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1 Introduction

Data censoring is a pervasive problem in the analysis of the occurrence and timing of

events. Often the observation process is such that some individuals are not under ob-

servation continuously during the time they are at risk, and therefore some events may

be missing in the data available for analysis. For example, the observation period may

begin and end at fixed calendar times and only events that occur within this window are

available for analysis. The event histories are said to be left-censored or right-censored if

events before the start or after the end of the observation period are missing, respectively.

In some longitudinal surveys, participants provide information annually about events that

have occurred in the previous year, and participants who skip an interview will have a

gap in their recorded event histories.

In practice, event history models are estimated by the method of maximum likelihood

(ML). Usually it is assumed that the observation process is independent of the event

process (and the former is not modelled). In this case, it is straightforward to include

right-censored event histories, and gaps can be handled by artificially right-censoring the

histories at the start of the gap. If there are not too many gaps, the data loss may

be acceptable. However, left-censoring remains a difficult problem in most applications.

Since consistent estimates can be obtained from the non-left-censored histories, a common

solution is simply to drop all left-censored histories from the analysis. For example, Doiron

and Gørgens (2008) and Cockx and Picchio (2012, 2013) studied transitions between

labour force states and avoided the left-censoring issue by focusing on young people who

first entered the labour force during the observation period (so their initial labour market

outcomes are observed). Similarly, Bhuller, Brinch, and Königs (2016) studied dynamic

aspects of the receipt of welfare benefits, and selected a sample of individuals who turned

18 and thus became eligible for the first time during the study period. Dropping left-

censored histories from the analysis comes at the cost of a smaller sample size. For

example, by restricting their sample to school leavers Doiron and Gørgens (2008) used

only one third of the total sample.

The problem of left-censoring in event history analysis is related to the well-known
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problem of initial conditions in discrete-time dynamic panel data models of binary re-

sponses or other limited dependent variables. In these models, the “structural” equation

involves lagged dependent variables whose coefficients (or partial effects) are parameters

of interest. The dilemma is that the structural equation cannot be evaluated for the ini-

tial observations since lagged information is not available, but conditioning on the initial

observations leads to inconsistent estimates in the presence of unobserved heterogeneity.

In the context of a first-order Markov model of binary responses, Heckman (1981) pro-

posed to supplement the structural model with an approximate reduced-form model for

the initial conditions, based on exogenous information available for the initial periods, a

flexible specification of the influence of unobserved heterogeneity, and imposing no pa-

rameter restrictions across submodels. Alternatively, Wooldridge (2005) proposed to sup-

plement a structural first-order Markov model with an auxiliary model of the distribution

of unobserved heterogeneity in terms of the initial conditions and exogenous explanatory

variables. Wooldridge’s method has been applied and extended to higher-order models

and discrete-time duration models for example by Stewart (2007) and Bhuller, Brinch,

and Königs (2016). Heckman’s method has been applied for example in continuous-time

duration analysis by Gritz (1993) and in discrete-time duration analysis by Ham and

LaLonde (1996), Cappellari, Dorsett, and Haile (2010), and Gørgens and Hyslop (2016).

Skrondal and Rabe-Hesketh (2014) provided a recent comparison between these and re-

lated methods for estimating first-order Markov dynamic panel data models of binary

responses.

In this paper we consider estimation of continuous-time dynamic event history models

with censored data by maximising a simulated likelihood function using all available

data. The likelihood function is specified in terms of observed and unobserved events,

and unobserved events are then “integrated out” using Monte Carlo and importance

sampling methods. We allow for unobserved heterogeneity in the form of so-called random

effects and integrate out unobserved heterogeneity using a Gaussian quadrature rule.

Our maximum simulated likelihood (MSL) estimator uses all available data and does not

involve additional functional-form assumptions or additional ad hoc parameters. The



3

method is applicable when the times during which individuals are at risk of experiencing

events are known.1 For simplicity, we focus on recurring events. This class of models

covers a wide range of applications: purchases of specific goods or services, health events

such as heart attacks or dental fillings, child births, time between earth quakes or geyser

eruptions, etc.

The method of maximum simulated likelihood estimation has been successfully ap-

plied in other contexts. For example, Lerman and Manski (1981) were the first econome-

tricians to consider the frequency simulator of (multinomial probit) choice probabilities.

Keane (1994) studied MSL estimation of binary response models with serially correlated

errors, with the multinomial probit model as the leading case. McCulloch (1997) consid-

ered latent class (mixture) models. Kamionka (1998) sketched a general framework for

continuous-time transition models and provided some simulation results for estimating

continuous-time time-homogeneous Markov processes using data measured on a discrete

time scale. Keane and Sauer (2010) developed a method for estimating discrete-time

dynamic panel data models with unobserved endogenous state variables. Their method

assumed that the dependent variables are measured with error. Some authors have com-

pared MSL estimation with estimation using the EM algorithm and found that the latter

performed better. Brinch (2012) argued that the negative assessment of MSL estimation

among some authors is at least partly due to suboptimal choices made in the implemen-

tation.

The MSL approach has both advantages and disadvantages over the alternatives. As

mentioned above, dropping left-censored histories from the analysis (listwise deletion)

makes for easy ML estimation but can be very costly in terms of sample size. Specifying

auxiliary models for either the distribution of the initial conditions in terms of unob-

served heterogeneity (Heckman, 1981) or the distribution of unobserved heterogeneity in

terms of initial conditions (Wooldridge, 2005) also allow for standard ML estimation, but

specification error potentially affects the bias and consistency of the estimates and the

1In a study of transitions into and out of female headship, Moffitt and Rendall (1995) were able to
integrate out unobserved events analytically because the distribution of missing data was discrete in their
model.
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additional parameters lead to a loss of degrees of freedom. The MSL approach is expected

to have higher efficiency, because the full data set can be used, and because no auxiliary

parameters are involved. By increasing the number of simulations, MSL estimates can

be made arbitrarily close to the exact ML estimates, and hence MSL estimates can be

asymptotically efficient under standard conditions.

A potential disadvantage of the MSL approach is computational difficulties. First,

numerical integration in high dimensions is known to be difficult, whether by quadrature

rules or Monte Carlo methods. In practice, limits on computing capacity may restrict the

level of accuracy that can be achieved within reasonable time. Second, when the integra-

tion is carried out using Monte Carlo methods the simulated likelihood function is dis-

continuous, which causes trouble for standard maximisation algorithms such as Newton’s

method. However, importance sampling methods can be used to smooth the simulated

likelihood function (see e.g. Gouriéroux and Monfort, 1991).

The present paper contributes to the literature by showing how MSL estimation can

be applied in the context of dynamic models of recurring events in continuous time with

censored data. We provide Monte Carlo evidence to show that MSL estimation is prac-

tically feasible, and we confirm that MSL estimation can provide substantial efficiency

gains over listwise deletion and Heckman’s approximate reduced-form modelling.

The paper is organised as follows. Section 2 sets up the notation and discusses maxi-

mum likelihood estimation. Section 3 presents the results of our Monte Carlo experiments.

Section 4 concludes.

2 Maximum likelihood estimation

2.1 The likelihood function

When analysing censored data, it is necessary to distinguish between the underlying

event process and the observation process. For example, the statistics literature talks

about time at risk and time under observation. Let time be partitioned into ji periods,

(cij−1, cij] for j = 1, 2, . . . , ji, such that ci0 is the time individual i becomes at risk, ciji
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is the last time individual i is both at risk and under observation, and the individual is

alternatingly either under observation or not during each period. Thus, individuals are

either under observation in all odd periods or in all even periods. Analysis time is defined

by normalising ci0 = 0.

The interaction between the event process and the observation process necessitates

notation which number event times within observation periods. Hence, let kij denote

the number of (observed or unobserved) events during individual i’s period j, and let

bijk for k = 1, . . . , kij denote event times within period j. For convenience, define the

vector bij = (bijkij , . . . , bij1); if kij = 0 then bij denotes a zero-dimensional vector. To

simplify certain expressions, define also bij0 by setting bij0 = cij−1. We assume that the

event process and the observation process are independent. We postpone the discussion

of observed and unobserved heterogeneity until later.

In general, the likelihood of an event at any given time may depend on the history of

events prior to that time. Let si(t) denote all individual i’s history at time t. That is, si(t)

includes all event times until and including t, the fact that no events occurred between

the most recent event and time t, and the observation period boundaries. Let h(t|s(t′), θ)

for t > t′ denote the conditional hazard function for events evaluated at time t given the

history until time t′, s(t′), where θ is the unknown parameter vector to be estimated. Also

let H(t|s(t′), θ) for t > t′ denote the associated value of the cumulative hazard function

from time t′ until time t. That is, H is defined by H(t|s(t′), θ) =
∫ t
t′
h(y|s(t′), θ) dy.

Furthermore, let f(t|s(t′), θ) denote the conditional event density at t given the history

s(t′), and let F denote the corresponding cumulative distribution function. Then we have

that

f(t|s(t′), θ) = h(t|s(t′), θ) exp
(
−H(t|s(t′), θ)

)
, t > t′. (1)

Here the exponential term on the right-hand side captures the non-occurrence of events

during (t′, t]. Finally, let gj be the conditional joint density of events during period j

given previous events. Using bj without subscript i to denote a generic vector of event



6

times in period j and using kj for the corresponding number of events, we have

gj(bj|bj−1, . . . , b1, θ) =

( kj∏
k=1

f(bjk|s(bjk−1), θ)
)

exp
(
−H(cj|s(bjkj), θ)

)
. (2)

The exponential term on the right-hand side represents the fact that no events occurred

during (bjkj , cj] if kj > 0 or during (cj−1, cj] if kj = 0. (Recall that we have defined

bj0 = cj−1.) By convention the product of the sequence on the right-hand side of (2) is

defined to be 1 if kj = 0 (and bj is zero-dimensional).

The likelihood contribution for individual i in terms of observed and unobserved terms

(i.e. the complete-data likelihood contribution, apart from right-censoring) is2

L?i (θ) =

ji∏
j=1

gj(bij|bij−1, . . . , bi1, θ). (3)

The full complete-data likelihood function is defined as the product of L?i (θ) over i.

The complete-data likelihood function cannot be evaluated when the data are not

complete. Simply omitting terms that involve missing data in (3) and maximising the

computable part of the likelihood function generally does not yield a consistent estimator

of θ. This is because the resulting truncated sample may not be representative of the

population (see e.g. Moffitt and Rendall, 1995).

To get the likelihood contribution of the observed events, the unobserved events must

be integrated out. For an individual who is under observation during odd-numbered

periods (so ji is odd), the incomplete-data likelihood contribution is3

Li(θ) =

∫∫
· · ·
∫ ( ji∏

j=1:j odd

gj(bij|bj−1, bij−2, . . . , b2, bi1, θ)
)

×
( ji∏
j=1:j even

gj(bj|bij−1, bj−2, . . . , b2, bi1, θ)
)
dbji−1 . . . db4 db2

= EBθ
i2

[
· · ·EBθ

iji−1

[ ji∏
j=1:j odd

gj(bij|Bθ
ij−1, bij−2, . . . ,B

θ
i2, bi1, θ) (4)

2This ignores the likelihood contribution of the entry and exit times, cij−1 and cij , which leads to
valid inference under the maintained assumption that these are independent of the event times. To focus
on computational aspects we assume θ is identified and do not further discuss this issue.

3Admittedly the notation is sloppy here, since the dimension of the terms integrated out are random,
and the limits of the definite integrals are omitted. The notation could be made formally correct by
conditioning on and summing over the possible dimensions of the vectors.
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∣∣∣∣ Bθ
iji−2 = biji−2, . . . ,B

θ
i2,B

θ
i1 = bi1

]
· · ·
∣∣∣∣ Bθ

i1 = bi1

]
,

where Bθ
ij denotes a random vector of potential event times for individual i in period j,

whose conditional probability density function given prior history is given in (2), taking

individual i’s realised observation period endpoints ci0, . . . , cji as given. The superscript

θ serves as a reminder that this distribution is governed by the θ at which the likelihood

contribution is evaluated, not the so-called true value behind the realised events bij.

Similarly, for an individual who is under observation during even-numbered periods

(so ji is even), the incomplete-data likelihood contribution is

Li(θ) =

∫∫
· · ·
∫ ( ji∏

j=1:j odd

gj(bj|bij−1, bj−2, . . . , bi2, b1, θ)
)

×
( ji∏
j=1:j even

gj(bij|bj−1, bij−2, . . . , bi2, b1, θ)
)
dbji−1 . . . db3 db1

= EBθ
i1

[
· · ·EBθ

iji−1

[ ji∏
j=1:j even

gj(bij|Bθ
ij−1, bij−2, . . . , bi2,B

θ
i1, θ) (5)∣∣∣∣ Bθ

iji−2 = biji−2, . . . ,B
θ
i2 = bi2,B

θ
i1

]
· · ·
]
.

Note the outermost expectation is unconditional here, since there is no history prior to

period 1.

The full incomplete-data likelihood function is defined as the product of Li(θ) over i.

Since this is the exact likelihood function for the observed data, the maximiser is a con-

sistent and asymptotically efficient estimator of θ. However, computing this function is

hampered by the fact that in general the integrals (expectations) cannot be solved ana-

lytically. In typical model specifications, the event density function depends non-linearly

on previous events, and the integrals are not separable.

2.2 Monte Carlo integration

Our proposal is to use Monte Carlo simulation to integrate out the unobserved terms.

For each individual we draw R independent pseudo-histories for periods with missing

information. For a given value of θ, we then approximate the likelihood function by
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averaging over the R pseudo-histories. That is, for an individual who is under observation

during odd-numbered periods, we compute

LRi (θ) =
1

R

R∑
r=1

ji∏
j=1:j odd

gj(bij|brij−1, bij−2, . . . , bri2, bi1, θ), (6)

and for and individual who is under observation during even-numbered periods, we com-

pute

LRi (θ) =
1

R

R∑
r=1

ji∏
j=1:j even

gj(bij|brij−1, bij−2, . . . , bi2, bri1, θ), (7)

where for each r = 1, . . . , R and j = 1, . . . , ji the brij are sequences of simulated event

times specific to individual i’s period j, compatible with the individual’s observed and

simulated event history, and compatible with the density evaluated at θ. That is, each brij

is drawn from the conditional distribution gj given in (2), with simulated prior event times

replacing actual when the latter are unobserved, and using the θ at which the likelihood

function is evaluated. (For simplicity, the dependence of brij on θ is suppressed in the

notation.) Let krij denote the dimension of brij. Standard arguments (the law of large

numbers) imply that LRi converges to Li pointwise as R diverges to infinity.

The dynamic nature of the density function gj means that the simulation must be

done sequentially. Recall that f denotes the conditional density of events, and F is the

corresponding cumulative distribution function. For common parametric specifications

of the hazard function, f , F and F−1 are easily evaluated using closed-form formulae.

Pseudo-histories can therefore be created using the inversion method.

Suppose first that (ci0, ci1] is a period where individual i is not under observation.

To simulate a first event time for this individual, we draw a pseudo-random number

uri11 from the uniform distribution and then compute a candidate event time by bri11 =

F−1(uri11|si(ci0), θ). If bri11 > ci1, we decide that no events happened during (ci0, ci1] and

set kri1 = 0. If bri11 ≤ ci1, we keep bri11 and draw a second candidate event time. In

general, having drawn bri1k−1, . . . , b
r
i11 with bri1k−1 ≤ ci1, we draw a candidate for the kth

event time by bri1k = F−1(uri1k|sri (bri1k−1), θ) where uri1k is another (independent) draw from

the uniform distribution and sri (b
r
i1k−1) includes the simulated previous events bri1k−1, . . . ,
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bri11. If bri1k > ci1, the rth pseudo-history for period j is complete with kri1 = k − 1 and

brij = (bri1krij , . . . , b
r
i11). If bri1k ≤ ci1, we increment k and consider the next candidate event

time.

The simulation procedure is similar for other periods where an individual is not under

observation. The only difference is that the history includes the observed event times

during prior periods where the individual is under observation as well as simulated event

times during prior periods where the individual is not under observation. For example, if

individual i is under observation during (ci0, ci1] but not during (ci1, ci2], then sri (b
r
i2k−1)

includes the simulated events bri2k−1, . . . , bri21 as well as the observed events bi1.

As pointed out by several authors (see e.g. Stern, 1997; Brinch, 2012), it is essential

for successful numerical maximisation to use the same underlying draws from the uniform

distribution in all the evaluations of the likelihood function (including computation of

numerical derivatives).

The full incomplete-data simulated likelihood function is defined as the product of

LRi (θ) over i. Maximising the simulated likelihood function yields a consistent and asymp-

totically efficient estimator under standard conditions provided
√
N/R → 0 as N → ∞

where N is the number of individuals in the sample (Gouriéroux and Monfort, 1991).

2.3 Importance sampling

The simulated likelihood contributions described above are not everywhere continuous.

Discontinuities occur when a small change in θ leads to a switch in the decision of whether

to retain or discard a candidate event time (brijk). These discontinuities mean that stan-

dard maximisation methods for differentiable functions such as Newton’s method may

not work well.

Since the magnitude of the discontinuities are of order 1/R, one approach to numerical

maximisation of the likelihood function is to use a standard derivative-based method with

R very large, and increase R whenever a discontinuity is causing problems. Another

approach is to use a non-gradient method such as simplex algorithm (see e.g. Keane and

Sauer, 2010). These approaches will generally lead to convergence, but are expected to
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be slow.

An appealing method is to smooth the likelihood contributions using importance sam-

pling techniques. In the present context, an importance sampling distribution for bij can

be any given conditional distribution of events during period j given previous events. For

concreteness, we choose gj evaluated at some fixed value θ∗. For an individual who is

under observation during even-numbered periods (the odd-numbered case is similar), the

incomplete-data likelihood contribution can be written as

Li(θ) =

∫∫
· · ·
∫ ( ji∏

j=1:j odd

gj(bj|bij−1, bj−2, . . . , bi2, b1, θ)

× gj(bj|bij−1, bj−2, . . . , bi2, b1, θ∗)
gj(bj|bij−1, bj−2, . . . , bi2, b1, θ∗)

)
×
( ji∏
j=1:j even

gj(bij|bj−1, bij−2, . . . , bi2, b1, θ)
)
dbji−1 . . . db3 db1

= EBθ∗
i1

[
· · ·EBθ∗

iji−1

[( ji∏
j=1:j odd

gj(B
θ∗
ij |bij−1,Bθ∗

ij−2, . . . , bi2,B
θ∗
i1 , θ)

gj(Bθ∗
ij |bij−1,Bθ∗

ij−2, . . . , bi2,B
θ∗
i1 , θ

∗)

)
(8)

×
( ji∏
j=1:j even

gj(bij|Bθ∗

ij−1, bij−2, . . . , bi2,B
θ∗

i1 , θ)

)
∣∣∣∣ Bθ∗

iji−2 = biji−2, . . . ,B
θ∗

i2 = bi2,B
θ∗

i1

]
· · ·
]
.

The corresponding simulated likelihood contribution is

LRi (θ) =
1

R

R∑
r=1

( ji∏
j=1:j odd

gj(b
r
ij|bij−1, brij−2, . . . , bi2, bri1, θ)

gj(brij|bij−1, brij−2, . . . , bi2, bri1, θ∗)

)

×
( ji∏
j=1:j even

gj(bij|brij−1, bij−2, . . . , bi2, bri1, θ)
)
,

(9)

where brij for r = 1, . . . , R and j = 1, . . . , ji are drawn from the importance sampling

distribution gj(·|·, θ∗) instead of the “correct” distribution gj(·|·, θ). The principle under-

pinning importance sampling is that the “error” can be fixed by reweighting using the

ratio of correct density over the importance sampling density.

One of the advantages of the importance sampling approach is that the simulated event

times do not depend on the value of θ at which the likelihood contribution is evaluated,

and hence the simulated likelihood function is continuous and differentiable. A potential
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drawback is that a very large R may be needed in order to achieve a good approximation

to the likelihood function. Keane and Sauer (2010) suggest that it may be advantageous

to scale the importance sampling weights to sum to 1 over r.

2.4 Covariates

So far we have ignored covariates, in order to focus on missing event times. In practice, co-

variates can be time-invariant or time-varying. Incorporating covariates is straightforward

when the covariate paths are completely observed. Usually covariates with incompletely

observed paths can also be incorporated, using an extended simulation procedure. For

example, in some cases the observation process is such that time-varying covariates are

missing during the same periods when the event times are not observed. These covariates

can be incorporated by specifying an auxiliary model for their paths, and using this model

to integrate out the missing parts of the covariate paths.4

2.5 Unobserved heterogeneity

Allowing for individual-specific time-invariant effects is standard in the literature. These

effects capture correlation across event times (“frailty” in the statistics literature). It

is well-known that omitting individual-specific time-invariant effects can lead to a bias

towards negative duration dependence (see e.g. Elbers and Ridder, 1982; Heckman and

Singer, 1984a). The effects are usually assumed to be independent of covariates (“random

effects” in the econometrics literature). The distribution of the random effects is specified

either as discrete (following Heckman and Singer, 1984b) or as continuous such as a normal

distribution with mean 0.

Let vi denote the realised unobserved random effect for individual i, and consider the

complete-data likelihood function given in (3). Including and integrating out the random

effects gives

L?i (θ) =

∫ ∞
−∞

( ji∏
j=1

gj(bij|bij−1, . . . , bi1, v, θ)
)
dZ(v), (10)

4See e.g. Keane and Sauer (2010) for a similar approach in a discrete-time setting.
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where Z denotes the cumulative distribution function of vi, and implicitly θ has been

augmented to include unknown parameters of the distribution of vi. For simplicity, we

also reuse the symbols gj, f , h, and H to denote the corresponding functions which depend

on the random effect. The modification required to include a random effect is similar in

the other likelihood contributions given above.

In practice, if Z is continuous then the integration is carried out using Gaussian

quadrature. While straightforward, this increases the computational burden somewhat.

For example, with Q evaluation points v1, . . . , vQ and weights wi, . . . , wQ, the simulated

likelihood contribution in (9) becomes

LRi (θ) =

Q∑
q=1

wq
1

R

R∑
r=1

( ji∏
j=1:j odd

gj(b
qr
ij |bij−1, b

qr
ij−2, . . . , bi2, b

qr
i1 , vq, θ)

gj(b
qr
ij |bij−1, b

qr
ij−2, . . . , bi2, b

qr
i1 , vq, θ

∗)

)

×
( ji∏
j=1:j even

gj(bij|bqrij−1, bij−2, . . . , bi2, b
qr
i1 , vq, θ)

)
.

(11)

Note that the same underlying random draws from the uniform distribution can be used

for each q, but the simulated event times, and even the number of compatible simulated

event times, kqrij , will be different.

2.6 Estimation based on Heckman’s method

The likelihood contribution for individual i’s period j given in (2) is made up of subcon-

tributions representing each of the events, and a term representing the final right-censored

period when no events occurred. In general, the hazard function at any given time may

depend on the entire previous history of events. However, in many applications it can

be assumed that the hazard function depends only on recent history. For example, the

hazard rate for an event occurring at time t may depend only on whether or not an event

occurred (or the number of events that occurred) in the period (t− τ, t) for some fixed τ .

In applications where the influence of history is limited, missing data may affect only

some and not all of the event subcontributions. If so, then the terms in the likelihood

function that do not depend on missing data are “computable”, and it may be feasible to

handle the “uncomputable” parts by adapting the ideas of Heckman (1981).



13

To describe how Heckman’s idea can be applied in the present context, define dijk to

be 1 if h(bijk|si(bijk−1), vi, θ) is computable, and define dijk to be 0 otherwise. Define also

dijkij+1 so that exp
(
−H(cij|si(bijkij), vi, θ)

)
is computable if and only if dijkij+1 = 1.

It is helpful to begin with a simple two-period observation process, so suppose individ-

ual i is under observation in period 2 but not in period 1. By definition, the computable

terms are those that do not depend on the unobserved events in period 1. Since they don’t

depend on period 1 events, they can be factored out of the integral in the incomplete-data

likelihood contribution for individual i. Allowing for unobserved heterogeneity, we have

from (5) that

Li(θ) =

∫ ∞
−∞

{∫
g2(bi2|b1, v, θ)g1(b1|v, θ) db1

}
dZ(v)

=

∫ ∞
−∞

{[∫ ( ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)1−di2k
)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)1−di2k+1g1(b1|v, θ) db1
]

×
( ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)di2k
)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)di2k+1

}
dZ(v).

(12)

The integral with respect to b1 is uncomputable, because the necessary history is not

observed. Heckman’s idea was to approximate this using a reduced-form density that

is based on as much predetermined information as is available, incorporates unobserved

heterogeneity, and uses a flexible parametric specification. How much information is

available depends on the details of how the hazard rate depends on previous history.

Let h†(t|s(t′), v, ξ) for t > t′ be an approximate conditional hazard function evaluated

at time t given the event history until time t′. For simplicity, we do not introduce new

notation for the observed history itself. The principle is that h† is parameterised so that

it depend only on the part of s(t′) that is observed at time t′. Hence, h†(t|s(t′), v, ξ) is

computable even though s(t′) is not fully observed.5 Let H† denote the corresponding

5In practice, flexible specifications with different parameters may be used depending on the amount
of history available at time t′.
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cumulative hazard function from time t′ to time t, and define f † by

f †(t|s(t′), v, ξ) = h†(t|s(t′), v, ξ) exp
(
−H†(t|s(t′), v, ξ)

)
, t > t′. (13)

Then the hope is that given θ for some ξ we have that∫ ( ki2∏
k=1

f(bi2k|si(bi2k−1), v, θ)1−dijk
)

× exp
(
−H(ci2|si(bi2ki2), v, θ)

)1−dijk+1g1(b1|v, θ) db1

≈
( ki2∏
k=1

f †(bi2k|si(bi2k−1), v, ξ)1−dijk
)

exp
(
−H†(ci2|si(bi2ki2), v, ξ)

)1−dijk+1 .

(14)

Substituting the approximation into (12) gives an approximate likelihood contribution as

a function of (θ, ξ).

In the general multi-period case, the approximate likelihood contribution for an indi-

vidual who is under observation during even-numbered periods (the odd-numbered case

is similar) is

L†i (θ, ξ) =

∫ ∞
−∞

{ ji∏
j=1:j even

( kij∏
k=1

f(bijk|si(bijk−1), vi, θ)dijk

× f †(bijk|si(bijk−1), vi, ξ)1−dijk
)

exp
(
−H(cij|si(bijkij), vi, θ)

)dijkij+1

× exp
(
−H†(cij|si(bijkij), vi, ξ)

)1−dijkij+1

}
dZ(v).

(15)

Maximising the corresponding full likelihood function yields a consistent estimator of θ,

provided the approximate reduced-form model is in fact correctly specified. Generally the

hope is that the approximation is good enough that the magnitude of the inconsistency

is acceptable.

3 Monte Carlo experiments

To investigate the performance of the MSL approach, we carried out a small set of Monte

Carlo experiments. The designs feature mixed proportional hazards with a Weibull base-

line hazard function, a single time-invariant covariate, xi, and a continuous random effect,
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vi. The covariate and the random effect are realisations from a standard normal distribu-

tion.

Separate models are specified for the first event and for subsequent events. Current

duration dependence is captured in the baseline hazards. After the first event, the hazard

rates also depend on whether an event occurred or not during a recent period of fixed

length (i.e. a moving window). Specifically, the hazard function for the first event is

h1(t|s(0), x, v, θ) = α1t
α1−1 exp(xβ1 + µ1 + vδ1), t > 0. (16)

With t′ representing the most recent event time before t, the hazard function for subse-

quent events is

h2(t|s(t′), x, v, θ) = α2t
α2−1 exp(1(t < t′ + τ)γ + xβ2 + µ2 + vδ2), t > t′, (17)

where θ = (α1, β1, µ1, δ1, γ, α2, β2, µ2, δ2)
′ and τ is a constant that varies across experi-

ments. We normalise δ1 > 0 and δ2 > 0. The parameters used in the data-generating

processes are fixed at α1 = 1, β1 = 0.2, µ1 = −0.5, γ = 0.5, α2 = 1, β2 = 0.2, and

µ2 = −0.5, while either δ1 = 0, δ2 = 0 or δ1 = 1, δ2 = 1 as indicated in the tables.

Note that baseline time does not reset after an event in these designs. Alternatively,

the baseline hazard rate can be specified in terms of t − t′. More flexible models can be

obtained by specifying separate hazard functions for second events, third events, etc. Less

flexible models can be obtained by assuming α1 = α2, β1 = β2, µ1 = µ2, and δ1 = δ2.

In this case, the model effectively consists of a single hazard specification since (16) is

simply (17) with γ = 0. Such a specification was adopted for example by Keane and

Sauer (2010). Our designs satisfy these restrictions, but we do not impose them in the

estimation.

The observation process mimics a sampling procedure where analysis time is age and

data are collected from the population stock over a fixed calendar period. Specifically,

half the sample are observed over the age range (0, 1] while the other half is observed over

(1, 2]. That is, the former is right-censored at time 1 (and not left-censored), while the

latter is left-censored at time 1 and right-censored at time 2. The number of non-left-
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censored individuals in the samples is N1 = 250 and while the number of left-censored

individuals is either N2 = 250 or N2 = 500 as indicated in the tables.

Across all designs, about half of the individuals in a sample do not have any events

during their observation period. For those who do have observed events, the mean time

until the first event is about 0.38. Since α1 = 1 and α2 = 1 imply memoryless exponential

hazard functions, these statistics apply to both the left-censored and the non-left-censored.

We compute several estimators to compare the MSL approach with simple estimators

that may be considered in practice. Estimator ISU is an MSL estimator which uses

importance sampling techniques without scaling of the weights, while estimator ISN has

the weights normalised to sum to one. For simplicity, we use the true data-degenerating

process as the importance sampling distribution, and we set R = 100.

Estimator NLC uses only individuals with non-left-censored data; that is, half the

sample in the experiments with N2 = 250 and a third of the sample when N2 = 500.

Estimator HKM uses the approximate reduced-form idea of Heckman (1981) to handle

the left-censoring problem. For the designs considered here, the only uncomputable term

in the likelihood contribution for the left-censored individuals concerns the first observed

event in period 2, bi21, if this happens to happen within the period (1, 1 + τ ]. This is

because 1(bi21 < bi1ki1 + τ) cannot be computed as the time of the last event in period 1,

bi1ki1 , is unknown, while 1(bi21 < bi1ki1 + τ) = 0 can be inferred if bi21 > ci1 + τ for ci1 = 1.

Since no useful information is available in s(1), we specify the auxiliary hazard function

for bi21 as

h3(t|s(1), x, v, θ) = α3t
α3−1 exp(xβ3 + µ3 + vδ3), t > 0. (18)

The literature on dynamic panel data models usually does not distinguish between the

start of the event process and the start of the observation period, although these are

associated with conceptually distinct problems: at the start of the event process lags

cannot exist so logically a different structural equation is required, whereas at the start of

the observation period lags may exist so a method for dealing with missing data is required.

Here we maintain the distinction between left-censoring and genuine first events. That is,
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our HKM implementation estimates the parameters of all three hazard functions.

There are 1000 samples in each experiment. In designs with random effects, unobserved

heterogeneity is integrated out using Gauss-Hermite quadrature with Q = 10 evaluation

points.6

Table 1 shows root mean square errors (RMSE) for the four estimators for designs

without random effects. The likelihood function is separable in the parameters pertain-

ing to the first and subsequent events, respectively. Consequently, the NLC and HKM

estimates for the parameters of the first hazard function are identical. The RMSEs for

the IS estimates are slightly lower. For the second hazard functions, the HKM estimates

improve dramatically on the NLC estimates. This is because the usable sample is twice as

large, and the HKM involve only a few more parameters. The RMSEs for the IS estimates

are lower again, especially for γ and µ2.

The value of τ does not affect the first hazard function, but the higher τ , the more

history data are needed to estimate the second hazard function. The problem of missing

data therefore becomes more severe and higher RMSEs are expected. This is confirmed

in table 1. The results for the first hazard function do not change, because the same data

are used. For the second hazard function, the RMSEs for lnα2 and β2 also remain roughly

constant, while the RMSEs for γ and µ2 increase. The increase occurs because the number

of individuals with no recent events becomes small when τ is large, and hence it becomes

difficult to estimate µ2 accurately.7 Since individuals who have recent events identify the

sum γ + µ2, the uncertainty in the estimates of µ2 are mirrored in the estimates of γ.

However, the HKM estimator is better than the NLC estimator, since it uses much more

sample, and the two IS estimators are better than the HKM estimator, since they use the

sample efficiently.

Table 2 shows results for designs with random effects. Looking first at the case where

τ = 0.3 and N2 = 250, the patterns are similar to those without random effects. The

HKM estimator improves on the NLC estimator and the IS estimators perform better

6The results omit a few samples (max 3 per experiment) where the estimation procedure did not
converge.

7In the extreme, if these individuals experience no further events, the estimated hazard should be
zero, which means µ̂2 = −∞.
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than the HKM estimator. Estimation of distributions of random effects is notoriously

difficult, so it is not surprising to find much higher RMSEs for ln δ1 and ln δ2.

As τ increases, the results for the first-event parameters and for lnα2 and β2 do

not change much. Similar to the designs without random effects, estimation of γ and

µ2 becomes more difficult when τ is large, so the RMSEs for those parameters increase

for all estimators. The increase is very large for the NLC and HKM estimators but only

modest for the IS estimators, so the efficiency gain of the latter becomes more substantial.

The patterns for the RMSEs of ln δ1 and ln δ2 are complex and not entirely intuitive. For

example, the RMSEs for the NLC estimator of ln δ2 tend to increase with τ , but decrease

for the HKM estimator. Presumably this is because the “practical identification” of these

parameters is weak, so small approximation errors in the likelihood function can have

large effects of the estimates.

When the number of left-censored individuals is increased from N2 = 250 to N2 = 500,

the results for the first-event parameters hardly change, while there is some improvement

for the parameters relating to the second hazard function. This is particularly true for

the difficult parameters ln δ1 and ln δ2, and to a lesser extent for γ and µ2.

To conclude, it is clear that there are potentially large efficiency gains in using MSL

estimation over methods based on listwise deletion or Heckman’s approximate reduced-

form modelling of initial conditions. The gains are particularly high for parameters that

are difficult to estimate. The fact that the results for the ISU and ISN estimators are

not identical reveal a disadvantage of MSL estimation; namely, that numerical integration

inevitably involves some approximation error. As a practical guide, we suggest comput-

ing several MSL estimates, using different importance sampling distributions with and

without scaling of the weights. If the estimates are too different, then the values of R and

Q can be increased until all estimates agree.

4 Concluding remarks

This paper considers ML estimation of dynamic models of recurring events in continuous

time using censored data. We propose to deal with censoring by integrating out missing
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data from the likelihood function using Monte Carlo simulation and importance sampling

techniques. We compare MSL estimation with estimators that either ignore left-censored

individuals (listwise deletion) or deal with censoring using ad hoc modifications to the

likelihood function (Heckman’s method). The results show that there can be substantial

efficiency gains in maximising the full simulated likelihood function.

We assume that the censoring and the event processes are independent, and we focus

on settings where time origins and covariate paths are known. We anticipate that these

assumptions can be relaxed, at the costs of further computational complications. Given

the encouraging results for models of recurring events, it is also likely that similar efficiency

gains are available for example in multi-state transition models.
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Table 1: RMSE for designs without random effects
Parameter NLC HKM ISU ISN
τ = 0.3
lnα1 0.083 0.083 0.073 0.076
β1 0.113 0.113 0.098 0.099
µ1 0.096 0.096 0.088 0.088
γ 0.334 0.224 0.206 0.206
lnα2 0.281 0.149 0.148 0.149
β2 0.168 0.101 0.092 0.092
µ2 0.338 0.252 0.238 0.239

τ = 0.5
lnα1 0.083 0.083 0.073 0.077
β1 0.113 0.113 0.098 0.098
µ1 0.096 0.096 0.088 0.088
γ 0.467 0.299 0.246 0.247
lnα2 0.265 0.144 0.143 0.145
β2 0.157 0.092 0.086 0.086
µ2 0.482 0.329 0.285 0.287

τ = 0.7
lnα1 0.083 0.083 0.075 0.079
β1 0.113 0.113 0.098 0.098
µ1 0.097 0.096 0.089 0.089
γ 4.273 1.661 0.348 0.349
lnα2 0.256 0.140 0.139 0.140
β2 0.151 0.091 0.084 0.084
µ2 4.267 1.665 0.380 0.382

NLC: estimation using non-left-censored individuals; HKM: estimation
using Heckman’s approach; ISU: importance sampling unnormalised;
ISN: importance sampling normalised. Results for the parameters in
the HKM auxiliary equation not shown. See text for DGP and imple-
mentation of estimators.
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Table 2: RMSE for designs with random effects
N2 = 250 N2 = 500

Parameter NLC HKM ISU ISN HKM ISU ISN
τ = 0.3
lnα1 0.139 0.132 0.126 0.123 0.131 0.128 0.120
β1 0.150 0.145 0.126 0.128 0.146 0.116 0.113
µ1 0.152 0.147 0.126 0.123 0.145 0.121 0.117
ln δ1 1.248 1.120 0.662 0.662 1.376 0.517 0.617
γ 0.282 0.193 0.177 0.175 0.164 0.142 0.138
lnα2 0.135 0.112 0.107 0.110 0.117 0.112 0.104
β2 0.153 0.137 0.090 0.114 0.107 0.074 0.086
µ2 0.340 0.267 0.225 0.242 0.249 0.204 0.211
ln δ2 0.336 1.593 0.304 0.344 0.532 0.284 0.316

τ = 0.5
lnα1 0.128 0.125 0.121 0.117 0.123 0.123 0.114
β1 0.147 0.143 0.125 0.125 0.144 0.116 0.113
µ1 0.151 0.146 0.126 0.124 0.143 0.118 0.116
ln δ1 1.379 1.000 0.490 0.491 0.939 0.491 0.452
γ 0.439 0.300 0.261 0.256 0.240 0.221 0.213
lnα2 0.124 0.131 0.105 0.105 0.115 0.111 0.104
β2 0.147 0.164 0.090 0.107 0.124 0.073 0.089
µ2 0.491 0.356 0.284 0.289 0.300 0.259 0.251
ln δ2 0.339 0.794 0.300 0.338 0.518 0.284 0.317

τ = 0.7
lnα1 0.163 0.121 0.119 0.115 0.120 0.121 0.111
β1 0.169 0.144 0.124 0.125 0.144 0.112 0.110
µ1 0.160 0.143 0.127 0.126 0.141 0.119 0.117
ln δ1 6.663 1.101 1.004 0.949 0.747 0.484 0.451
γ 4.369 1.077 0.440 0.429 0.712 0.370 0.352
lnα2 0.133 0.101 0.104 0.103 0.120 0.109 0.102
β2 0.193 0.096 0.089 0.103 0.117 0.072 0.092
µ2 4.359 1.094 0.444 0.433 0.727 0.391 0.364
ln δ2 0.584 0.338 0.304 0.335 1.538 0.288 0.322

NLC: estimation using non-left-censored individuals; HKM: estimation using Heckman’s ap-
proach; ISU: importance sampling unnormalised; ISN: importance sampling normalised. Re-
sults for the parameters in the HKM auxiliary equation not shown. See text for DGP and
implementation of estimators.


