn(x0tsb)}. Par-
ticularly, note that Proposition 2.2 indicates that our identification strategy for � requires T = 4,
as a minimum. In this case, t = s+ 2 must hold with s = 1 and t = 3, and thus Q1(b) is

Q1(b) = E{[P (y3 = 1|x1, x3, y0 = y2 = y4)� P (y1 = 1|x1, x3, y0 = y2 = y4)] · sgn(x031b)}. (2.3)

It is clear that a longer panel allows more population objective functions of similar form, and
collectively, all these objective functions (by simply summing them up) can be used to garner
identification information on �.

Proposition 2.2 establishes the identification of �, which enables us to move on to identify �
with � being treated as a known, constant vector. Then, the following proposition shows that �
can be identified by matching the deterministic utility wt in different periods, of which the proof
is presented in Appendix A.

Proposition 2.3 (Identification of �). Consider the event

A = {y0 = d0, ..., ys�1 = ds�1, ys = 0, ys+1 = ds+1, ..., yt�1 = dt�1, yt = 1, yt+1 = dt+1, ..., yT = dT },

and its counterpart

B = {y0 = d0, ..., ys�1 = ds�1, ys = 1, ys+1 = ds+1, ..., yt�1 = dt�1, yt = 0, yt+1 = dt+1, ..., yT = dT },

where d⌧ 2 {0, 1} for all ⌧ 2 T [ {0}. Define

Q2(r;�) = E
�⇥
P (A|xT , wt = wt+1)� P (B|xT , wt = wt+1)

⇤
sgn ((wt � wt�1) + r(dt+1 � dt�2))

 

10



for all s, t 2 T such that t = s+ 1 and

Q̃2(r;�) =E
�⇥

P (A|xT , ws+1 = wt+1, ys+1 = yt+1)� P (B|xT , ws+1 = wt+1, ys+1 = yt+1)
⇤

⇥sgn ((wt � ws) + r(dt�1 � ds�1))}

for all s, t 2 T such that t > s+ 1. Then, under Assumption A,

(i) Q2(�;�) > Q2(r;�) for all r 2 R \ {�}, and

(ii) Q̃2(�;�) > Q̃2(r;�) for all r 2 R \ {�}.

Remark 2.4. Proposition 2.3 indicates that when � is known, the identification of � can be achieved
with T � 3. For the case T = 3, the identification is based on objective function Q2(·;�). When
T � 4, any combination (s, t) of the elements of {1, ..., T � 1} taken two at a time can be used to
construct the population objective function to identify �. For example, in the simplest case T = 4,
feasible choices of (s, t) include (1, 2), (1, 3), and (2, 3). One can use any one of these pairs to define
population objective function, either Q2(·;�) or Q̃2(·;�). It is clear that any one, or a combination
(again by simply summing them up), of these objective functions can be used to identify �.

Propositions 2.2 and 2.3 outline a two-step procedure for identifying the preference parameters
� and �, of which Proposition 2.3 uses HK’s insight. Note that, as Proposition 2.2 suggests, an ad-
ditional assumption, SI or SD, enables us to establish the identification of � independently to that
of � in the first step. As a result, it suffices to match the index x0t�, rather than each component of xt
over time, as in HK, when identifying � in the second step. The benefits of doing so are twofold:
First, the two-step procedure avoids the curse of dimensionality caused by matching many ex-
planatory variables, which makes it particularly competitive when handling high-dimensional
models. As will be demonstrated in Section 4, a two-step estimation method motivated by this
identification strategy yields consistent estimators with rates of convergence that are independent
of the model dimension, as opposed to those in HK. Second, recall that matching xt, as in HK, ex-
cludes regressors with support that is not overlapping over time (see also the discussion in Honoré
and Tamer (2006)). A leading example is time-varying intercept �t14 (or equivalently including a
set of time dummies as regressors), which is commonly included in panel data models to control
for fixed time effects. Our two-step procedure addresses this limitation by means of matching an
index rather than all elements.

The following theorem is an immediate result of Propositions 2.2 and 2.3.

Theorem 2.1 (Identification of ✓). Suppose Assumption A holds. If either Assumption SI or Assumption
SD also holds, then � is identified based on population objective function Q1(·), and � is identified based on
either population objective function Q2(·;�) or Q̃2(·;�).
14�t is assumed to be varying over t but invariant across i with �1 normalized to zero.
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3 Estimation

Applying the analogy principle, the identification results presented in Section 2 can be translated
into a two-step estimation procedure. In the first step, a maximum score (MS) estimator (with
binary weights) �̂ of � is obtained. In the second step, � is estimated by a localized MS procedure
matching the estimated index x0t�̂ over time. Each of the two steps is described, in turn, below.

In Sections 3.1 and 3.2, we restrict our discussion to the model with T = 4 to streamline expo-
sition. The same method can be applied with straightforward modification to models with longer
panels. We provide objective functions for general cases with T � 4 in Section 3.3.

3.1 Estimation of � with T = 4

Assuming a random sample of n individuals, we propose the following weighted MS estimator �̂
of �, defined as the maximizer over the parameter space B:

�̂ = argmax
b2B

Q1n(b), (3.1)

where

Q1n(b) =
1

n

nX

i=1

1[yi0 = yi2 = yi4](yi3 � yi1) · sgn(x0i31b), (3.2)

with the notation sgn(·) denoting the sign function.

It is obvious from expression (3.2) that only observations that satisfy yi1 6= yi3, yi0 = yi2,
and yi2 = yi4 are used in the estimation. Namely, the objective function uses only “switchers”
whose choice changes in periods 1 and 3, with the same choices in, respectively, their previous
and subsequent periods.

3.2 Estimation of � with T = 4

Proposition 2.3 motivates a localized MS estimator �̂ of �, defined here as the maximizer over the
parameter space R of the objective function15

Q2n(r;�) =
1

n

nX

i=1

�
1[x0i2� = x0i3�](yi2 � yi1) · sgn(x0i21� + r(yi3 � yi0))

+1[x0i3� = x0i4�](yi3 � yi2) · sgn(x0i32� + r(yi4 � yi1))
 
. (3.3)

Expression (3.3) is the sample analogue of Q2(r;�) in Proposition 2.3 after taking the union of
events A and B for all possible values of d0, d1, ..., d4. Similar to objective function (3.2), (3.3) also
15If one magically knew �, the estimation of � only requires T = 3, i.e., using the first line of (3.3) as objective function.
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uses only data on “switchers” (i.e., satisfying A[B), who make different choices in the two periods
that are compared. Besides, (3.3) also requires a match in x0t�.

Note that this estimator is not feasible because � is unknown and it is of probability zero to
have exactly matched indexes (x0is� = x0it�) in the presence of continuous regressors. To resolve
the first concern, we propose to replace the unknown parameter � in expression (3.3) with the �̂
obtained from (3.1), which will be shown to be (cube-root n) consistent in Section 4.

For the second concern, we use kernel weights

Khn((xit � xis)
0b), for all s, t 2 T and b 2 B,

instead of 1[x0isb = x0itb]. Khn(·) is defined as h�1
n K(·/hn), where K(·) is a kernel density function

and hn is a bandwidth sequence that converges to 0 as n ! 1. The idea is to replace the binary
weights for x0is�̂ = x0it�̂ in expression (3.3) with weights that depend inversely on the magnitude
of (xit � xis)0�̂, giving more weights to observations with (xit � xis)0�̂ being closer to 0.

Then we propose the following kernel weighted MS estimator �̂ of �:

�̂ = argmax
r2R

QK
2n(r; �̂), (3.4)

where

QK
2n(r; �̂) =

1

n

nX

i=1

n
Khn(x

0
i32�̂)(yi2 � yi1) · sgn(x0i21�̂ + r(yi3 � yi0))

+Khn(x
0
i43�̂)(yi3 � yi2) · sgn(x0i32�̂ + r(yi4 � yi1))

o
. (3.5)

Remark 3.1. Note that objective function (3.5) is associated with population objective function
Q2(r;�) in Proposition 2.3, which only uses observations of adjacent time periods. Applying the
same idea to population objective function Q̃2(r;�) yields the following objective function using
observations which are not adjacent.

Q̃K
2n(r; �̂) =

1

n

nX

i=1

1[yi2 = yi4]Khn(x
0
i42�̂)(yi3 � yi1) · sgn(x0i31�̂ + r(yi2 � yi0)).

In practice, to make full use of all observations, one can consider using QK
2n(r; �̂) + Q̃K

2n(r; �̂) as
objective function for the estimation of �.

Note that the 2SMS procedure described in (3.1)-(3.2) and (3.4)-(3.5) does not require matching
each covariate in xit over time as HK did. As a result, the procedure proposed here allows xit
to contain regressors, such as time dummies (time-specific intercepts). Further, as only an index
of xit needs to be matched, the rates of convergence of �̂ and �̂ are independent of the number
of continuous covariates in xit, which is also in contrast to HK’s procedure. In view of existing
results on the MS estimators (e.g., Manski (1985, 1987), Kim and Pollard (1990), and Seo and Otsu
(2018)), we expect the limiting distributions of �̂ and �̂ to be non-Gaussian and their rates of con-
vergence to be OP (n�1/3) and OP ((nhn)�1/3), respectively. Section 4 states sufficient conditions
under which these asymptotic properties can be derived.
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3.3 Estimation with T � 4

For the case with T � 4, estimators for � and � that make the best use of the data can be obtained
as follows. For �, we find �̂ via maximizing

Q1n(b) =
1

n

nX

i=1

X

t>s+1

1[yis�1 = yit�1]1[yis+1 = yit+1](yit � yis)sgn
�
(xit � xis)

0b
�
.

Once �̂ is obtained, we then move on to estimate � via maximizing

QK
2n(r; �̂) + Q̃K

2n(r; �̂)

with respect to r, where

QK
2n(r; �̂) =

1

n

nX

i=1

T�1X

t=2

Khn((xit+1 � xit)
0�̂)(yit � yit�1)sgn((xit � xit�1)

0�̂ + r(yit+1 � yit�2))

is for the case with t = s+ 1, and

Q̃K
2n(r; �̂) =

1

n

nX

i=1

T�3X

s=1

T�1X

t=s+2

n
1[yis+1 = yit+1]Khn

⇣
(xit+1 � xis+1)

0�̂
⌘

⇥(yit � yis)sgn
⇣
(xit � xis)

0�̂ + r(yit�1 � yis�1)
⌘o

is for the case with t > s+ 1.

4 Asymptotic Properties

The estimators proposed in Section 3 are of the same structure and differ only in that they each
use a different fraction of observations in the sample. We expect that they have similar asymptotic
properties. Therefore, it suffices to show the asymptotics for the estimators in Sections 3.1 and 3.2,
for the case T = 4. The asymptotic properties of the estimators in Section 3.3 can be derived in a
similar way.

As is standard in the literature, such as Kim and Pollard (1990), we start the analysis from intro-
ducing modified objective functions for �̂ and �̂. As will become clear, the new objective functions
are monotone (linear) transformations of (3.2) and (3.5), respectively. As a result, working with
them does not change the values of �̂ and �̂, but can facilitate the derivation process.

First, note that 1[a > 0] = (sgn(a)+1)/2 for all a 2 R, and hence �̂ can be obtained equivalently
from

�̂ = argmax
b2B

n�1
nX

i=1

1 [yi0 = yi2 = yi4] (yi3 � yi1) 1
⇥
x0i31b > 0

⇤
, (4.1)
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whose objective function is a monotone transformation of (3.2). Similarly, �̂ can be obtained alter-
natively from

�̂ = argmax
r2R

n�1
nX

i=1

n
Khn

⇣
x0i32�̂

⌘
(yi2 � yi1) 1

h
x0i21�̂ + r (yi3 � yi0) > 0

i
(4.2)

+Khn

⇣
x0i43�̂

⌘
(yi3 � yi2) 1

h
x0i32�̂ + r (yi4 � yi1) > 0

io
.

To further simplify exposition, we introduce some new notations:

⇠i (b) ⌘ 1 [yi0 = yi2 = yi4] (yi3 � yi1)
�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤�
, (4.3)

&ni (r, b) ⌘ Khn

�
x0i32b

�
(yi2 � yi1) (1

⇥
x0i21b+ r (yi3 � yi0) > 0� 1

⇥
x0i21� + � (yi3 � yi0) > 0

⇤⇤

+Khn

�
x0i43b

�
(yi3 � yi2)

�
1
⇥
x0i32b+ r (yi4 � yi1) > 0

⇤
� 1

⇥
x0i32� + � (yi4 � yi1) > 0

⇤�
,

(4.4)

Zn,1 (s) ⌘ n2/3 · n�1
nX

i=1

⇠i
⇣
� + sn�1/3

⌘
,

Zn,2 (s) ⌘ (nhn)
2/3 · n�1

nX

i=1

&ni
⇣
� + s (nhn)

�1/3 ,�
⌘
,

and

Ẑn,2 (s) ⌘ (nhn)
2/3 · n�1

nX

i=1

&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
.

Note that the s in Zn,1 (s) is a K ⇥ 1 vector, and the s in Zn,2 (s) and Ẑn,2 (s) is a scalar.

As adding terms not related to b will not affect the optimization over b, �̂ obtained from the
following objective function is identical to that from (4.1),

�̂ = argmax
b2B

n�1
nX

i=1

⇠i (b) .

For the same reason, �̂ can be equivalently obtained from

�̂ = argmax
r2R

n�1
nX

i=1

&ni(r, �̂),

where we add terms not related to r. The goal of this section is to derive the asymptotic properties
of �̂ and �̂ based on these modified objective functions.

The following technical assumptions are needed for the asymptotics of �̂ and �̂.

Assumption 1. The vectors
�
xTi , y

T
i , yi0

�0 with T � 4 are i.i.d. across individuals16.
16Note that our identification strategy is valid for independent but not necessarily identically distributed observations.

While stronger than required, assuming a random sample eases the derivation of the asymptotic properties of our
proposed estimators.
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Assumption 2. n�1Pn
i=1 ⇠i(�̂) � maxb2B n�1Pn

i=1 ⇠i (b) � oP
�
n�2/3

�
and n�1Pn

i=1 &ni(�̂, �̂) �
maxr2R n�1Pn

i=1 &ni(r, �̂)� oP ((nhn)
�2/3).

Assumption 3. The joint density function for ↵, covariates xT , and ✏T are continuous differen-
tiable. The density function and its first derivatives are uniformly bounded.

Assumption 4. V1 in expression (B.1) and V2 in expression (B.3) are finite and negative definite.

Assumption 5. The kernel function K (u) is nonnegative, symmetric about 0, continuous differen-
tiable, has compact support, and satisfies

R
RK (u) du = 1.

Assumption 6. hn ! 0, nhn ! 1, and nh4n ! 0 as n ! 1.

Assumption 2 is standard in the literature and precisely defines our estimator. Assumption 3 is
also standard and is made for technical convenience. V1 in Assumption 4 will be demonstrated to
be the Hessian matrix of the expectation of the objective function in equation (4.1). The assumption
on V1 is needed to ensure that the population mean of the objective function at � is sufficiently
larger than it at other b around �. This assumption is in fact quite mild; we provide some details in
Remark B.2 in Appendix B. V2 is the second derivative of the expectation of the objective function
in equation (4.2) with respect to r. This condition is also mild. Some discussion on V2 can be
found in Remark B.3 in Appendix B. Note that Assumption 4 implicitly requires the finite second
moment of x. Assumption 5 collects some standard restrictions on kernel functions. The symmetry
of K (u) makes the bias term from the nonparametric estimation at the order of h2n. In Assumption
6, nhn ! 1 is standard, and nh4n ! 0 is made to ensure the bias term from the kernel estimation
asymptotically negligible.

Theorem 4.1. Suppose Assumptions A, SI (or SD), and 1 - 6 hold. Then

1. �̂ � � = OP
�
n�1/3

�
, and

n1/3(�̂ � �)
d! arg max

s2RK
Z1 (s) ,

where Z1 (s) is a Gaussian Process with continuous sample paths, expected value 1
2s

0V1s and covari-
ance kernel H1 (s, t) . V1 and H1 are defined in expressions (B.1) and (B.2), respectively.

2. �̂ � � = OP ((nhn)
�1/3), and

(nhn)
1/3 (�̂ � �)

d! argmax
s2R

Z2 (s) .

where Z2 (s) is a Gaussian process with continuous path, expected value 1
2V2s2, covariance kernel

H2 (s, t) . V2 and H2 are defined in expressions (B.3) and (B.4), respectively.

Kim and Pollard (1990) and Seo and Otsu (2018) derived the cube-root asymptotics for a class
of estimators by means of empirical processes. For a comprehensive treatment on this technique,
see van der Vaart and Wellner (2000). Our estimators fall into this category. In particular, they
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are more closely related to Seo and Otsu (2018). The main body of the proof for Theorem 4.1 is
to verify the technical conditions in Seo and Otsu (2018), apply their asymptotics results to our
estimators, and calculate technical terms needed for the asymptotics such as V1, H1, V2, and H2.

As will be demonstrated later, the asymptotics of �̂ are the same as that in the case where the
true value of � is used. The intuition is that �̂ converges to � faster than �̂ does to �, and the
objective function in equation (4.2), after proper normalization, uniformly converges to the limit
over a compact set of (r, b) around (�,�) . The details can be found in the proof of Theorem 4.1,
which is presented in Appendix B.

5 Inference

The asymptotic distributions of �̂ and �̂ are complicated and do not have an analytical form.
As a result, inference using the asymptotic distribution directly is hard to be implemented. One
alternative is to use sampling methods (e.g., bootstrap). Unfortunately, Abrevaya and Huang
(2005) have proved the inconsistency of the classic bootstrap for the maximum score estimators.
We expect that the classic bootstrap does not work for our estimators, either.

For the ordinary maximum score estimator, valid inference can be conducted using subsam-
pling (Delgado, Rodrı́guez-Poo, and Wolf (2001)), m-out-of-n bootstrap (Lee and Pun (2006)), the
numerical bootstrap (Hong and Li (2020)), and a model-based bootstrap procedure that analyti-
cally modifies the criterion function (Cattaneo, Jansson, and Nagasawa (2017)), among other pro-
cedures17. We think these methods, with certain modifications, can be justified to be valid for our
estimators.

Monte Carlo evidence demonstrated in Hong and Li (2020) and Cattaneo, Jansson, and Naga-
sawa (2017) suggests that their proposed approaches outperform either the subsampling or the m-
out-of-n bootstrap in finite samples. Based on these results, we focus on the numerical bootstrap
and the bootstrap procedure with a modified criterion function. We provide a brief discussion on
the classic bootstrap and the m-out-of-n bootstrap in Appendix E18.

Some new notations are introduced. Let (yT⇤0
j , xT⇤0

j )0, j = 1, ..., n, be a random sample drawn
with replacement from the collection of the sample values

�
yT 0
1 , xT 0

1

�0
,
�
yT 0
2 , xT 0

2

�0
, ...,

�
yT 0
n , xT 0

n

�0
.

Let ⇠⇤j (b) denote ⇠ (b) evaluated at (yT⇤0
j , xT⇤0

j )0, specifically,

⇠⇤j (b) ⌘ 1
⇥
y⇤j0 = y⇤j2 = y⇤j4

⇤ �
y⇤j3 � y⇤j1

� �
1
⇥
x⇤0j31b > 0

⇤
� 1

⇥
x⇤0j31� > 0

⇤�
.

17The case-specific, smooth bootstrap method proposed by Patra, Seijo, and Sen (2018) is also valid for the maximum
score estimator of Manski (1975, 1985). But this method is hard to generalize to our case.

18We show in Appendix E that the classic bootstrap is not consistent for our estimators (Appendix E.3), while the
m-out-of-n bootstrap is still valid (Appendix E.4).
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Similarly, we define &⇤nj (r, b) as

&⇤nj (r, b) ⌘ Khn

�
x⇤0j32b

� �
y⇤j2 � y⇤j1

� �
1
⇥
x⇤0j21b+ r

�
y⇤j3 � y⇤j0

�
> 0
⇤
� 1

⇥
x⇤0j21� + �

�
y⇤j3 � y⇤j0

�
> 0
⇤�

+Khn

�
x⇤0j43b

� �
y⇤j3 � y⇤j2

� �
1
⇥
x⇤0j32b+ r

�
y⇤j4 � y⇤j1

�
> 0
⇤
� 1

⇥
x⇤0j32� + �

�
y⇤j4 � y⇤j1

�
> 0
⇤�

.

We may re-use some of these notations in the discussions. To avoid confusion, all notations in
each subsection are specific for the procedure discussed in that subsection. This convention also
applies to the discussions in Appendix E.

5.1 Numerical Bootstrap

Hong and Li (2020) developed a numerical bootstrap procedure for cases where the classic boot-
strap does not work. Hong and Li (2020) demonstrated that their method could work for a class of
M-estimators that converge at rate na for some a 2 (1/4, 1]. The estimator �̂ proposed in Section 3
fits in their framework directly, but �̂ does not. With a slight modification of their proof, we show
that the numerical bootstrap also works for �̂.

The numerically bootstraped �̂⇤ and �̂⇤ are constructed from

�̂⇤ = argmax
b2B

8
<

:n�1
nX

i=1

⇠i (b) + (n"n)
1/2 · n�1

nX

j=1

 
⇠⇤j (b)� n�1

nX

i=1

⇠i (b)

!9=

; (5.1)

and

�̂⇤ = argmax
r2R

8
<

:n�1
nX

i=1

&ni
⇣
r, �̂
⌘
+ (n"n)

1/2 · n�1
nX

j=1

 
&⇤nj

⇣
r, �̂
⌘
� n�1

nX

i=1

&ni
⇣
r, �̂
⌘!
9
=

; , (5.2)

where "n ! 0, n"n ! 1, and (yT⇤0
j , xT⇤0

j )0, j = 1, ..., n, are drawn independently from the collec-
tion of the sample values

�
yT 0
1 , xT 0

1

�0
,
�
yT 0
2 , xT 0

2

�0
, ...,

�
yT 0
n , xT 0

n

�0 with replacement. "�1
n plays a similar

role as m in the m-out-of-n bootstrap procedure. For �̂⇤, we additionally require "�1
n hn ! 1 and

"�1
n h4n ! 0, similar to the additional restrictions on m.

We claim that
"�1/3
n

⇣
�̂⇤ � �̂

⌘
d! arg max

s2RK

✓
1

2
s0V1s+W1 (s)

◆

and
�
"�1
n hn

�1/3
(�̂⇤ � �̂)

d! argmax
s2R

✓
1

2
V2s

2 +W2 (s)

◆
.

Some intuition on why the numerical bootstrap works and the way to modify the proof in Hong
and Li (2020) to accommodate �̂ is provided in Appendix E.1.
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5.2 Bootstrap Using a Modified Objective Function

Cattaneo, Jansson, and Nagasawa (2017) proposed a valid bootstrap procedure for the maximum
score estimator by means of modifying the objective function. This idea can be applied here anal-
ogously. The procedure is as follows. Draw (yT⇤0

j , xT⇤0
j )0, j = 1, ..., n, independently from the

collection of the sample values
�
yT 0
1 , xT 0

1

�0
,
�
yT 0
2 , xT 0

2

�0
, ...,

�
yT 0
n , xT 0

n

�0 with replacement. The boot-
strap estimator �̂⇤ is obtained from

�̂⇤ = argmax
b2B

8
<

:n�1
nX

j=1

⇠⇤j (b)� n�1
nX

i=1

⇠i (b) +
1

2

⇣
b� �̂

⌘0
V̂n,1

⇣
b� �̂

⌘
9
=

; , (5.3)

where V̂n,1 is a consistent estimate of V1.

Recall that V1 is the second derivative of @E(⇠i(b))
@b@b0

���
b=�

. V̂n,1 can be estimated by numerical

derivatives. For instance, the (k, l)-th element of V̂n,1 can be obtained by

V̂ (k,l)
n,1 =

1

4!2
n
n�1

nX

i=1

⇣
⇠i
⇣
�̂ + !nek + !nel

⌘
� ⇠i

⇣
�̂ + !nek � !nel

⌘

�⇠i
⇣
�̂ � !nek + !nel

⌘
+ ⇠i

⇣
�̂ � !nek � !nel

⌘⌘
, (5.4)

where ek is a K⇥1 vector with its k-th element being 1 and 0 otherwise, and el is similarly defined.
The result of Lemma 1 in Cattaneo, Jansson, and Nagasawa (2017) implies V̂n,1

P! V1 under !n ! 0

and n!3
n ! 1.

Similarly, the bootstrap estimator �̂⇤ is obtained from

�̂⇤ = argmax
r2R

8
<

:n�1
nX

j=1

&⇤nj

⇣
r, �̂
⌘
� n�1

nX

i=1

&ni
⇣
r, �̂
⌘
+

1

2
V̂n,2 (r � �̂)2

9
=

; , (5.5)

where V̂n,2 is a consistent estimate of V2. Recall that V2 is @2E(&ni(r,�))
@r2

���
r=�

. Then an estimate of V2

can be

V̂n,2 =
1

4!2
n
n�1

nX

i=1

⇣
&ni
⇣
�̂ + 2!n, �̂

⌘
� 2&ni

⇣
�̂, �̂

⌘
+ &ni

⇣
�̂ � 2!n, �̂

⌘⌘
. (5.6)

It similarly requires !n ! 0 and nhn!3
n ! 1 to guarantee the consistency of V̂n,2.

Then, we can show that

n1/3
⇣
�̂⇤ � �̂

⌘
d! arg max

s2RK

✓
1

2
s0V1s+W1 (s)

◆
,

and
(nhn)

1/3 (�̂⇤ � �̂)
d! argmax

s2R

✓
1

2
V2s

2 +W2 (s)

◆
.

An outline of the proof can be found in Appendix E.2.
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5.3 Procedures in Details

We investigate the finite-sample properties of the two bootstrap methods discussed in Sections
5.1 and 5.2 through Monte Carlo experiments in Section 6 and defer the discussion on the choices
of their tuning parameters to Section 6.2. Here we provide the algorithms for constructing 95%
confidence intervals for � and � using these two procedures.

The numerical bootstrap proceeds as follows.

1. Draw (yT⇤0
j , xT⇤0

j )0, j = 1, ..., n, independently with replacement from the original sample.

2. Obtain �̂⇤ and �̂⇤ from equations (5.1) and (5.2).

3. Repeat Steps 1 and 2 for B times independently and arrive at a sequence of (�̂⇤, �̂⇤), say,
{(�̂⇤(b), �̂⇤(b))}Bb=1.

4. Let Q�̂⇤ (⌧) denote the ⌧ -th quantile of {�̂⇤(b)}Bb=1, 0  ⌧  1. Define Q�̂⇤ (⌧) analogously.
The 95% confidence intervals for � and � are constructed, respectively, as

h
�̂ � n�1/3 · "�1/3

n (Q�̂⇤ (0.975)� �̂), �̂ � n�1/3 · "�1/3
n (Q�̂⇤ (0.025)� �̂)

i

and h
�̂ � n�1/3 · "�1/3

n (Q�̂⇤ (0.975)� �̂) , �̂ � n�1/3 · "�1/3
n (Q�̂⇤ (0.025)� �̂)

i
.

The bootstrap procedure with a modified objective function is as follows.

1. Estimate V̂n,1 and V̂n,2 based on expressions (5.4) and (5.6).

2. Draw (yT⇤0
j , xT⇤0

j )0, j = 1, ..., n, independently with replacement from the original sample.

3. Obtain �̂⇤ and �̂⇤ from equations (5.3) and (5.5), using the (V̂n,1, V̂n,2) obtained from Step 1.

4. Repeat Step 2 and Step 3 B times independently and arrive at a sequence of (�̂⇤, �̂⇤), say,
{(�̂⇤(b), �̂⇤(b))}Bb=1.

5. The 95% confidence intervals for � and � are constructed, respectively, as

[�̂ � (Q�̂⇤ (0.975)� �̂), �̂ � (Q�̂⇤ (0.025)� �̂)]

and
[�̂ � (Q�̂⇤ (0.975)� �̂) , �̂ � (Q�̂⇤ (0.025)� �̂)] .
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6 Monte Carlo Experiments

6.1 Simulation Setup

In this section, we investigate the finite-sample performance of the proposed estimators by means
of Monte Carlo experiments. We start by considering a benchmark design similar to that used in
HK. Specifically, this design (referred to as Design 1 hereafter) is specified as follows:

yi0 = 1 [�1xi0,1 + �2xi0,2 + ↵i � ✏i0 > 0] ,

yit = 1 [�1xit,1 + �2xit,2 + �yit�1 + ↵i � ✏it > 0] , t 2 {1, 2, 3, 4} ,

where

- � ⌘ (�1,�2)0 = (1, 1)0 and � = �1,

- xit,1, xit,2
d⇠ N (0, 1) and are i.i.d. across i and t,

- ↵i = (xi0,2 + xi1,2 + xi2,2 + xi3,2 + xi4,2) /5,

- ✏it
d⇠
�
⇡2/3

��1/2 · Logistic (0, 1) and are i.i.d. across i and t, and

- x·,1, x·,2, and ✏· are independent of each other.

In the second design (referred to as Design 2 hereafter), the model and the coefficients are the
same as in Design 1, but x·,2 are autocorrelated over time. Specifically, we have

- xi0,2
d⇠ N (0, 1) and xit,2 = 0.5xit�1,2 + uit for all t � 1, where uit

d⇠ N (0, 1) and uit are i.i.d.
across i and t, and

- u·, x·,1, xi0,2, and ✏· are independent of each other.

Note that the setup of Design 2 violates either Assumption SI or the exchangeability condition
stated in Proposition 2.1. We conduct this Monte Carlo study to develop more insight into the
practical consequences of the failure of these sufficient (but not necessary) conditions. That is, to
what extent serial dependence in exogenous covariates may affect the identification.

In the third design (referred to as Design 3 hereafter), the setup is the same as that in Design
1, except we add one more covariate to examine how our estimators perform in a higher dimen-
sional, more complicated design. Specifically,

yi0 = 1 [�1xi0,1 + �2xi0,2 + �3xi0,3 + ↵i � ✏i0 > 0] ,

yit = 1 [�1xit,1 + �2xit,2 + �3xit,3 + �yit�1 + ↵i � ✏it > 0] , t 2 {1, 2, 3, 4} ,

where
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- � ⌘ (�1,�2,�3)0 = (1, 1, 1)0 and � = �1,

- xit,1, xit,2, xit,3
d⇠ N (0, 1) are i.i.d. across i and t, and

- x·,1, x·,2, x·,3, and ✏· are independent of each other.

For estimation of �, we adopt objective function (3.2). To estimate �, we use objective function
(3.5) with the Epanechnikov kernel function. That is,

K (u) =
3

4

�
1� u2

�
1 [|u|  1] ,

which satisfies Assumption 5 with a compact support. The choice of bandwidth sequence hn will
be discussed in Section 6.2.

For inference, we investigate the finite-sample performance of the numerical bootstrap (Sec-
tion 5.1) and the bootstrap with a modified objective function (Section 5.2). The 95% confidence
intervals are obtained through B = 199 independent draws and estimations for both procedures.
See Section 5.3 for the details of the implementation.

Recall that only the observations with {yi0 = yi2 = yi4 and yi1 6= yi3} are used for estimating
�̂. In Design 1, the “effective” observations, that are useful for estimating �̂, are about 14%

of the whole sample. Similarly for �̂, only observations with either {yi1 6= yi2 and yi0 6= yi3} or
{yi2 6= yi3 and yi1 6= yi4} are useful. In Design 1, about 39% of the observations are “effective” for
�̂. In Design 2, the “effective” observations take about 15% and 31% of the original sample, for �̂
and �̂, respectively. In Design 3, the proportions of the “effective” observations for estimating �̂
and �̂ are about 14% and 39%, respectively. For each design, we consider sample sizes of 5000,
10000, and 20000. All the estimation and inference (based on 199 draws and estimation) results
presented in this section are based on 1000 replications of each design and each sample size.

6.2 Tuning Parameters

There is only one tuning parameter used for estimation, namely hn, in objective function (3.5). In
Assumption 6, we restrict nh4n ! 0, so that the bias term (of order h2n) is a small order term of
(nhn)

�2/3 . Since the convergence rate of �̂ is (nhn)
�1/3, the condition, nh4n ! 0, makes the bias

term much smaller than the convergence rate. To attain a faster convergence rate, we tend to set
hn as large as possible, and thus we simply set hn = n�1/4 (log n)�1.

For the numerical bootstrap, we have one more tuning parameter "n. As recommended in
Hong and Li (2020), we set "n proportional to n�2/3 log n for the inferences of �̂ and �̂. Apparently,
"n of this order satisfies the additional requirements for �̂⇤ that "�1

n hn ! 1 and "�1
n h4n ! 0. To

check how sensitive the procedure to the choice of "n is, we conduct the procedure with "n =

c · n�2/3 log n and c = 0.8, 0.9, 1.0, 1.1, and 1.2.
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The bootstrap procedure with a modified objective function in Section 5.2 also requires one
additional tuning parameter, !n, to estimate the kernel variance V . As demonstrated in Cattaneo,
Jansson, and Nagasawa (2017), the optimal !n is proportional to the convergence rate to 3/7. It
leads to !n / n�1/7 for �̂⇤n and !n / n�3/28 (log n)1/7 for �̂⇤n. Our Monte Carlo results suggest that
a slight modification by setting !n = c · n�1/7 log n for �̂⇤ leads to a better performance. We adopt
this modification for �̂⇤. Meanwhile, we follow the recommendation !n = c · n�3/28 (log n)1/7 for
�̂⇤n. Again, to check the sensitivity of the results to the choice of !n, we conduct this procedure
with c = 0.8, 0.9, 1.0, 1.1, and 1.2.

6.3 Simulation Results

We normalize the preference coefficients � on exogenous covariates to 1 in Euclidean norm. The
true values of the parameters, due to this scale normalization, are

�1 = �2 =

p
2

2
⇡ 0.707 and � = �

p
2

2
⇡ �0.707

in Design 1 and Design 2, and

�1 = �2 = �3 =

p
3

3
⇡ 0.577 and � = �

p
3

3
⇡ �0.577,

in Design 3. Because of this normalization, we lose one degree of freedom and essentially only
estimate one element of � in the first two designs and two elements of � in the last design. As
a result, we only report the results for (�2, �) in Designs 1 and 2 and the results for (�2,�3, �) in
Design 3.

We report the mean (MEAN), the mean bias (BIAS), the median absolute deviation (MAD),
and the root mean squared error (RMSE) for �̂ and �̂. For inference, we report the coverage rates
(COVERAGE) of the true values and lengths (LENGTH) of the 95% confidence intervals (CI) for
both inference procedures.

All results are reported in the tables collected in Appendix C. Results for Design 1 are reported
in tables numbered “1” and so on and so forth, for other designs. We report the performance of
the estimators, the numerical bootstrap procedure, and the bootstrap procedure with a modified
objective function in tables labeled “A”, “B”, and “C”, respectively. For example, Table 1A reports
the performance of the estimators for Design 1. We briefly summarize our findings as follows.

The RMSEs of �̂ and �̂ become smaller as the sample size increases in all designs, with RMSE
of �̂ slightly greater than that of �̂. This shows the consistency of our estimators, though the rates
of convergence are clearly slower than

p
n. Both inference procedures perform reasonably well in

all designs. In general, they both yield shrinking CIs with coverage rates approaching 95% as the
sample size grows. The coverage rates of CI are greater than 90%, but are slightly lower than 95%
in most cases. The coverage rates of CI for � do not perform as well as those for �, which is not
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surprising, considering the complication of using two tuning parameters. Neither procedure is
very sensitive to the choice of tuning parameters, particularly the numerical bootstrap procedure.

The results for Design 1 (benchmark) and Design 2 are similar. A more careful inspection of
the numbers in Tables 2A - 2C reveals that our estimators are slightly biased but in general still
work adequately in Design 2, especially for the estimator of �19. In practice, if the robustness and
efficiency are considered comprehensively, the complementary use of our approach combined
with HK’s parametric (conditional Logit) and semiparametric methods could be a useful strategy.
The results for Design 3 are also encouraging, demonstrating that our estimators do not suffer in a
higher-dimensional design. This points to one of the main advantages of using our methods – the
rates of convergence of our estimators are independent of the number of continuous regressors.

Only data on “switchers” provides variation useful for identification, so the effective sample
used for estimation is typically a small fraction of the total sample. Intuitively, we would expect
that longer panels would improve the finite-sample performance of our estimators. In practice,
with a reasonably long panel, our estimators may not need a very large sample size n to produce
sufficiently precise estimates, as illustrated in the next section.

7 Empirical Illustration

We apply our estimator to analyze the state dependence and the short-run and long-run response
to health shocks on labor market participation, using 15 waves (wave 2 to wave 16) of the House-
hold, Income and labor Dynamics in Australia (HILDA) Survey data. The HILDA Survey follows
the lives of more than 17,000 Australians each year. As a rich panel data set, it collects information
on many aspects of life in Australia20.

Damrongplasit, Hsiao, and Zhao (2018) investigated the same problem using eight waves of
HILDA data, by means of random effects estimators and HK’s fixed effects conditional Logit esti-
mator. We use a more recent data set with more waves. The background to the empirical question
has been thoroughly introduced in Damrongplasit, Hsiao, and Zhao (2018), so is omitted here. We
simply refer interested readers to Damrongplasit, Hsiao, and Zhao (2018) and references therein
for more detailed information.

The model setup for the application is as follows:

yit = 1
⇥
x0it� + �yit�1 + ↵i � ✏it > 0

⇤
.

The dependent variable yit is labor force participation of individual i in period (wave) t. We are
interested in the effects of “Health Shock” (short-run health shocks, HSit), “Activity Limiting Con-
19For �, it seems that our estimator generates an upward bias of approximately 0.025, which is small relative to the true

value of the coefficient.
20More details about the data set can be found at “https://melbourneinstitute.unimelb.edu.au/hilda”.
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dition” (long-run health shocks, ACLit), and the state persistence (yit�1) on the labor force par-
ticipation (yit) . Following the example set by Damrongplasit, Hsiao, and Zhao (2018)21, we also
include “Unemployment Rate” (URt) and “log(Income)” (log of household income, Iit) as control
variables. Collectively, we have xit = (HSit,ACLit,URt, Iit)0, in which Iit is a continuous regres-
sor with rich enough support required for identification. Explanation and summary statistics of
all observed variables are provided in Tables 4 and 5 of Appendix C, respectively.

After dropping data with missing information, the sample consists of 6,848 individual males
and 7,927 individual females. The panel is unbalanced, with each individual being observed in
up to 15 waves (i.e., T = 14 using the notation in previous sections). In total, there are 42,416 male
observations and 48,121 female observations.

For ease of implementation, we adopt the estimator in Section 3.3 wherein we only use adjacent
observations for each individual22. The conditions we impose for observations to be useful for the
estimation are stringent. Missing observations here and there make it even worse. Observations
on only 755 individual males and 1,319 individual females are useful for estimating �. That is
about 14% of the original sample. Observations on 1,278 individual males and 2,074 individual
females (about 23% of the original sample) are useful for estimating �.

We conduct estimation on the whole sample, the sample of males, and the sample of females,
in order. The estimates are reported in Table 6 of Appendix C. We conduct the inference using the
two procedures described in Section 5. The 95% CIs obtained from both procedures are reported,
along with the estimates. The 95% CIs obtained from the numerical bootstrap procedure are put
on top of the 95% CIs from the bootstrap with a modified objective function for each coefficient in
the same table. The tuning parameters are set as in Section 6.2 with c = 1.

If a 95% CI does not cover 0, we label “⇤⇤” next to the CI in the table, indicating that the
corresponding estimate is significantly different from 0 at the 5% level, based on the CI. The two
inference procedures agree in almost all cases in terms of signs and whether significant or not. The
only exception is for the coefficient on “log(Income)” for the whole sample.

We restrict our attention to those estimates where both inference procedures do agree. First,
the estimated coefficients on the lagged labor force participation are significantly positive for all
three samples. This indicates that the labor force participation decision is sticky over time, so
ignoring the state dependence may lead to mis-specification of the model. The estimated coeffi-
cients on “Health Shock” are significantly negative for all samples. This implies that temporary
deterioration in health status does have a negative effect on labor force participation, which is not
surprising at all. The estimated coefficients before “log(Income)” are only significant (and posi-
tive) for the male sample. The result is also in line with our economic intuition. Family income is
more likely to be a crucial determinant of labor force participation for males, rather than females.
21Damrongplasit, Hsiao, and Zhao (2018) included time-invariant regressors, e.g., gender, in the random effects estima-

tion. These covariates are excluded here as their coefficients cannot be identified in a fixed effects framework.
22Namely, we only use observations with t = s+ 2 to estimate � and observations with t = s+ 1 to estimate �.
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The estimated coefficients before the long-run health shock (“Activity Limiting Condition”) are
not significant, at 5% level for all three samples. This suggests that permanent changes in health
status may not have much effect on the decision to switch from working to not-working, or the
other way around. The estimates on “Unemployment Rate” are not significant for all samples.
This basically means that an individual’s working decision is somewhat independent of the un-
employment rate, a macro-level variable indicating general conditions in the labor market.

Our results agree with the fixed effects estimates in Damrongplasit, Hsiao, and Zhao (2018),
in terms of the signs of the preference coefficients. However, the magnitudes of these coefficients
are very different. For example, their results indicate that the effect of “Health Shock” on an
individual’s labor force participation is much smaller in magnitude than that of the state depen-
dence (less than 1/3), while our results show that their effects are quite comparable in magnitude.
We note that their estimates were obtained using HK’s parametric (conditional Logit) estimator,
which might suffer from mis-specification. Our results can be thought of as a robust check of their
results. Damrongplasit, Hsiao, and Zhao (2018) also obtained the random effects estimates, and
demonstrated that the fixed effects estimates are more reasonable. We conjecture that one could
arrive at similar random effects estimates using our samples.

As a final note, recall that the preference coefficients are only identified up to scale. The magni-
tudes of these coefficients are difficult to interpret. Our semiparametric estimates are most useful
if several coefficients are included in the regression and coefficient estimates are computed to
compare the relative effects of changes in regressors on the choice.

8 Conclusions

In this paper, we provide new identification results for preference parameters in panel data bi-
nary choice models that allow for both fixed effects (Heckman’s “spurious” state dependence)
and lagged dependent variables (“true” state dependence). The same semiparametric random
utility framework as in Honoré and Kyriazidou (2000) is considered. A key, novel idea in this
paper is that, with additional restrictions on the dynamic process of observed covariates and the
tail behavior of the error distribution, the point identification no longer needs element-by-element
matching of regressors over time, in contrast to the method proposed in Honoré and Kyriazidou
(2000). Our approach assumes a minimum panel length of five (T � 4), which fits in most em-
pirical settings. Our identification arguments motivate a two-step estimation procedure, adapting
Manski’s maximum score estimator. The proposed estimators are consistent with rates of con-
vergence independent of the model dimension, as opposed to the estimator proposed in Honoré
and Kyriazidou (2000). We further derive limiting distributions of the proposed estimators, which
are non-Gaussian, in line with existing literature. We justify the application of several bootstrap
procedures for making inference. The results of a small Monte Carlo study suggest that our esti-
mators and inference procedures perform well in finite samples. We apply the proposed approach
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to study labor force participation using HILDA data.

The work here leaves some open questions for future research. For example, one may consider
smoothing the objective functions (in the spirit of Horowitz (1992)) to attain faster rates of conver-
gence and asymptotic normality. One may also consider extending the framework in this paper to
study the identification with more than one lag of the dependent variable or the identification in
panel data multinomial response models.
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Appendixes

These appendixes are organized as follows. In Appendix A, we provide proofs for identifica-
tion, specifically, proofs for Propositions 2.1, 2.2, and 2.3. We also present some technical lemmas
needed for the proofs in this section. In Appendix B, we show the asymptotics of our estimators,
which is summarized in Theorem 4.1. Technical lemmas needed for this proof are provided in the
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same section. All tables in this paper are collected in Appendix C. All proofs for technical lem-
mas used in Appendixes A and B are relegated to Appendix D. In Appendix E, we provide some
technical details for Section 5.

A Technical Lemmas and Main Proofs for Identification

Building on the results of Lemmas A.1 and A.2, Lemma A.3 establishes the identification inequal-
ity (2.2) under Assumptions A and SD. Lemma A.4 shows that (2.2) also holds under Assumptions
A and SI. We present these lemmas below and leave their proofs to Appendix D. Based on these
results, we prove Propositions 2.2 and 2.3. We also prove Proposition 2.1 which provides a suffi-
cient condition for Assumption SD(b). Throughout this appendix, we assume � < 0. The proofs
for the case with � � 0 are symmetric. We omit them for conciseness.

For each t 2 T , define the following partition of the sample space23:

Et,1 = {✏t < wt + � + ↵}, Et,2 = {wt + � + ↵  ✏t < wt + ↵}, Et,3 = {✏t � wt + ↵}.

Lemma A.1. Let s, t 2 T such that t � s+2. Under Assumption A, the following equalities hold for both
⌧ = s and ⌧ = t.

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=F✏|↵(w⌧ + �y⌧�1 + ↵)P (E⌧+1,1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵), (A.1)

and

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=P (E⌧+1,2|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

+ F✏|↵(w⌧ + �y⌧�1 + ↵)P (E⌧+1,3|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵). (A.2)

Lemma A.2. Let s, t 2 T such that t � s+2. Under Assumption A, the following equalities hold for both
⌧ = s and ⌧ = t.

P (E⌧+1,1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

+
F✏|↵(w⌧+1 + � + ↵)

F✏|↵(w⌧+1 + ↵)
[1� P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)], (A.3)

P (E⌧+1,2|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=
F✏|↵(ws+1 + ↵)� F✏|↵(ws+1 + � + ↵)

1� F✏|↵(ws+1 + � + ↵)
P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵), (A.4)

23For the case with � � 0, the proofs of Lemmas A.1 - A.3 work through with the partition Et,1 = {✏t < wt +↵}, Et,2 =

{wt + ↵  ✏t < wt + � + ↵}, and Et,3 = {✏t � wt + � + ↵}.
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and

P (E⌧+1,3|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=
1� F✏|↵(w⌧+1 + ↵)

1� F✏|↵(w⌧+1 + � + ↵)
P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

+ 1� P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵). (A.5)

Lemma A.3. If Assumptions A and SD hold, then for all s, t 2 T ,

P (yt = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵) � P (ys = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵)

if and only if wt � ws.

Lemma A.4. If Assumptions A and SI hold, then for all s, t 2 T ,

P (yt = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵) � P (ys = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵)

if and only if wt � ws.

We next prove Propositions 2.1 - 2.3 in order.

Proof of Proposition 2.1. For the sake of brevity, we only prove the case ys�1 = ys+1 = yt�1 = yt+1 =

1. The proofs for the others cases are similar. Denote

C = {y0 = d0, y1 = d1, ..., ys�1 = 1, ys = ds, ys+1 = 1, ..., yt�1 = 1, yt = dt, yt+1 = 1, ..., yT = dT }

and $ = (w1, ...ws�1, ws+2, ..., wt�1, wt+2, ..., wT ). Then, by model (2.1) and Assumption A(a)

P (C|(ws, ws+1, wt, wt+1) = (!0,!1,!
0
0,!

0
1),↵)

=

Z
P (C|$, (ws, ws+1, wt, wt+1) = (!0,!1,!

0
0,!

0
1),↵)dF$|(ws,ws+1,wt,wt+1)=(!0,!1,!0

0,!
0
1),↵

=

Z
p0(w

T ,↵)d0(1� p0(w
T ,↵))1�d0 ⇥ F✏|↵(w1 + �d0 + ↵)d1(1� F✏|↵(w1 + �d0 + ↵))1�d1 ⇥ · · ·

⇥ F✏|↵(!s�1 + �ds�2 + ↵)F✏|↵(!0 + � + ↵)ds(1� F✏|↵(!0 + � + ↵))1�dsF✏|↵(!1 + �ds + ↵)⇥ · · ·
⇥ F✏|↵(!t�1 + �dt�2 + ↵)F✏|↵(!

0
0 + � + ↵)dt(1� F✏|↵(!

0
0 + � + ↵))1�dtF✏|↵(!

0
1 + �dt + ↵)⇥ · · ·

⇥ F✏|↵(wT + �dT�1 + ↵)dT (1� F✏|↵(wT + �dT�1 + ↵))1�dT dF$|(ws,ws+1,wt,wt+1)=(!0,!1,!0
0,!

0
1),↵

.

Given the exchangeability assumption, If ds = dt, we have

P (C|(ws, ws+1, wt, wt+1) = (!0,!1,!
0
0,!

0
1),↵) = P (C|(ws, ws+1, wt, wt+1) = (!0

0,!
0
1,!0,!1),↵),

and if ds 6= dt, we have

P (C|(ws, ws+1, wt, wt+1) = (!0,!1,!
0
0,!

0
1),↵) = P (C̃|(ws, ws+1, wt, wt+1) = (!0

0,!
0
1,!0,!1),↵),
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where C̃ = {y0 = d0, y1 = d1, ..., ys�1 = 1, ys = dt, ys+1 = 1, ..., yt�1 = 1, yt = ds, yt+1 = 1, ..., yT =

dT }. Then, adding up P (C|(ws, ws+1, wt, wt+1) = (!0,!1,!0
0,!

0
1),↵) across all possible events C

and C̃ yields

P (ys�1 = yt�1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (!0,!1,!
0
0,!

0
1),↵)

=P (ys�1 = yt�1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (!0
0,!

0
1,!0,!1),↵). (A.6)

Invoke Bayes’ theorem to deduce

fws,ws+1,wt,wt+1|ys�1=yt�1=1,ys+1=yt+1=1,↵(!0,!1,!
0
0,!

0
1)

=
P (ys�1 = yt�1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (!0,!1,!0

0,!
0
1),↵)

P (ys�1 = yt�1 = 1, ys+1 = yt+1 = 1|↵)
⇥ fws,ws+1,wt,wt+1|↵(!0,!1,!

0
0,!

0
1)

=
P (ys�1 = yt�1 = 1, ys+1 = yt+1 = 1|(ws, ws+1, wt, wt+1) = (!0

0,!
0
1,!0,!1),↵)

P (ys+1 = yt+1 = 1|ys�1 = 1,↵)

⇥ fws,ws+1,wt,wt+1|↵(!
0
0,!

0
1,!0,!1)

=fws,ws+1,wt,wt+1|ys�1=yt�1=1,ys+1=yt+1=1,↵(!
0
0,!

0
1,!0,!1), (A.7)

where the second equality follows from (A.6) and the exchangeability assumption.

Applying similar arguments to obtain

fws,wt|ys�1=yt�1=1,ys+1=yt+1=1,↵(!0,!
0
0) = fws,wt|ys�1=yt�1=1,ys+1=yt+1=1,↵(!

0
0,!0). (A.8)

Combine (A.7) and (A.8) to deduce

fws+1,wt+1|(ws,wt)=(!0,!0
0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!1,!

0
1)

=fws+1,wt+1|(ws,wt)=(!0
0,!0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!

0
1,!1).

Then, the desired result follows from

fws+1|(ws,wt)=(!0,!0
0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!1)

=

Z
fws+1,wt+1|(ws,wt)=(!0,!0

0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!1,!
0
1)d!

0
1

=

Z
fws+1,wt+1|(ws,wt)=(!0

0,!0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!
0
1,!1)d!

0
1

=fwt+1|(ws,wt)=(!0
0,!0),ys�1=yt�1=1,ys+1=yt+1=1,↵(!1).

Proof of Proposition 2.2. The monotonic relation established in either Lemma A.3 or Lemma A.4
implies that � maximizes Q1(·;↵). The remaining task is to show the uniqueness of � in B, i.e.,
Q1(b;↵) = Q1(�;↵) implies b = �. Here we assume �1 > 0 w.l.o.g. as the case �1 < 0 is symmetric.
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First note that for any b 2 B such that Q1(b;↵) = Q1(�;↵), if

P ([xts,1b1 + x̃0tsb̃ < 0 < xts,1�1 + x̃0ts�̃] [ [xts,1�1 + x̃0ts�̃ < 0 < xts,1b1 + x̃0tsb̃]) > 0,

then � and b will yield different realized values of the sign function in Q1(·;↵) with strictly positive
probability, and thus Q1(�;↵) > Q1(b;↵). It then follows that b1 > 0 must hold, for otherwise by
Assumption A(c) we have

P (xts,1b1 + x̃0tsb̃ < 0 < xts,1�1 + x̃0ts�̃) = P (xts,1 > �x̃0tsb̃/b1, xts,1 > �x̃0ts�̃/�1) > 0.

Then focusing on the case with b1 > 0, we can write

P ([xts,1b1 + x̃0tsb̃ < 0 < xts,1�1 + x̃0ts�̃] [ [xts,1�1 + x̃0ts�̃ < 0 < xts,1b1 + x̃0tsb̃])

=P ([�x̃0ts�̃/�1 < xts,1 < �x̃0tsb̃/b1] [ [�x̃0tsb̃/b1 < xts,1 < �x̃0ts�̃/�1]),

which implies that to make Q1(b;↵) = Q1(�;↵) hold we must have P (x̃0ts�̃/�1 = x̃0tsb̃/b1) = 1 by
Assumption A(c).

However, whenever b is not a scalar multiple of �, P (x̃0ts�̃/�1 = x̃0tsb̃/b1) = 1 implies that X̃ts

is contained in a proper linear subspace of RK�1 a.e., violating Assumption A(d). As a result, we
must have b being a scalar multiple of �, which leads to the desired result b = � as kbk2 = k�k2 = 1

by the construction of the parameter space B in Assumption A(e).

Proof of Proposition 2.3. The proof uses the insight of HK. Here we only prove case (ii) of Propo-
sition 2.3 for t > s + 1 as the same method can be applied to case (i) where s and t are adjacent.
Note that it also suffices to prove that � uniquely maximizes the following population objective
function conditional on ↵:

Q2,2(�;�,↵) ⌘E
�⇥
P (A|xT , ws+1 = wt+1, ys+1 = yt+1,↵)� P (B|xT , ws+1 = wt+1, ys+1 = yt+1,↵)

⇤

⇥sgn ((wt � ws) + r(dt�1 � ds�1)) |↵} .

First, note that under Assumptions A(a) and A(b), we can write

P (A|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵)

=p0(x
T ,↵)d0(1� p0(x

T ,↵))1�d0 ⇥ F✏|↵(w1 + �d0 + ↵)d1(1� F✏|↵(w1 + �d0 + ↵))1�d1

⇥ · · ·⇥ (1� F✏|↵(ws + �ds�1 + ↵))⇥ F✏|↵(w + ↵)d(1� F✏|↵(w + ↵))1�d

⇥ · · ·⇥ F✏|↵(wt + �dt�1 + ↵)⇥ F✏|↵(w + � + ↵)d(1� F✏|↵(w + � + ↵))1�d

⇥ · · ·⇥ F✏|↵(wT + �dT�1 + ↵)dT (1� F✏|↵(wT + �dT�1 + ↵))1�dT

for all w 2 R and d 2 {0, 1}, and similarly,

P (B|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵)

=p0(x
T ,↵)d0(1� p0(x

T ,↵))1�d0 ⇥ F✏|↵(w1 + �d0 + ↵)d1(1� F✏|↵(w1 + �d0 + ↵))1�d1

⇥ · · ·⇥ F✏|↵(ws + �ds�1 + ↵)⇥ F✏|↵(w + � + ↵)d(1� F✏|↵(w + � + ↵))1�d

⇥ · · ·⇥ (1� F✏|↵(wt + �dt�1 + ↵))⇥ F✏|↵(w + ↵)d(1� F✏|↵(w + ↵))1�d

⇥ · · ·⇥ F✏|↵(wT + �dT�1 + ↵)dT (1� F✏|↵(wT + �dT�1 + ↵))1�dT .
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Then, we obtain

P (A|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵)

P (B|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵)

=
(1� F✏|↵(ws + �ds�1 + ↵))⇥ F✏|↵(wt + �dt�1 + ↵)

F✏|↵(ws + �ds�1 + ↵)⇥ (1� F✏|↵(wt + �dt�1 + ↵))

⇥
F✏|↵(w + ↵)d(1� F✏|↵(w + ↵))1�d ⇥ F✏|↵(w + � + ↵)d(1� F✏|↵(w + � + ↵))1�d

F✏|↵(w + � + ↵)d(1� F✏|↵(w + � + ↵))1�d ⇥ F✏|↵(w + ↵)d(1� F✏|↵(w + ↵))1�d

=
(1� F✏|↵(ws + �ds�1 + ↵))⇥ F✏|↵(wt + �dt�1 + ↵)

F✏|↵(ws + �ds�1 + ↵)⇥ (1� F✏|↵(wt + �dt�1 + ↵))

and therefore,

P (A|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵) � P (B|xT , ws+1 = wt+1 = w, ys+1 = yt+1 = d,↵)

if and only if wt + �dt�1 � ws + �ds�1, which implies that � maximizes Q2,2(�;�,↵).

The remaining task is to show that � is unique in R. Suppose that there exists an r 2 R \ {�}
such that Q2,2 (r;�,↵) = Q2,2 (�;�,↵). Note that the value of r (and �) affects Q2,2 (·;�,↵) only
when ds�1 6= dt�1. Here we assume that dt�1 = 1 and ds�1 = 0 (the case with dt�1 = 0 and
ds�1 = 1 is symmetric). Then by Assumption A(c), the following probability is non-zero:

P ([�� < wt � ws < �r] [ [�r < wt � ws < ��]) .

Consequently, � and r yield different realized values of the sign function in objective function
Q2,2 (·;�,↵) with strictly positive probability, and hence Q2,2 (r;�,↵) < Q2,2 (�;�,↵), a contradic-
tion. Then we can conclude that Q2,2 (r;�,↵) = Q2,2 (�;�,↵) if and only if r = �, or equivalently
� uniquely maximizes Q2,2 (·;�,↵) in R.

B Technical Lemmas and Main Proofs for Asymptotics

In this section, we define a few technical terms and a few more technical notations, present some
technical lemmas, and provide the proof of our main asymptotic theory, Theorem 4.1. The proofs
for the technical lemmas are relegated to Appendix D.

The outline of the proof of Theorem 4.1 is as follows. Lemmas B.1 and B.2 verify the technical
conditions as required in Seo and Otsu (2018). Those conditions can ensure the class of functions
is manageable as in Kim and Pollard (1990). After that, the maximal inequalities and asymptotics in
Seo and Otsu (2018) can be readily applied to our estimator. Lemma B.4 deals with the impact of
using �̂ on estimating �̂, using maximal inequalities established in Seo and Otsu (2018). Lemmas
B.3 and B.5 obtain the technical terms for the final asymptotics for �̂ and �̂.

Let c and C denote some constants that may vary from line to line. En denotes the expectation
conditional on observations being fixed.  denotes weakly convergence in the sense of van der
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Vaart and Wellner (2000). Let

Gn (fni) ⌘ n1/2
nX

i=1

[fni � En (fn)] ,

for any fni. To facilitate calculation, occasionally we may decompose covariate x into$�+x� with
a scalar $ and x� orthogonal to �.

Lemma B.1. Suppose Assumptions A, SI (or SD), 3, and 4 hold. Then ⇠i (b) satisfies Assumption M in
Seo and Otsu (2018).

Lemma B.2. Suppose Assumptions A, SI (or SD) and 3 - 6 hold. Then &ni (r, b) satisfies Assumption M
in Seo and Otsu (2018).

Lemma B.3. Suppose Assumptions A and 3 hold. Then

lim
n!1

n2/3E
⇣
⇠i
⇣
� + sn�1/3

⌘⌘
=

1

2
s0V1s,

and
lim
n!1

n1/3E
h
⇠i
⇣
� + sn�1/3

⌘
⇠i
⇣
� + tn�1/3

⌘i
= H1 (s, t) .

V1 is defined as

V1 = �
Z

1
⇥
x031� = 0

⇤✓@ (x31)
@x31

0
�

◆
fx31 (x31)x31x

0
31d�0, (B.1)

with �0 being the surface measure on {x31 : x031� = 0} and

 (x) = E {P (yi0 = yi2 = yi4|xi1, xi3) {E [yi3|yi2 = yi4, xi3]� E [yi1|yi0 = yi2, xi1]} |xi31 = x} .

H1 (s, t) is defined as

H1 (s, t) =
1

2

Z

RK�1
 (x�)

⇥��x0�s
��+
��x0�t

���
��x0� (s� t)

��⇤ fx31 (x�) dx� , (B.2)

where s, t are K ⇥ 1 vectors,

 (x) = E {P (yi0 = yi2 = yi4|xi1, xi3) |E [yi3|yi2 = yi4, xi3]� E [yi1|yi0 = yi2, xi1]| |xi31 = x} ,

and x� is orthogonal to �.

Lemma B.4. Suppose Assumptions A and 3 - 6 hold. Then

Ẑn,2 (s)� Zn,2 (s) = oP (1) ,

where the small order term holds uniformly over |s|  C for any positive C.

Lemma B.5. Suppose Assumptions A, 3, 5, and 6 hold. Then

lim
n!1

(nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

=
1

2
V2s

2,
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and
lim
n!1

(nhn)
1/3 E

⇣
hn&ni

⇣
� + s (nhn)

�1/3 ,�
⌘
&ni
⇣
� + t (nhn)

�1/3 ,�
⌘⌘

= H2 (s, t) .

V2 is defined as

V2 = �
Z

RK�1

Z
1
⇥
x021� + �y30 = 0

⇤
 
@E (y21|x21, y30, x32 = x�)

@ (y30, x021)
0

0
 
�

�

!!
(B.3)

f (x21, y30|x32 = x�) |y30| d�0fx32 (x�) dx�

�
Z

RK�1

Z
1
⇥
x032� + �y41 = 0

⇤
 
@E (y32|x32, y41, x43 = x�)

@ (y41, x032)
0

0
 
�

�

!!

f (x32, y41|x43 = x�) |y41| d�0fx43 (x�) dx�

with �0 denoting the surface measure of
�
(x021, y30)

0��x021� + �y30 = 0
 

in the first integral and the surface
measure of

�
(x032, y41)

0��x032� + �y41 = 0
 

in the second integral. H2 (s, t) is defined as

H2 (s, t) (B.4)

=
1

2
(|s|+ |t|� |s� t|) K̄2

Z

RK�1

�
E
⇥
|y21| |x021� = ��, y30 = 1, x32 = x�

⇤
f
�
y30 = 1, x021� = ��|x32 = x�

�

+ E
⇥
|y21| |x021� = �, y30 = �1, x32 = x�

⇤
f
�
y30 = �1, x021� = �|x32 = x�

� 
fx32 (x�) dx�

+
1

2
(|s|+ |t|� |s� t|) K̄2

Z

RK�1

�
E
⇥
|y32| |x032� = ��, y41 = 1, x43 = x�

⇤
f
�
y41 = 1, x032� = ��|x43 = x�

�

+E
⇥
|y32| |x032� = �, y41 = �1, x43 = x�

⇤
f
�
y41 = �1, x032� = �|x43 = x�

� 
fx43 (x�) dx� ,

where s, t are scalars, K̄2 =
R
RK (u)2 du, and x� is orthogonal to �.

Remark B.1 (On convergence rate). HK put x32 in the kernel Khn (·) while we put x032b and x043b

instead. One implication of this difference is that the convergence rate of the estimator in HK is
(nhKn )�1/3 and the convergence rate of �̂ here is expected to be (nhn)�1/3. Thus our estimator �̂
does not suffer from the curse of dimensionality. The intuition of this result is that we match a
single index x032b or x043b while HK had to match the entire vector x32.

Remark B.2 (On V1). By definition,

@ (x31)

@x31

0
�

����
x0
31�=0

= lim
h!0

 (x31 + h�)�  (x31)

h

����
x0
31�=0

.

Notice that (x31 + h�)0 � = h k�k if x031� = 0. Similar to the discussion under equation (D.18), for
x31 satisfied with x031� = 0,  (x31 + h�) � 0 =  (x31) if h > 0 and  (x31 + h�)  0 =  (x31)

if h < 0. Thus @(x31)
@x31

0
�
���
x0
31�=0

� 0, and V1 is negative semidefinite. If
⇣
@(x31)
@x31

0
�
⌘
fx31 is strictly

positive over a nonzero measure on the surface x031� = 0, V1 is negative definite.

Remark B.3 (On V2). Note that V2 is a scalar.

@E (y21|x21, y30, x32 = x�)

@ (y30, x021)
0

0
 
�

�

!
� 0 and

@E (y32|x32, y41, x43 = �)

@ (y41, x032)
0

0
 
�

�

!
� 0

hold for the same reason as in Remark B.2. Thus V2  0. V2 < 0 if either term above is strictly
positive over a nonzero measure.
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Proof of Theorem 4.1. We prove the first part of this theorem first.

Lemma B.1 verifies the key technical conditions needed for applying Theorem 1 in Seo and
Otsu (2018). �̂ � � = OP

�
n�1/3

�
by Assumption 2 and Lemma 1 in Seo and Otsu (2018).

Notice that �̂ can be equivalently obtained from

argmax
b2B

n2/3 · n�1
nX

i=1

⇠i
⇣
� + n�1/3 · n1/3 (b� �)

⌘
.

Intuitively, we get the asymptotics of n1/3
⇣
�̂ � �

⌘
if we can get the asymptotics of

Zn,1 (s) = n2/3 · n�1
nX

i=1

⇠i
⇣
� + sn�1/3

⌘
.

Lemma B.3 calculates the the mean and covariance kernel of Zn,1 (s) . ⇠i (b) is uniformly bounded,
so the Lindeberg condition for Zn,1 (s) is satisfied. Therefore, Zn,1 (s) is pointwise asymptotically
normal. With Assumption 2, Theorem 1 in Seo and Otsu (2018) implies the equicontinuity of
Zn,1 (s) , and it yields Zn,1 (s) Z1 (s) , where Z1 (s) is a Gaussian Process with continuous sam-
ple paths, expected value �1

2s
0V1s, and covariance kernel H1 (s, t) that can be calculated as in

equation (B.2). As a result,
n1/3

⇣
�̂ � �

⌘
d! arg max

s2RK
Z1 (s) ,

by applying Theorem 1 in Seo and Otsu (2018).

We now prove the second part. The calculation of equation (D.29) in the proof of Lemma B.5
shows,

En

⇣
&ni
⇣
r, �̂
⌘
� &ni (�,�)

⌘
=

1

2

✓
r � �,

⇣
�̂ � �

⌘0◆
Ṽ2

 
r � �

�̂ � �

!
(B.5)

+ o

✓����

✓
r � �,

⇣
�̂ � �

⌘0◆0����
2

◆
+ o

⇣
(nhn)

�2/3
⌘
,

where Ṽ2 is defined in equation (D.28).

The convergence rate of �̂ is (nhn)�1/3 , which can be seen from

oP
⇣
(nhn)

�2/3
⌘
 n�1

nX
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⇣
�̂, �̂

⌘
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⌘
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⇣
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⌘
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nX
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i=1
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�, �̂

⌘
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⌘
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◆
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⌘
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⌘
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,
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for each " > 0, where the first line holds by Assumption 2, the third to fourth lines hold by
applying Lemma 1 in Seo and Otsu (2018), the fifth line holds by Assumption 4 and equation
(B.5). By noting

����̂ � �
���
2
= OP

�
n�1/3

�
= oP

⇣
(nhn)

�1/3
⌘
, the inequality above implies

0  (�c+ ") (�̂ � �)2 + o
⇣
(�̂ � �)2

⌘
+OP

⇣
(nhn)

�2/3
⌘
.

Taking an " to satisfy " << c yields that �̂ � � = OP

⇣
(nhn)

�1/3
⌘
. So we only need to get the

limiting distribution of Ẑn,2 (s).

The analysis of Ẑn,2 (s) is complicated by including the first-stage estimator �̂. Lemma B.4
shows that �̂ has no impact on the asymptotics of �̂. More specifically,

Ẑn,2 (s) = Zn,2 (s) + oP (1)

= n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ (nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ oP (1) ,

(B.6)

where Gn (&ni (r, b)) = n�1/2Pn
i=1 (&ni (r, b)� En (&ni (r, b))). As a result, the asymptotics is estab-

lished if the weak convergence of the leading term in equation (B.6) is proved.

Lemma B.5 calculates the the mean of (nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

and covariance

kernel n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

.

Note
nX
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⌘2+�

E
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�
! 0

for a small � > 0, because (nhn)
��/3 ! 0 and (nhn)

1/3 E

h1+�
n

���&ni
⇣
� + s (nhn)

�1/3 ,�
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2+�
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c for a finite c. This verifies the Lyapunov condition for n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

.

Therefore, it converges to normal in distribution for each s. Lemma B.2 verifies the key technical
conditions for applying Theorem 1 in Seo and Otsu (2018) to Zn,2 (s). Together with Assumption 2,
all technical conditions in Theorem 1 of Seo and Otsu (2018) are satisfied for Zn,2 (s). That implies
the stochastic equicontinuity of Zn,2 (s) in s and

Zn,2 (s) Z2 (s) ,

where Z2 (s) is a Gaussian process with continuous path, expected value 1
2V2s2 and covariance

kernel H2 (s, t). By means of the continuous mapping Theorem,

(nhn)
1/3 (�̂ � �)

d! argmax
s2R

Z2 (s) .
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C Tables

Table 1A: Design 1, Performance of �̂ and �̂

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

MEAN 0.720 �0.711 0.715 �0.705 0.708 �0.694

BIAS 0.013 �0.004 0.008 0.003 0.001 0.014

MAD 0.104 0.115 0.081 0.089 0.066 0.069

RMSE 0.134 0.146 0.104 0.112 0.083 0.086

Table 1B: Design 1, Numerical Bootstrap

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

c = 0.8 COVERAGE 0.894 0.903 0.917 0.924 0.926 0.913

LENGTH 0.585 0.603 0.494 0.466 0.412 0.346

c = 0.9 COVERAGE 0.905 0.892 0.914 0.925 0.926 0.925

LENGTH 0.576 0.603 0.484 0.469 0.405 0.349

c = 1.0 COVERAGE 0.900 0.905 0.927 0.916 0.927 0.920

LENGTH 0.567 0.595 0.478 0.470 0.401 0.352

c = 1.1 COVERAGE 0.916 0.902 0.921 0.907 0.930 0.923

LENGTH 0.560 0.587 0.569 0.472 0.394 0.356

c = 1.2 COVERAGE 0.907 0.889 0.918 0.915 0.922 0.929

LENGTH 0.553 0.581 0.465 0.470 0.390 0.357

Table 1C: Design 1, Bootstrap using a Modified Objective Function

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

c = 0.8 COVERAGE 0.917 0.888 0.903 0.905 0.915 0.907

LENGTH 0.468 0.469 0.364 0.374 0.283 0.290

c = 0.9 COVERAGE 0.907 0.890 0.930 0.914 0.933 0.918

LENGTH 0.510 0.485 0.392 0.381 0.304 0.295

c = 1.0 COVERAGE 0.905 0.921 0.946 0.911 0.948 0.916

LENGTH 0.560 0.499 0.429 0.389 0.328 0.300

c = 1.1 COVERAGE 0.945 0.907 0.945 0.916 0.958 0.927

LENGTH 0.614 0.509 0.465 0.397 0.357 0.305

c = 1.2 COVERAGE 0.936 0.912 0.957 0.924 0.966 0.930

LENGTH 0.672 0.525 0.512 0.403 0.388 0.310
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Table 2A: Design 2, Performance of �̂ and �̂

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

MEAN 0.736 �0.714 0.734 �0.716 0.732 �0.700

BIAS 0.029 �0.007 0.027 �0.009 0.024 0.007

MAD 0.109 0.123 0.085 0.097 0.070 0.074

RMSE 0.141 0.156 0.107 0.121 0.089 0.092

Table 2B: Design 2, Numerical Bootstrap

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

c = 0.8 COVERAGE 0.903 0.898 0.936 0.924 0.941 0.915

LENGTH 0.587 0.632 0.492 0.493 0.414 0.368

c = 0.9 COVERAGE 0.907 0.894 0.920 0.924 0.939 0.916

LENGTH 0.575 0.624 0.483 0.495 0.408 0.373

c = 1.0 COVERAGE 0.905 0.905 0.930 0.913 0.935 0.926

LENGTH 0.567 0.612 0.477 0.498 0.401 0.375

c = 1.1 COVERAGE 0.897 0.910 0.905 0.906 0.933 0.932

LENGTH 0.559 0.607 0.469 0.494 0.396 0.381

c = 1.2 COVERAGE 0.908 0.890 0.930 0.916 0.940 0.931

LENGTH 0.553 0.598 0.464 0.492 0.390 0.382

Table 2C: Design 2, Bootstrap using a Modified Objective Function

n = 5000 n = 10000 n = 20000

�̂2 �̂ �̂2 �̂ �̂2 �̂

c = 0.8 COVERAGE 0.861 0.860 0.891 0.901 0.880 0.890

LENGTH 0.465 0.489 0.357 0.389 0.281 0.304

c = 0.9 COVERAGE 0.886 0.887 0.900 0.905 0.890 0.911

LENGTH 0.496 0.501 0.380 0.399 0.297 0.311

c = 1.0 COVERAGE 0.901 0.897 0.906 0.908 0.900 0.914

LENGTH 0.541 0.522 0.414 0.409 0.318 0.317

c = 1.1 COVERAGE 0.906 0.926 0.917 0.906 0.915 0.920

LENGTH 0.591 0.535 0.452 0.416 0.344 0.321

c = 1.2 COVERAGE 0.923 0.925 0.937 0.916 0.926 0.927

LENGTH 0.647 0.549 0.489 0.427 0.373 0.328
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Table 3A: Design 3, Performance of �̂ and �̂

n = 5000 n = 10000 n = 20000

�̂2 �̂3 �̂ �̂2 �̂3 �̂ �̂2 �̂3 �̂

MEAN 0.596 0.591 �0.585 0.589 0.589 �0.577 0.588 0.591 �0.575

BIAS 0.019 0.013 �0.008 0.012 0.012 0.001 0.011 0.014 0.003

MAD 0.088 0.089 0.109 0.071 0.070 0.083 0.040 0.042 0.052

RMSE 0.115 0.116 0.141 0.090 0.089 0.106 0.053 0.053 0.063

Table 3B: Design 3, Numerical Bootstrap

n = 5000 n = 10000 n = 20000

�̂2 �̂3 �̂ �̂2 �̂3 �̂ �̂2 �̂3 �̂

c = 0.8 COVERAGE 0.933 0.937 0.867 0.957 0.943 0.913 0.955 0.949 0.890

LENGTH 0.526 0.525 0.540 0.439 0.439 0.433 0.364 0.365 0.330

c = 0.9 COVERAGE 0.931 0.933 0.861 0.956 0.947 0.904 0.952 0.942 0.900

LENGTH 0.518 0.507 0.531 0.432 0.433 0.432 0.359 0.360 0.330

c = 1.0 COVERAGE 0.931 0.926 0.861 0.956 0.946 0.907 0.953 0.937 0.890

LENGTH 0.510 0.508 0.521 0.427 0.428 0.430 0.354 0.356 0.334

c = 1.1 COVERAGE 0.928 0.927 0.851 0.957 0.950 0.913 0.953 0.943 0.890

LENGTH 0.501 0.501 0.512 0.423 0.422 0.427 0.350 0.352 0.353

c = 1.2 COVERAGE 0.924 0.926 0.851 0.944 0.944 0.903 0.964 0.945 0.900

LENGTH 0.493 0.492 0.502 0.418 0.417 0.421 0.347 0.348 0.335

Table 3C: Design 3, Bootstrap using a Modified Objective Function

n = 5000 n = 10000 n = 20000

�̂2 �̂3 �̂ �̂2 �̂3 �̂ �̂2 �̂3 �̂

c = 0.8 COVERAGE 0.913 0.913 0.850 0.943 0.936 0.870 0.949 0.934 0.863

LENGTH 0.407 0.408 0.424 0.317 0.317 0.340 0.247 0.248 0.267

c = 0.9 COVERAGE 0.920 0.922 0.877 0.951 0.940 0.877 0.952 0.936 0.900

LENGTH 0.433 0.433 0.454 0.335 0.335 0.350 0.259 0.259 0.272

c = 1.0 COVERAGE 0.934 0.927 0.863 0.959 0.948 0.885 0.959 0.968 0.901

LENGTH 0.466 0.465 0.440 0.360 0.356 0.356 0.276 0.277 0.274

c = 1.1 COVERAGE 0.935 0.944 0.892 0.966 0.963 0.902 0.965 0.948 0.890

LENGTH 0.508 0.507 0.466 0.390 0.389 0.361 0.299 0.300 0.281

c = 1.2 COVERAGE 0.947 0.950 0.904 0.969 0.969 0.911 0.972 0.961 0.890

LENGTH 0.551 0.553 0.479 0.426 0.424 0.369 0.324 0.326 0.285
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Table 4: Definition of Variables

Variable Definition
labor force participation (yit) 1 if a person is in the labor force during the past 7 days, 0

otherwise
Health shock (HSit) 1 if there is personal injury or illness that has happened to

life over the past 12 months, 0 otherwise
Activity limiting condition (ALCit) 1 if there is any long-term health condition, impairment

or disability that restricts everyday activity has lasted for
6 months or more, 0 otherwise

Unemployment rate (URt) Unemployment rate in major statistical region
log(Income) (Iit) Natural logarithm of household’s financial year dispos-

able income

Table 5: Summary Statistics

Variable Mean Std.Dev. 25% Quantile Median 75% Quantile
Male (number of individuals: 6,848, number of observations: 42,416)

labor force participation 0.736 0.441 0 1 1

Health shock 0.087 0.282 0 0 0

Activity limiting condition 0.276 0.447 0 0 1

Unemployment rate 5.077 1.032 4.400 5.200 5.800

ln(income) 11.119 0.718 10.700 11.120 11.585

Female (number of individuals: 7,927, number of observations: 48,121)
labor force participation 0.621 0.485 0 1 1

Health shock 0.082 0.274 0 0 0

Activity limiting condition 0.282 0.450 0 0 1

Unemployment rate 5.082 1.030 4.400 5.200 5.800

log(Income) 11.030 0.755 10.576 11.127 11.545
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Table 6: Estimates of Preference Coefficients

Whole Sample Male Sample Female Sample

Variable Estimate 95% CIs Estimate 95% CIs Estimate 95% CIs

yit�1 0.898 [0.071, 1.062]⇤⇤ 0.915 [0.014, 1.000]⇤⇤ 1.189 [0.199, 1.367]⇤⇤

[0.797, 0.929]⇤⇤ [0.891, 0.975]⇤⇤ [0.955, 1.214]⇤⇤

HSit �0.799 [�0.963,�0.374]⇤⇤ �0.831 [�0.919,�0.331]⇤⇤ �0.972 [�1.073,�0.403]⇤⇤

[�0.927,�0.728]⇤⇤ [�0.908,�0.757]⇤⇤ [�1.000,�0.866]⇤⇤

ALCit �0.144 [�0.725, 0.545] �0.299 [�0.613, 0.523] 0.002 [�0.712, 0.581]

[�0.395, 0.270] [�0.531, 0.191] [�0.277, 0.222]

URt �0.096 [�0.357, 0.119] 0.066 [�0.440, 0.137] �0.039 [�0.424, 0.107]

[�0.279, 0.216] [�0.202, 0.278] [�0.155, 0.215]

Iit 0.576 [�0.255, 0.859] 0.465 [0.174, 0.892]⇤⇤ 0.233 [�0.626, 0.815]

[0.180, 0.652]⇤⇤ [0.270, 0.544]⇤⇤ [�0.129, 0.433]

D Proofs for Technical Lemmas

Proof of Lemma A.1. Here we only prove the case ⌧ = s. The derivation for case ⌧ = t is analogous.

First note that by law of total probability, we can write for all d1 2 {0, 1},

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = d1,↵)

=
3X

j=1

�
P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = d1,↵, Es+1,j)

⇥P (Es+1,j |wT , ys�1 = yt�1, ys+1 = yt+1 = d1,↵)
 
. (D.1)

When d1 = 1, (D.1) reduces to

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵, Es+1,1)

⇥ P (Es+1,1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵) (D.2)
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as by definition Es+1,3 \ {ys+1 = 1} = ; and by Bayes’ theorem24

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵, Es+1,2)

=
P (ys+1 = 1, Es+1,2|wT , ys�1 = yt�1, yt+1 = 1,↵, ys = 1)P (ys = 1|wT , ys�1 = yt�1, yt+1 = 1,↵)

P (ys+1 = 1, Es+1,2|wT , ys�1 = yt�1, yt+1 = 1,↵)

=0,

where the last equality is due to fact that Es+1,2 \ {ys+1 = 1} = Es+1,2 \Es+1,1 = ; conditional on
{ys = 1}. Furthermore, under Assumption A(a), we can write

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵, Es+1,1)

=P (ys = 1|wT , ys�1 = yt�1, yt+1 = 1,↵, Es+1,1) = P (ys = 1|wT , ys�1,↵, Es+1,1)

=P (ys = 1|wT , ys�1,↵) = F✏|↵(ws + �ys�1 + ↵), (D.3)

where the first equality uses the fact that Es+1,1 ⇢ {ys+1 = 1}, the second equality follows from
noticing that ys (depends only on ✏s) is independent of (yt�1, yt+1) (depend only on (✏s+2, ..., ✏t+1))
conditional on (wT , ys�1,↵) and event Es+1,1, and the third equality is because ys ? Es+1,1 condi-
tional on (wT , ys�1,↵). Plugging (D.3) into (D.2) yields (A.1).

When d1 = 0, (D.1) reduces to

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=
3X

j=2

�
P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵, Es+1,j)

⇥P (Es+1,j |wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)
 

(D.4)

as by definition Es+1,1 \ {ys+1 = 0} = ;.

Using Bayes’ theorem and the fact that Es+1,2 \ {ys+1 = 0} = Es+1,2 \ Es+1,3 = ; conditional
on {ys = 0}, we have

P (ys = 0|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵, Es+1,2)

=
P (ys+1 = 0, Es+1,2|wT , ys�1 = yt�1, yt+1 = 0,↵, ys = 0)P (ys = 0|wT , ys�1 = yt�1, yt+1 = 0,↵)

P (ys+1 = 0, Es+1,2|wT , ys�1 = yt�1, yt+1 = 0,↵)

=
P (Es+1,2 \ Es+1,3|wT , ys�1 = yt�1, yt+1 = 0,↵, ys = 0)P (ys = 0|wT , ys�1 = yt�1, yt+1 = 0,↵)

P (ys+1 = 0, Es+1,2|wT , ys�1 = yt�1, yt+1 = 0,↵)

=0,

24The Bayes’ theorem is stated mathematically as the following equation

P (A|B,C) = P (B|A,C)P (A|C)/P (B|C)

where A, B and C are events and P (B|C) > 0. Here we apply Bayes’ theorem by letting A = {ys = 1}, B = {ys+1 =

1, Es+1,2}, and C = {wT , ys�1 = yt�1, yt+1 = 1,↵}.
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and thus
P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵, Es+1,2) = 1. (D.5)

Applying similar arguments for deriving (D.3) gives

P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵, Es+1,3)

=P (ys = 1|wT , ys�1 = yt�1, yt+1 = 0,↵, Es+1,3) = P (ys = 1|wT , ys�1 = d,↵, Es+1,3)

=P (ys = 1|wT , ys�1,↵) = F✏|↵(ws + �ys�1 + ↵). (D.6)

Then plugging (D.5) and (D.6) into (D.4) yields (A.2).

Proof of Lemma A.2. Again we only prove the case ⌧ = s as the same arguments can be applied to
derive the case ⌧ = t. Note that for all j = 1, 2, 3, we can use law of total probability to write

P (Es+1,j |wT , ys�1 = yt�1, ys+1 = yt+1,↵)

=P (Es+1,j |wT , ys�1 = yt�1, ys+1 = yt+1,↵, ys = 0)P (ys = 0|wT , ys�1 = yt�1, ys+1 = yt+1,↵)

+ P (Es+1,j |wT , ys�1 = yt�1, ys+1 = yt+1,↵, ys = 1)P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1,↵)

=P (Es+1,j |wT , ys�1, ys+1,↵, ys = 0)P (ys = 0|wT , ys�1 = yt�1, ys+1 = yt+1,↵)

+ P (Es+1,j |wT , ys�1, ys+1,↵, ys = 1)P (ys = 1|wT , ys�1 = yt�1, ys+1 = yt+1,↵),

where the second equality follows from Es+1,j ? {yt�1, yt+1}|(wT , ys�1, ys, ys+1,↵) by Assump-
tion A(a). Therefore, to prove (A.3) - (A.5), it suffices to verify the following equalities:

(1) P (Es+1,1|wT , ys�1, ys+1 = 1,↵, ys = 1) = 1

(2) P (Es+1,1|wT , ys�1, ys+1 = 1,↵, ys = 0) =
F✏|↵(ws+1+�+↵)
F✏|↵(ws+1+↵)

(3) P (Es+1,2|wT , ys�1, ys+1 = 0,↵, ys = 1) =
F✏|↵(ws+1+↵)�F✏|↵(ws+1+�+↵)

1�F✏|↵(ws+1+�+↵)

(4) P (Es+1,2|wT , ys�1, ys+1 = 0,↵, ys = 0) = 0

(5) P (Es+1,3|wT , ys�1, ys+1 = 0,↵, ys = 1) =
1�F✏|↵(ws+1+↵)

1�F✏|↵(ws+1+�+↵)

(6) P (Es+1,3|wT , ys�1, ys+1 = 0,↵, ys = 0) = 1

Equalities (1), (4), and (6) can be easily verified using the facts that Es+1,1 = {ys+1 = 1}
conditional on {ys = 1}, Es+1,2 \ {ys+1 = 0} = ; conditional on {ys = 0}, and Es+1,3 = {ys+1 = 0}
conditional on {ys = 0}, respectively.
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For equality (2), note that using conditional probability formula, we have

P (Es+1,1|wT , ys�1, ys+1 = 1,↵, ys = 0)

=
P (ys+1 = 1, Es+1,1|wT , ys�1,↵, ys = 0)

P (ys+1 = 1|wT , ys�1,↵, ys = 0)
=

P (Es+1,1|wT , ys�1,↵, ys = 0)

P (Es+1,1 [ Es+1,2|wT , ys�1,↵, ys = 0)

=
P (Es+1,1|ws+1,↵)

P (Es+1,1 [ Es+1,2|ws+1,↵)
=

F✏|↵(ws+1 + � + ↵)

F✏|↵(ws+1 + ↵)

where the second equality uses the fact that {ys+1 = 1} = Es+1,1 [Es+1,2 conditional on {ys = 0},
and the third equality follows by Assumption A(a).

Similar arguments, along with the fact that {ys+1 = 0} = Es+1,2 [ Es+1,3 conditional on {ys =
1}, can be used to verify equalities (3) and (5). Specifically, we can write for equality (3),

P (Es+1,2|wT , ys�1, ys+1 = 0,↵, ys = 1)

=
P (ys+1 = 0, Es+1,2|wT , ys�1,↵, ys = 1)

P (ys+1 = 0|wT , ys�1,↵, ys = 1)
=

P (Es+1,2|wT , ys�1,↵, ys = 1)

P (Es+1,2 [ Es+1,3|wT , ys�1,↵, ys = 1)

=
P (Es+1,2|ws+1,↵)

P (Es+1,2 [ Es+1,3|ws+1,↵)
=

F✏|↵(ws+1 + ↵)� F✏|↵(ws+1 + � + ↵)

1� F✏|↵(ws+1 + � + ↵)

and analogously for equality (5),

P (Es+1,3|wT , ys�1, ys+1,↵, ys = 1)

=
P (ys+1 = 0, Es+1,3|wT , ys�1,↵, ys = 1)

P (ys+1 = 0|wT , ys�1,↵, ys = 1)
=

P (Es+1,3|wT , ys�1,↵, ys = 1)

P (Es+1,2 [ Es+1,3|wT , ys�1,↵, ys = 1)

=
P (Es+1,3|ws+1,↵)

P (Es+1,2 [ Es+1,3|ws+1,↵)
=

1� F✏|↵(ws+1 + ↵)

1� F✏|↵(ws+1 + � + ↵)
.

Then the proof completes.

Proof of Lemma A.3. Let $ denote the sub-vector of wT comprising all its elements other than ws

and wt. Note that for all ⌧ 2 {s, t},

P (y⌧ = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵)

=

Z
P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1,↵)dF$|ws,wt,ys�1=yt�1,ys+1=yt+1,↵. (D.7)

In what follows, we consider two cases, ys+1 = yt+1 = 1 and ys+1 = yt+1 = 0, in turn.

Case 1 ( ys+1 = yt+1 = 1 ) Plug (A.3) into (A.1) to obtain

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=F✏|↵(w⌧ + �y⌧�1 + ↵){P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

+
F✏|↵(w⌧+1 + � + ↵)

F✏|↵(w⌧+1 + ↵)
[1� P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)]}. (D.8)
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Let  (w) ⌘ F✏|↵(w+ �y⌧�1 +↵) and �1(w) ⌘ F✏|↵(w+ � +↵)/F✏|↵(w+↵). Deduce from (D.8) that

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=
 (w⌧ )�1(w⌧+1)

1�  (w⌧ ) +  (w⌧ )�1(w⌧+1)
⌘ G1(w⌧ , w⌧+1).

Then, (D.7) reduces to
Z

G1(w⌧ , w)dFw⌧+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w),

and hence

P (yt = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

� P (ys = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=

Z
G1(wt, w)dFwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w)

�
Z

G1(ws, w)dFws+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w)

=

Z
[G1(wt, w)�G1(ws, w)] dFwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w) (D.9)

+

Z
G1(ws, w)d

⇥
Fwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w)� Fws+1|ws,wt,ys�1=yt�1,ys+1=yt+1=1,↵(w)

⇤
.

It is easy to verify that  0(·) > 0, �01(·) > 0 (by Assumption SD(a)). Therefore, G0
1(·, w) > 0

and G0
1(w, ·) > 0 hold true for all w. The former monotonicity result implies that the first term in

(D.9) is positive if and only if wt � ws. The latter, together with Assumption SD(b), implies that
the second term in (D.9) is positive if and only if wt � ws. Put these results to establish the desired
result.

Case 2 ( ys+1 = yt+1 = 0 ) Plug (A.4) and (A.5) into (A.2) to obtain

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=
F✏|↵(w⌧+1 + ↵)� F✏|↵(w⌧+1 + � + ↵)

1� F✏|↵(w⌧+1 + � + ↵)
P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

+ F✏|↵(w⌧ + �y⌧�1 + ↵)[
1� F✏|↵(w⌧+1 + ↵)

1� F✏|↵(w⌧+1 + � + ↵)
P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

+ 1� P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)]. (D.10)

Let �0(w) ⌘ [1� F✏|↵(w + ↵)]/[1� F✏|↵(w + � + ↵)]. We deduce from (D.10) that

P (y⌧ = 1|wT , ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=
 (w⌧ )

 (w⌧ ) + �0(w⌧+1)�  (w⌧ )�0(w⌧+1)
⌘ G0(w⌧ , w⌧+1).
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Then, (D.7) reduces to
Z

G0(w⌧ , w)dFw⌧+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w),

and hence

P (yt = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

� P (ys = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 0,↵)

=

Z
G0(wt, w)dFwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w)

�
Z

G0(ws, w)dFws+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w)

=

Z
[G0(wt, w)�G0(ws, w)] dFwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w) (D.11)

+

Z
G0(ws, w)d

⇥
Fwt+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w)� Fws+1|ws,wt,ys�1=yt�1,ys+1=yt+1=0,↵(w)

⇤
.

By Assumption SD(a), �00(·) < 0. Therefore, G0
0(·, w) > 0 and G0

0(w, ·) > 0 hold true for all w. The
former monotonicity result implies that the first term in (D.11) is positive if and only if wt � ws.
The latter, together with Assumption SD(b), implies that the second term in (D.11) is positive if
and only if wt � ws. The proof is complete.

Proof of Lemma A.4. The proof adopts similar arguments used in the proofs of Lemmas A.1 - A.3.
Here we only outline the proof procedure and omit repetitive technical details for brevity, .

First note that, under Assumptions A and SI, we can write for both ⌧ = s and ⌧ = t,

P (y⌧ = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1,↵) = P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1,↵). (D.12)

To see this, note that for ⌧ = s and all d0, d1 2 {0, 1}

P (ys = 1|ws, wt, ys�1 = yt�1 = d0, ys+1 = yt+1 = d1,↵)

=
P (yt�1 = d0, yt+1 = d1|ws, wt, ys�1 = d0, ys = 1, ys+1 = d1,↵)

P (yt�1 = d0, yt+1 = d1|ws, wt, ys�1 = d0, ys+1 = d1,↵)

⇥ P (ys = 1|ws, wt, ys�1 = d0, ys+1 = d1,↵)

=
P (yt�1 = d0, yt+1 = d1|wt, ys+1 = d1,↵)P (ys = 1|ws, wt, ys�1 = d0, ys+1 = d1,↵)

P (yt�1 = d0, yt+1 = d1|wt, ys+1 = d1,↵)

=P (ys = 1|ws, wt, ys�1 = d0, ys+1 = d1,↵)

=
P (ys+1 = d1|ws, wt, ys�1 = d0, ys = 1,↵)P (ys = 1|ws, wt, ys�1 = d0,↵)

P (ys+1 = d1|ws, wt, ys�1 = d0,↵)

=
P (ys+1 = d1|ws, ys�1 = d0, ys = 1,↵)P (ys = 1|ws, ys�1 = d0,↵)

P (ys+1 = d1|ws, ys�1 = d0,↵)

=P (ys = 1|ws, ys�1 = d0, ys+1 = d1,↵),

where the first, third, fourth, and last equalities use Bayes’ theorem, and the second and fifth
equalities follow by Assumptions SI(a) and A(a)25. Using similar arguments yields the same sim-
25(yt�1, yt+1) ? (ws, ys�1, ys)|(wt, ys+1,↵) and (ys, ys+1) ? wt|(ws, ys�1,↵).
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plification for ⌧ = t.

For the case with d1 = 1, we uses the same arguments for deriving (A.1) to write

P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

=P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵, E⌧+1,1)P (E⌧+1,1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

=F✏|↵(w⌧ + �y⌧�1 + ↵)P (E⌧+1,1|w⌧ , y⌧�1, y⌧+1 = 1,↵), (D.13)

where the last equality follows from E⌧+1,1 ⇢ {y⌧+1 = 1}, Assumption SI(a), and Assumption
A(a). Then, we use analogous arguments for proving Lemma A.2 to deduce

P (E⌧+1,1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

=P (E⌧+1,1|w⌧ , y⌧�1, y⌧+1 = 1,↵, y⌧ = 1)P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

+ P (E⌧+1,1|w⌧ , y⌧�1, y⌧+1 = 1,↵, y⌧ = 0)[1� P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)]

=P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

+
P (E⌧+1,1|w⌧ , y⌧�1,↵, y⌧ = 0)

P (E⌧+1,1 [ E⌧+1,2|w⌧ , y⌧�1,↵, y⌧ = 0)
[1� P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)]

=P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)

+
P (E⌧+1,1|↵)

P (E⌧+1,1 [ E⌧+1,2|↵)
[1� P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵)], (D.14)

where the last equality follows from Assumptions SI(a) and A(a).

Combine (D.12), (D.13) and (D.14) to solve

P (y⌧ = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵) =
�1↵ (w⌧ )

1�  (w⌧ ) + �1↵ (w⌧ )
⌘ G1(w⌧ ),

where �1↵ ⌘ P (E⌧+1,1|↵)/P (E⌧+1,1 [ E⌧+1,2|↵) is a positive constant for any given ↵. The mono-
tonic relation stated in the lemma is then established by verifying the monotonicity of G1(·).

For the case with d1 = 0, using the same arguments for deriving (A.2) yields

P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 0,↵)

=P (E⌧+1,2|w⌧ , y⌧�1, y⌧+1 = 0,↵)

+ P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 0,↵, E⌧+1,3)P (E⌧+1,3|w⌧ , y⌧�1, y⌧+1 = 0,↵)

=P (E⌧+1,2|w⌧ , y⌧�1, y⌧+1 = 0,↵) + F✏|↵(w⌧ + �y⌧�1 + ↵)P (E⌧+1,3|w⌧ , y⌧�1, y⌧+1 = 0,↵), (D.15)

where the last equality follows by E⌧+1,3 ⇢ {y⌧+1 = 0}, Assumption SI(a), and Assumption A(a).

Use analogous arguments for proving Lemma A.2 to obtain

P (E⌧+1,2|w⌧ , y⌧�1, y⌧+1 = 0,↵)

=
P (E⌧+1,2|↵)

P (E⌧+1,2 [ E⌧+1,3|↵)
P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 0,↵), (D.16)
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and

P (E⌧+1,3|w⌧ , y⌧�1, y⌧+1 = 0,↵)

=1� P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 0,↵)

+
P (E⌧+1,3|↵)

P (E⌧+1,2 [ E⌧+1,3|↵)
P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 0,↵). (D.17)

Combine (D.12), (D.15), (D.16), and (D.17) to obtain

P (y⌧ = 1|ws, wt, ys�1 = yt�1, ys+1 = yt+1 = 1,↵)

=P (y⌧ = 1|w⌧ , y⌧�1, y⌧+1 = 1,↵) =
 (w⌧ )

 (w⌧ ) + �0↵ � �0↵ (w⌧ )
⌘ G0(w⌧ ),

where �0↵ ⌘ P (E⌧+1,3|↵)/P (E⌧+1,2 [ E⌧+1,3|↵) is a positive constant for any given ↵. Note that
G0(w⌧ ) is an increasing function, from which the monotonic relation stated in the lemma is estab-
lished. Putting all these results together completes the proof.

Proof of Lemma B.1. Preparation. Relating to the notations in Seo and Otsu (2018), hn = 1 (in their
notations) for our estimator �̂. ⇠i (b) only takes value �1, 0, and 1, so it is bounded. Proposition
2.2 shows that � it the unique solution to maxb2B E (⇠i (b)) . The following calculation can help
understand this result.

E (⇠i (b)) = E
�
E [1 [yi0 = yi2 = yi4] (yi3 � yi1) |xi1, xi3]

�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 

= E {(E [1 [yi0 = yi2 = yi4] (yi3 � yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3)
+E [1 [yi0 = yi2 = yi4] (yi3 � yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3))
�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤�
}

= E {E [(yi3 � yi1) |yi0 = yi2 = yi4, xi1, xi3]P (yi0 = yi2 = yi4|xi1, xi3)
�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 

⌘ E
�
E [(yi3 � yi1) |yi0 = yi2 = yi4, xi1, xi3]' (xi1, xi3)

�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 

= E {(E [yi3|yi0 = yi2 = yi4, xi1, xi3]� E [yi1|yi0 = yi2 = yi4, xi1, xi3])

' (xi1, xi3)
�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 

= E {(E [yi3|yi2 = yi4, xi3]� E [yi1|yi0 = yi2, xi1])

' (xi1, xi3)
�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 
,

where in the second equality A denotes the complement of the set A,

' (xi1, xi3) ⌘ P (yi0 = yi2 = yi4|xi1, xi3)

in the fourth equality, and the sixth equality follows the same argument as in the proof of Propo-
sition 2.2.

By the stationary condition, the following is true

E [yi3|yi2 = yi4, xi3 = x] = E [yi1|yi0 = yi2, xi1 = x] .
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Let
� (x) ⌘ E [yi3|yi2 = yi4, xi3 = x] = E [yi1|yi0 = yi2, xi1 = x] .

With the introduction of the above notation,

E (⇠i (b)) = E
�
' (xi1, xi3) (� (xi3)� � (xi1))

�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 
. (D.18)

From the results in the proof of Proposition 2.2, � (xi3)�� (xi1) > 0 if x0i31� > 0, � (xi3)�� (xi1) = 0

if x0i31� = 0, and � (xi3) � � (xi1) < 0 if x0i31� < 0. ' (xi1, xi3) is a conditional probability, so
' (xi1, xi3) � 0. The above observations imply that E (⇠i (b)) is nonpositive and is equal to 0 if
b = �. Assumption A ensures that the solution is unique. To simply notations, let

 (xi31) ⌘ E [' (xi1, xi3) (� (xi3)� � (xi1)) |xi31] . (D.19)

Easy to see that  defined here is equal to the  in the body of Lemma B.3. The above discussion
implies  (xi31) has the same sign as x0i31�.

On Assumption M.i in Seo and Otsu (2018). We now try to get the derivatives of E (⇠i (b)) with
respect to b. E (⇠i (b)) can be rewritten as

E (⇠i (b)) = E
�
 (xi31)

�
1
⇥
x0i31b > 0

⇤
� 1

⇥
x0i31� > 0

⇤� 
.

Following the same idea in Section 5 and Section 6.4 of Kim and Pollard (1990) and Section B.1 of
Seo and Otsu (2018), the above expectation can be calculated by means of the classical differential
geometry. Since the results here are obtained using essentially the same argument, we omit similar
details. Define the following mapping

Tb =
⇣
I � kbk�2

2 bb0
⌘ �

I � ��0
�
+ kbk�2

2 b�0,

where Tb maps the region {x31 : x031b > 0} onto {x31 : x031� > 0} , taking the boundary of {x31 : x031b > 0}
onto the boundary of {x31 : x031� > 0} . Equations (5.2) and (5.3) in Kim and Pollard (1990) imply

@

@b
E (⇠i (b)) = kbk�2

2 b0�
⇣
I � kbk�2

2 bb0
⌘Z

1
⇥
x031� = 0

⇤
 (Tbx31)x31fx31 (Tbx31) d�0,

where fx31 (x31) is the density function of xi31 and �0 is the surface measure of the boundary of
{x31 : x031� > 0} .

@
@bE (⇠i (b))

��
b=�

= 0, by T�x31 = x31 and 1 [x031� = 0] (x31) = 0. Consequently, the nonzero
component of the second derivative of E (⇠i (b)) only comes from the derivative of  (Tbx31) . No-
tice that @

@b (Tbx31)
��
b=�

= �
⇣
@(x31)
@x31

0
�
⌘
x31, we have

@2E (⇠i (b))

@b@b0

����
b=�

= �
Z

1
⇥
x031� = 0

⇤✓@ (x31)
@x31

0
�

◆
fx31 (x31)x31x

0
31d�0.

Combining these results on the derivatives of E (⇠i (b)) implies that Assumption M.i in Seo and
Otsu (2018) is satisfied with the matrix

V1 ⌘ �
Z

1
⇥
x031� = 0

⇤✓@ (x31)
@x31

0
�

◆
fx31 (x31)x31x

0
31d�0. (D.20)
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V1 is negative definite by Assumption 4.

On Assumption M.ii in Seo and Otsu (2018). Note

⇠i (b1)� ⇠i (b2) = 1 [yi0 = yi2 = yi4] (yi3 � yi1)
�
1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤�

and

(⇠i (b1)� ⇠i (b2))
2 = 1 [yi0 = yi2 = yi4] |yi3 � yi1|

��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤�� , (D.21)

this condition can be verified by the following calculation,

h
E (⇠i (b1)� ⇠i (b2))

2
i1/2

=
⇥
E
�
E [|' (xi1, xi3) (� (xi3)� � (xi1))| |xi31]

��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤�� ⇤1/2

� E
�
E [|' (xi1, xi3) (� (xi3)� � (xi1))| |xi31]

��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤�� 

� c1E
��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤��

� c2 kb1 � b2k2 ,

where the second line holds because the the value of the term in that line is smaller than 1, and a
positive c1 and c2 can be guaranteed by Assumption A.

On Assumption M.iii in Seo and Otsu (2018). This condition can be similarly verified by

E
"

sup
b1,b22B:kb1�b2k<"

|⇠i (b1)� ⇠i (b2)|2
#

= E
(

sup
b1,b22B:kb1�b2k<"

E [|' (xi1, xi3) (� (xi3)� � (xi1))| |xi31]
��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤��
)

 c3E
(

sup
b12B:kb1�b2k<"

��1
⇥
x0i31b1 > 0

⇤
� 1

⇥
x0i31b2 > 0

⇤��
)

 c4",

where third line holds because ' and � are conditional probability and are bounded, and the last
line holds since the density of x31 is assumed to be bounded in Assumption 3.

Proof of Lemma B.2. The objective function in this lemma is very similar to the one in HK. The only
difference is that HK put x32 in the kernel Khn (·) while we put x032b and x043b instead.

Seo and Otsu (2018) verified all the technical conditions needed for the estimator in HK and
derived its asymptotics in Section B.1. Assumptions A and 3 - 6 can imply the technical conditions
assumed in Section B.1 of Seo and Otsu (2018), and the conclusion follows.
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Proof of Lemma B.3. Note that

Zn,1 (s) = n2/3 · n�1
nX

i=1

⇠i
⇣
� + sn�1/3

⌘
= n1/6Gn

⇣
⇠i
⇣
� + sn�1/3

⌘⌘
+ n2/3E

⇣
⇠i
⇣
� + sn�1/3

⌘⌘
,

where Gn
�
⇠i
�
� + sn�1/3

��
= n�1/2Pn

i=1

⇥
⇠i
�
� + sn�1/3

�
� E

�
⇠i
�
� + sn�1/3

��⇤
.

The mean of Zn,1 (s) is n2/3E
�
⇠i
�
� + sn�1/3

��
. With Assumptions A and 3, some calculation

in the proof of Lemma B.1 yields

n2/3E
⇣
⇠i
⇣
� + sn�1/3

⌘⌘

= n2/3

(
E (⇠i (�)) + n�1/3 @E (⇠i (b))

@b

����
0

b=�

s+
1

2
n�2/3s0

@2E (⇠i (b))

@b@b0

����
b=�

s+ o
⇣
n�2/3

⌘)

=
1

2
s0V1s+ o (1) ,

where V1 is defined in equation (B.1).

By definition, H1 (s, t) = lim↵!1 ↵E [⇠i (� + s/↵) ⇠i (� + t/↵)] is the covariance kernel for the
limiting distribution of Zn,1 (s). To obtain H1, define

L1 (s� t) ⌘ lim
↵!1

↵E
h
(⇠i (� + s/↵)� ⇠i (� + t/↵))2

i
,

L1 (s) ⌘ lim
↵!1

↵E
h
(⇠i (� + s/↵)� ⇠i (�))

2
i
,

and
L1 (t) ⌘ lim

↵!1
↵E
h
(⇠i (� + t/↵)� ⇠i (�))

2
i
.

Notice that ⇠i (�) = 0, the relationship between H1 and L1 is

H1 (s, t) =
1

2
[L1 (s) + L1 (t)� L1 (s� t)] . (D.22)

From equations (D.18) and (D.21),

↵E
h
(⇠i (� + s/↵)� ⇠i (� + t/↵))2

i

= ↵E
�
E [|' (xi1, xi3) (� (xi3)� � (xi1))| |xi31]

��1
⇥
x0i31 (� + s/↵) > 0

⇤
� 1

⇥
x0i31 (� + t/↵) > 0

⇤�� 

⌘ ↵E
�
 (xi31)

��1
⇥
x0i31 (� + s/↵) > 0

⇤
� 1

⇥
x0i31 (� + t/↵) > 0

⇤�� .

where in the third line we simply notations by

 (xi31) ⌘ E [|' (xi1, xi3) (� (xi3)� � (xi1))| |xi31] .

Not hard to see that  defined here is equal to the  in the body of this lemma. Following Kim
and Pollard (1990), we decompose x31 into $� + x� , with x� orthogonal to �. The decomposition

54



leads to

↵E
h
(⇠i (� + s/↵)� ⇠i (� + t/↵))2

i

= ↵E
�
 (xi31)

��1
⇥
x0i31 (� + s/↵) > 0

⇤
� 1

⇥
x0i31 (� + t/↵) > 0

⇤�� 

= ↵

Z

RK�1

Z

R
 ($� + x�)

��1
⇥
x0�s/↵+$ +$�0s/↵ > 0

⇤
� 1

⇥
x0�t/↵+$ +$�0t/↵ > 0

⇤��

fx31 ($� + x�) d$dx�

= ↵

Z

RK�1

Z

R
 ($� + x�) 1

"
�x0�s/↵

1 + �0s/↵
< $ 

�x0�t/↵

1 + �0t/↵

#
fx31 ($� + x�) d$dx�

+ ↵

Z

RK�1

Z

R
 ($� + x�) 1

"
�x0�t/↵

1 + �0t/↵
< $ 

�x0�s/↵

1 + �0s/↵

#
fx31 ($� + x�) d$dx�

=

Z

RK�1

Z

R
 (u/↵� + x�) 1

"
�x0�s

1 + �0s/↵
< u 

�x0�t

1 + �0t/↵

#
fx31 ((u/↵)� + x�) dudx�

+

Z

RK�1

Z

R
 (u/↵� + x�) 1

"
�x0�t

1 + �0t/↵
< u 

�x0�s

1 + �0s/↵

#
fx31 ((u/↵)� + x�) dudx� ,

where the fourth equality holds by the change of variables u = ↵$, . As ↵! 1,

L1 (s� t) =

Z

RK�1
 (x�)

��x0� (s� t)
�� fx31 (x�) dx� ,

Similarly,

L1 (s) =

Z

RK�1
 (x�)

��x0�s
�� fx31 (x�) dx�

and
L1 (t) =

Z

RK�1
 (x�)

��x0�t
�� fx31 (x�) dx� .

Substituting those L1 into equation (D.22) yields

H1 (s, t) =
1

2

Z

RK�1
 (x�)

⇥��x0�s
��+
��x0�t

���
��x0� (s� t)

��⇤ fx31 (x�) dx� .

Proof of Lemma B.4. Note

Ẑn,2 (s) = (nhn)
2/3 · n�1

nX

i=1

&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘

= n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘⌘

+ (nhn)
2/3 En

⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘⌘

= n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ (nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ (nhn)
2/3 En

h
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘i

, (D.23)
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where Gn (&ni (r, b)) = n�1/2Pn
i=1 (&ni (r, b)� En (&ni (r, b))).

We deal with the term in the fourth line of equation (D.23) first. Lemma B.2 verifies the tech-
nical conditions in Seo and Otsu (2018). Thus we can applying the result of Lemma M in Seo and
Otsu (2018) on & and it yields26

E
(

sup
|s|C,kb��k2Mn�1/3

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , b
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i���

)

= n1/6h1/6n E
(

sup
|s|C,kb��k2Mn�1/3

���Gn

h
h1/2n

⇣
&ni
⇣
� + s (nhn)

�1/3 , b
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i���

)

 cn1/6h1/6n n�1/6 = o (1) ,

for some positive c, any positive constants M and C. By Markov’s inequality, the above yields

sup
|s|C,kb��k2Mn�1/3

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , b
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� = oP (1) .

Since �̂ � � = OP
�
n�1/3

�
, we can take M large enough so that P

⇣����̂ � �
���
2
> Mn�1/3

⌘
< " for

any small " > 0. For any small � > 0,

P

 
sup
|s|C

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� � �

!

= P

 (
sup
|s|C

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� � �

)

\
n����̂ � �

���
2
 Mn�1/3

o⌘

+ P

 (
sup
|s|C

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� � �

)

\
n����̂ � �

���
2
> Mn�1/3

o⌘

 P

 
sup

|s|C,kb��k2Mn�1/3

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , b
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� � �

!
+ ".

In view of the fact that the first term in the above last line can be arbitrary small as n ! 1, after
some large n

P

 
sup
|s|C

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� � �

!
 2",

and it holds for any arbitrary small � > 0. This implies

sup
|s|C

n1/6h2/3n

���Gn

h⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘
� &ni

⇣
� + s (nhn)

�1/3 ,�
⌘⌘i��� = oP (1) . (D.24)

26It holds by setting the � in Lemma M of Seo and Otsu (2018) as n�1/3.
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For the fourth term in equation (D.23), with �̂ � � = OP
�
n�1/3

�
and hn ! 0, the expansion in

equation (D.29) implies

(nhn)
2/3 En

⇣
&ni
⇣
� + s (nhn)

�1/3 , �̂
⌘⌘

= (nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ oP (1) , (D.25)

uniformly over |s|  C. Substituting the results of equations (D.24) and (D.25) into equation (D.23)
yields,

Ẑn,2 (s) = n1/6h2/3n Gn

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ (nhn)
2/3 E

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

+ oP (1)

= Zn,2 (s) + oP (1) ,

where the small order term holds uniformly over |s|  C for any positive C. The claim is proved.

Proof of Lemma B.5. We could prove the first claim in this lemma by the Taylor expansion of E (&ni (r,�))

with respect to r around �. We show a more general result instead; we derive the Taylor expansion
of E (&ni (r, b)) with respect to (r, b) around (�,�) . This more general result is useful for under-
standing Lemma B.5 and part of the derivation in Lemma B.4.

Recall that

&ni (r, b) ⌘ Khn

�
x0i32b

�
(yi2 � yi1)

�
1
⇥
x0i21b+ r (yi3 � yi0) > 0

⇤
� 1

⇥
x0i21� + � (yi3 � yi0) > 0

⇤�

+Khn

�
x0i43b

�
(yi3 � yi2)

�
1
⇥
x0i32b+ r (yi4 � yi1) > 0

⇤
� 1

⇥
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.

To ease of notations, let
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�
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⇥
x021b+ r (y3 � y0) > 0

⇤
� 1
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⇤�
,

#2 (r, b) ⌘ (y3 � y2)
�
1
⇥
x032b+ r (y4 � y1) > 0

⇤
� 1

⇥
x032� + � (y4 � y1) > 0

⇤�
.

We deal with the first component in &ni (r, b) first and the second term can be done analogously.
First,

E
⇥
Khn

�
x032b

�
#1 (r, b)

⇤

=

Z

RK
E [#1 (r, b) |x32 = x]Khn

�
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fx32 (x) dx

=

Z
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hn

◆
fx32 (x) dx.

Decompose x32 into x32 = $b+ xb, where xb is orthogonal to b. That yields

E
⇥
Khn
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x032b

�
#1 (r, b)

⇤
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R
E [#1 (r, b) |x32 = $b+ xb]
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fx32 ($b+ xb) d$dxb

(D.26)

=

Z

RK�1

Z

R
E [#1 (r, b) |x32 = uhnb+ xb ]K (u) fx32 (uhnb+ xb) dudxb

=

Z

RK�1
E [#1 (r, b) |x32 = xb ] fx32 (xb) dxb

+
h2n
2

Z

RK�1

Z

R
u2K (u)

@2 (E [#1 (r, b) |x32 = tb+ xb ] fx32 (tb+ xb))

@t2

����
t=tu

du
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where in the first line we use the fact kbk2 = 1, the second line holds by the change of variables
u = $

hn
, and last two lines hold by the Taylor expansion and tu is some value between 0 and uhn.

The bias term is of order h2n by Assumption 3 and the symmetry and boundedness conditions of K
in Assumption 5. By nh4n ! 0 in Assumption 6, the bias term is o

⇣
(nhn)

�2/3
⌘

and asymptotically
negligible.

Similar results can be obtained for E [Khn (x
0
43b)#2 (r, b)].

To summarise,

E (&ni (r, b)) =

Z

RK�1
E [#1 (r, b) |x32 = xb ] fx32 (xb) dxb (D.27)

+

Z

RK�1
E [#2 (r, b) |x43 = xb ] fx43 (xb) dxb + o

⇣
(nhn)

�2/3
⌘
.

As a result, to prove the assertion in the lemma, it is enough to derive the first and second deriva-
tives of leading term in the above..

Notice that
#1|(r,b)=(�,�) = 0.

Consequently, only the derivative of E [#1 (r, b) |x32 = xb ] with respect to b in #1 will appear in

@

@b

Z

RK�1
E [#1 (r, b) |x32 = xb ] fx32 (xb) dxb

����
r=�,b=�

.

That leads to

@
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����
r=�,b=�

=

Z
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@

@b
E [#1 (r, b) |x32 = x� ]

����
(r,b)=(�,�)

fx32 (x�) dx� .

By similar derivation as for the derivatives of E (⇠i (b)), we have

@E [#1 (r, b) |x32 = x� ]
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����
r=�,b=�
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Z
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x021� + �y30 = 0
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E (y21|x21, y30, x32 = x�)

 
y30
x21

!
f (x21, y30|x32 = x�) d�0,

where �0 is the surface measure of {(x21, y30) : x021� + �y30 = 0}.

E (y21|x21, y30, x032� = 0) = 0 along x021� + �y30 = 0 by Proposition 2.3. Thus the derivative
above is equal to 0 and

@

@ (r, b0)0

Z

RK�1
E [#1 (r, b) |x32 = xb ] fx32 (xb) dxb

����
r=�,b=�

= 0.
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The fact E (y21|x21, y30, x032� = 0) = 0 along x021� + �y30 = 0 implies that only the second deriva-
tives of E [#1 (r, b) |x32 = x� ] contribute to the second derivative. By similar derivation as for the
second derivative of E (⇠i (b)) ,
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Therefore
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Similarly,
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Z
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d�0fx43 (x�) dx�

⌘ �Ṽ22.

Let
Ṽ2 ⌘ Ṽ21 + Ṽ22. (D.28)

By the Taylor expansion, Assumption 3, and equation (D.27),

E (&ni (r, b)) = �1

2

�
r � �, (b� �)0

�
Ṽ2

 
r � �

b� �

!
+ o

0

@
�����

 
r � �

b� �

!�����

2

2

1

A+ o
⇣
(nhn)

�2/3
⌘
. (D.29)

We define V2 as the first diagonal of Ṽ2, that is

V2 ⌘ e01Ṽ2e1,
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where e1 is a (K + 1)⇥ 1 vector with the first element as 1 and the rest as 0. Not hard to see that

V2 = �
Z

RK�1

Z
1
⇥
x021� + �y30 = 0

⇤
 
@E (y21|x21, y30, x32 = x�)
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�
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!!
(D.30)

f (x21, y30|x32 = x�) |y30| d�0fx32 (x�) dx�
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x032� + �y41 = 0

⇤
 
@E (y32|x32, y41, x43 = x�)

@ (y41, x032)
0

0
 
�
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!!

f (x32, y41|x43 = x�) |y41| d�0fx43 (x�) dx� .

Using equation (D.29),

lim
n!1

(nhn)
2/3 En

⇣
&ni
⇣
� + s (nhn)

�1/3 ,�
⌘⌘

=
1

2
V2s

2.

Now we turn to the covariance kernel. Note

H2 (s, t) = lim
n!1

(nhn)
1/3 E

⇣
hn&ni

⇣
� + s (nhn)

�1/3 ,�
⌘
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� + t (nhn)

�1/3 ,�
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.

Similar for the calculation of H1 in Lemma B.1, define

L2 (s� t) ⌘ lim
n!1

(nhn)
1/3 E


hn
⇣
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⇣
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.

Since &ni (�,�) = 0, H2 (s, t) =
1
2 [L2 (s) + L2 (t)� L2 (s� t)] .

The following calculation is useful for L2 (s� t) .

E
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where Rn denotes the term in the fourth line and will be shown to be asymptotic negligible.

The first term in the above can be calculated as follows,

E
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Decompose x32 into x32 = $� + x� , where x� is orthogonal to �. Continue the expression in the
above with this decomposition,

E
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�

where in the third line we substitute u = $/hn, in the fourth line we do Taylor expansion
around hn = 0, the bias term is of order h2n for the same reason as in equation (D.26), and
K̄2 =

R
RK (u)2 du. Using Assumption 6, (nhn)2/3 h2n ! 0, so the bias term is negligible. The

rate of the above term can be seen from
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For the same reason,
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Similar derivation on Rn = 2hnE [Khn (x
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can show that Rn / (nhn)
�2/3 hn when r1 = � + s (nhn)
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(nhn)
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The results on L2 (s� t) lead to
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L2 (s) and L2 (t) can be obtained by

L2 (s) = L2 (s� 0) ,

L2 (t) = L2 (t� 0) .

As a result
H2 (s, t) =

1

2
[L2 (s) + L2 (t)� L2 (s� t)] ,

which can be written as in equation (B.4).

E Some Technical Details for Section 5

E.1 Numerical Bootstrap

If "n = n�1, the numerical bootstrap is reduced to the classic bootstrap. Numerical bootstrap
excludes the case "n = n�1 and requires n"n ! 1. The idea of numerical bootstrap is similar
to the m-out-of-n bootstrap; "�1

n plays a similar role as m. As was shown in Hong and Li (2020),
this procedure is less general than the m-out-of-n procedure. However, once it works, it has better
finite sample performance than the m-out-of-n bootstrap. We refer to Hong and Li (2020) for the
details.
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Below is a heuristic illustration for why numerical bootstrap works for �̂. "�1/3
n

⇣
�̂⇤ � �

⌘
can

be shown to be OP (1) similarly as in Section E.4. Note that
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by n"n ! 1. Thus the asymptotic distribution "�1/3
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.

Then �̂⇤ = argmaxb2B Ln,1 (b). By equation (E.1), the asymptotic distribution of "�1/3
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can be established if we can show the limiting distribution of "�2/3
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The previous results suggest that
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over a compact set of s, where the second equality holds by n"n ! 1. The following holds by the
i.i.d. sampling:
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where W ⇤
1 (s) is an independent copy of W1 (s) . As a result,
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 1
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as desired.

�̂ does not directly fit into the theoretical framework of Hong and Li (2020). More specifically,
condition (vi) in Theorem 4.1 in Hong and Li (2020) is not satisfied. The previous results suggest
that everything in Hong and Li (2020) can go through by modifying condition (vi) to that

⌃ (s, t) = lim
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exists for each s, t in R. This is true by Lemma B.2. In what follows, we provide an illustration for
why numerical bootstrap works for �̂.
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To concentrate on the key intuition, here we suppose that the effect of the first step estimator
�̂ has been handled and it does not affect the asymptotics of �̂⇤. Let
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where we use the same hn in &ni (r,�) and &⇤nj (r,�). The convergence rate of �̂⇤n to � can be shown
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by i.i.d. and the Central Limit Theorem, where W ⇤
2 (s) is an independent copy of W2 (s) . To let

equation (E.2) hold, it additionally requires "�1
n hn ! 1 and "�1

n h4n ! 0, similar to the additional
restriction on m.

E.2 Bootstrap Using a Modified Objective Function

In this section, we outline a proof for the consistency of the bootstrap using a modified objective
function as in expressions (5.3) and (5.5). �̂⇤ and �̂⇤ in this section are obtained from (5.3) and (5.5)
respectively.

First �̂⇤ � �̂ = OP
�
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�
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Thus, �̂⇤ = argmaxb2B L̃⇤
n,1 (b) . Then the asymptotics of n1/3
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�̂⇤ � �̂

⌘
can be established if the
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asymptotics of n2/3L̃⇤
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can be rewritten as:
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Each of the terms in the above can be dealt with as follows. For the first term,
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holds uniformly over a compact set of s by the equicontinuity of n2/3 · n�1Pn
j=1 ⇠

⇤
j (b) over b.

Substituting the above results into n2/3L̃⇤
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as desired.

The asymptotic distribution of (nhn)1/3 (�̂⇤ � �̂) can be similarly established.

E.3 Classic Bootstrap

The classic bootstrap estimators for �̂ and �̂, denoted as �̂⇤ and �̂⇤, are constructed from

�̂⇤ = argmax
b2B

n�1
nX

j=1

⇠⇤j (b) , and �̂⇤ = argmax
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⇣
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.
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Based on the proof in Abrevaya and Huang (2005), we have
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,

where W1 (s) and W ⇤
1 (s) are identical and independent Gaussian processes with zero mean and

covariance kernel H1, and W2 (s) and W ⇤
2 (s) are identical and independent Gaussian processes

with zero mean and covariance kernel H2. V1, V2, H1 and H2 are the same as in Theorem 4.1.

Therefore
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Here we provide a sketch on showing the inconsistency of the classic bootstrap.

By similar arguments of Lemma 3 in Abrevaya and Huang (2005), the convergence rate of �̂⇤

to � and �̂⇤ to � can be shown be at n�1/3 and (nhn)
�1/3 respectively.
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Similar to Theorem 1 in Abrevaya and Huang (2005), one can show
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where W1 (s) and W ⇤
1 (s) are independent and identical Gaussian processes. The intuition of this

result can be seen from the following decomposition of Z⇤
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where the first term weakly converges to 1
2s

0V1s+W1 (s) , and the second term weakly converges
to W ⇤

1 (s).

Since the convergence rate of �̂⇤ to � is n�1/3, (E.3) implies that
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nj (r, b) can be proved using similar arguments as in

Theorem 1 of Abrevaya and Huang (2005). By that,
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holds uniformly over a compact set of s. Thus we only need to establish the asymptotics of Z⇤
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To that end, decompose Z⇤
n,2 (s) as

Z⇤
n,2 (s) = Zn,2 (s) + Z⇤

n,2 (s)� Zn,2 (s)

= Zn,2 (s) + (nhn)
2/3 · n�1

nX

j=1

 
&⇤nj

⇣
� + s (nhn)

�1/3 ,�
⌘
� n�1

nX

i=1

&ni
⇣
� + s (nhn)

�1/3 ,�
⌘!

= Zn,2 (s) + (nhn)
2/3 · n�1

nX

j=1

 
&⇤nj

⇣
� + s (nhn)

�1/3 ,�
⌘
� n�1

nX

i=1

&ni
⇣
� + s (nhn)

�1/3 ,�
⌘!

.

Using the facts that the re-sampling is i.i.d. and n�1Pn
j=1 &

⇤
nj (r, b) is equicontinuous in r, it

holds that
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where W ⇤
2 (s) is identically distributed as W2 (s) .
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Lemmas B.2 and B.4 imply that
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2 (s) can be shown using the same arguments in the proof of
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Ẑ⇤
n,2 (s) 

1

2
V2s

2 +W2 (s) +W ⇤
2 (s) .

Thus,

(nhn)
1/3 (�̂⇤ � �)

d! argmax
s2R

✓
1

2
V2s

2 +W2 (s) +W ⇤
2 (s)

◆
,

and

(nhn)
1/3 (�̂⇤ � �̂) = (nhn)

1/3 (�̂⇤ � �)� (nhn)
1/3 (�̂ � �)

d! argmax
s2R

✓
1

2
V2s

2 +W2 (s) +W ⇤
2 (s)

◆
� argmax

s2R

✓
1

2
V2s

2 +W2 (s)

◆
.

E.4 m-out-of-n Bootstrap

Here m ! 1 as n ! 1, but m/n ! 0 as n ! 1. This procedure is as follows. Draw (yT⇤
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j )0,
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where the bandwidth used in &⇤nj is hn, for simplicity. As the name suggests, this procedure only
samples a small portion (m observations) from the data (n observations), with the hope of “cor-
recting” the inconsistency of the classic bootstrap. Lee and Pun (2006) proved the consistency of
m-out-of-n bootstrap for nonstandard M-estimators under mild conditions. After proving the
general result, they applied it to the maximum score estimator by verifying the required technical
conditions. We claim that these technical conditions can be similarly verified for our estimator
and
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. (E.5)

To make equation (E.5) hold, we additionally require mhn ! 1, mh4n ! 0, analogous to the
conditions in Assumption 6. Because of the length limitations of the paper, the details are not
pursued here. Instead, we have provided a heuristic illustration.
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Note �̂⇤ and �̂⇤ in this section are obtained from expression (E.4). Let
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Intuitively, the first term in the above equation weakly converges to W ⇤
1 (s), the second term

converges to 1
2s

0V1s, and the last term converges to zero in probability. One can similarly show
�̂⇤ � � = OP
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.

Therefore,
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Note that the distribution of W ⇤
1 (s) is the same as that of W1 (s) , and the claim is proved for �̂⇤.

The asymptotic distribution of (mhn)
1/3 (�̂⇤ � �̂) can be similarly established.
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