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Abstract

Extracting a trend component from nonstationary data is one of the first

challenges in estimating a DSGE model. The misspecification of the component can

distort structural parameter estimates and translate into a bias in policy-relevant

statistic estimates. This paper investigates how important this bias is to estimated

policy implications within a DSGE framework. The quantitative results suggest the

bias in parameter estimates due to trend misspecification can result in significant

inaccuracies in estimating statistics of interest. This then misleads policy

conclusions. Particularly, a misspecified model is estimated using a

deterministic-trend specification when the true process is a random-walk with drift.
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1 Introduction

Macroeconomic data can typically be decomposed into a trend component and a

cyclical component. Structural models such as Dynamic Stochastic General Equilibrium

(DSGE) models are typically constructed around the stationary cyclical components of

time series. Hence, the data are usually detrended in some way prior to estimation of the

model. There has been a long debate on how to extract the cyclical component from the

raw data in order to be used for the estimation of a structural model. Two common

approaches have been proposed within the literature. Given a DSGE model,

econometricians make an assumption regarding a trend specification in the data and

extract the cyclical component either by (1) using filtering devices (e.g. linear detrending

or first differencing) on the raw data before the estimation or (2) estimating the trend

and cycle jointly with the DSGE model. Regardless of the approach, an incorrect

assumption about the trend process can lead to mismeasurement of the cyclical

component. This mismeasurement in turn causes a distortion in structural parameter

estimates specified in the model. For policy makers, the distortion of structural

parameter estimates is not the primary concern. Rather, they are more concerned about

the accuracy of policy-relevant statistic estimates (e.g. impulse response functions and

variance decompositions) and whether policy implications deduced from such estimates

are misleading. These implied measures of policy implications are however dependent on

potentially biased structural parameter estimates. This paper therefore investigates ways

in which trend misspecifications can distort the accuracy of these policy-related statistics

of interest given a DSGE framework.

There have been many studies estimating DSGE models to answer specific economic

questions. The difference assumptions the econometricians make about trend processes

in the data result in a different choice of detrending method used prior to estimation.

Kim (2000), Dib (2003) and Smets and Wouters (2003), for example, specify a

deterministic-trend in a model and linearly detrend the data prior to estimation. Ireland

(2004), Del Negro et al. (2005) and Smets and Wouters (2007), on the other hand,

assume a stochastic trend in their models and filter the data by first differencing prior to

the estimation. Stock (1991), Rudebusch (1992) and Chang et al. (2007) show that there
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is in fact an empirical difficulty in distinguishing between a stochastic and a

deterministic-trend in macroeconomic time series. As a result, there is a potential

problem of specifying an incorrect trend specification.

By misspecifying the trend, econometricians can induce a trend misspecification

problem when they filter nonstationary data. Mismeasurement of the trend component

can lead to problems in the estimation of a structural model and result in a bias in

structural parameter estimates. To gain some understanding of this issue, simulation

exercises become useful. Cogley (2001), Fukac and Pagan (2010) and Canova and Ferroni

(2011) construct different data generating processes to investigate the use of statistical

devices (e.g. linear trend, first difference and Hodrick-Prescott filter) and a model-based

transformation on simulated data. Regardless of the filtering approach applied to the

data, they find that structural parameter estimates are severely biased when an incorrect

trend assumption is applied. The degree of bias varies depending on which approach is

used and what was the underlying process. Further studies focus on the impact of this

bias in parameter estimates on policy-relevant measurements. Canova and Ferroni (2011)

and Filippo (2011), for instance, examine the implications of using inappropriate filtering

devices for the impulse response function estimates while Clements and Hendry (2001)

look into forecastability when trend misspecification exists. Following these studies,

many researchers have proposed alternative methodologies to improve estimation (see

e.g. Gorodnichenko and Ng, 2010; Filippo, 2011; Canova and Ferroni, 2011).

This paper builds upon our understanding and pursues further investigation of the

consequences of trend misspecifications on policy implications. Unlike other studies, this

paper does not focus only on determining the first-moment statistic of the potential bias

in parameter and policy-relevant statistic estimates induced by trend misspecifications,

relative to relevant true values. The paper studies properties of the distribution of the

estimates as well as incorporates the sampling uncertainty into the results. To summarise

this information, coverage rates are implemented.1 The coverage rate for an estimator is

defined as the fraction of times that some credible intervals (i.e. 95% Highest Posterior

Density Interval) contain the relevant true values. We can therefore use the coverage rate

1The idea of coverage rates has been implemented by, for example, Christiano et al. (2007) and Paustian
(2007) to assess the accuracy of confidence intervals under a framework of a structural vector autoregression.
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as a measure of accuracy of the estimator. In turn, we can also assess whether the size of the

bias in structural parameter estimates is significant in affecting the accuracy of estimated

statistics of interest. This is a useful information as we can answer a question of how likely

we would obtain true values with some confidence level when a trend misspecification

is allowed in a DSGE model. The main contribution of this paper is then to measure

the accuracy of policy-relevant statistic estimates under a misspecified framework and

demonstrate further compelling evidence of how important the trend misspecification is

to policy analysis.

In this paper, I follow the econometric methodology proposed by Filippo (2011) to

use nonstationary data and jointly estimate parameters governing trend processes with

structural parameters specified in a DSGE model. The data generating process (DGP) is

a DSGE model, as is the estimated model. In both the DGP and the estimated model,

two trend specifications are considered; a deterministic-trend and a random-walk possibly

with drift. The implications of trend misspecification are investigated by comparing all

possible combinations of these two trend specifications in the DGP and the estimated

model. Importantly, the trend specification in the estimated model may not be the same

as one in the DGP. The bias in parameter estimates is then measured relative to the DGP’s

parameter values. As the trend process specified within the estimated model will in some

cases differ from the trend process within the DGP, the structural parameter estimates

become biased. This bias then changes the agents’ equilibrium decisions and the dynamic

of the model is altered to compensate for the mismeasurement of the cyclical component.

For example, when the trend is misspecified, households become more inelastic in making

a labour-consumption choice and exogenous processes are estimated to be more volatile

and less persistent than they are in the DGP. These results are consistent with Filippo

(2011).

The estimated structural parameters are then used to study consequences of trend

misspecification on policy implications. The policy-relevant statistics considered in this

paper are impulse response functions and variance decompositions. These measurements

can be expressed as nonlinear functions of structural parameters. They can therefore

be directly affected by any potential bias in structural parameter estimates. By using

coverage rates, I find that the estimated parameters are not only distorted but the degree

4



of distortion is also large enough to reduce the accuracy of the policy statistics of interest

to a practically important degree. This in turn misleads policy advice deduced from such

statistics. By comparing two cases of misspecification, the mean squared errors and the

coverage rates suggest that a misspecified model with a random-walk specification is able

to provide smaller distortion of parameter estimates and has higher accuracy of policy-

relevant measurements than a misspecified model with a deterministic-trend specification.

Even when this is the case, however, policy makers still need to be cautious in interpreting

the results from variance decompositions as the coverage rates are shown to be quite low

for some variables.

This paper considers two different frameworks of DSGE models; a standard Real

Business Cycle (RBC) and a New Keynesian (NK) model. This leads us to make another

observation worth mentioning. Depending on which framework is implemented, the

structural parameter estimates that become biased due to trend misspecification are

different in interesting ways. In the case of an RBC model, the inverse elasticities

associated with households are severely biased upwards, whereas the policy parameters

specified in the Taylor rule are affected in the case of a NK model. As a NK-type model

is a popular workhorse used by many central banks and the policy-rule parameters are

particularly of interest, this result raises a concern for policy makers. This paper shows

that these parameters governing the reaction of a central bank to a shock in an economy

can be biased upwards if a trend component in nonstationary data is mistreated, and

this may result in a substantial reduction in the accuracy of both impulse response

functions and variance decompositions.

The rest of the paper is organised as follows. Section 2 provides an econometric

methodology used to estimate a DSGE model and describes how simulation exercises are

designed in this paper. Section 3 provides a description of the model used as a DGP and

an estimated model and then discusses consequences of trend misspecification upon policy

implications. Finally, Section 4 concludes and outlines a strategy for subsequent research.
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2 Econometric Methodology

In this paper, I use the approach proposed by Filippo (2011) to estimate a DSGE model.

Instead of filtering nonstationary data prior to the estimation, this approach computes the

likelihood directly from a ny × 1 vector of observable variables, yt. Filippo (2011) shows

in detail that this approach is able to provide smaller parameter distortion compared to

the filtering approach. The proposed methodology is called a one-step approach. The

observable variables can be decomposed into a reduced form representation for the non-

cyclical component (yτt ) and a structural representation for the cyclical component (yct ).

The observable variables are then given by

yt = yτt + yct .

The cyclical behaviour of the data can be described by a stationary DSGE model whose

linear state-space representation is given by

yct = Sỹt

ỹt = g(Ωm)x̃t

x̃t = h(Ωm)x̃t−1 + σεεt

where S is a selection matrix corresponding the cyclical component of the data yct to the

log-deviation variables from steady state values and trend components in the model ỹt, x̃t

is a nx × 1 vector of log-deviation unobservable state variables from steady state values,

g(Ωm) and h(Ωm) are matrices of reduced-form parameters as a function of structural

parameters of the model, εt ∼ N (0nε , Inε), 0nε is a nε × 1 zero vector and σεσ
′
ε = Σε is a

variance-covariance matrix.

The trend component can be described by some filter functions, yτt = Fτ (yt), according

to a trend assumption econometricians make on the observable variables. In this paper,

given a set of simulated data, econometricians in the experiment consider two common

trend specifications; a deterministic-trend (dt) and a random-walk (rw) process. The

choice of filtering methodology depends on the econometricians’ belief about the trend

component in the data.
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Suppose econometricians believe that the observable variables are stationary around

a constant growth rate of θ1 and integrated of order zero, I(0). Econometricians

therefore consider a deterministic linear trend specification as a filter function. This

model specification is denoted by M(dt) and given by

yτt = θ0 + θ1t+ συυt

where θ0 is a column vector representing means of the variables, υt ∼ N (0ny , Iny) and

συσ
′
υ = Συ is a variance-covariance matrix.

On the other hand, suppose the observable variables are assumed by econometricians

to evolve according to a stochastic trend and be integrated of order one, I(1), then they

consider a stochastic linear-trend process such as the so-called random walk specification

as a filter function. This model specification is denoted by M(rw) and given by

yτt = θ1 + Γyτt−1 + συυt

where θ1 is a ny × 1 vector of the drift, Γ is a diagonal matrix which has zeros or ones on

the main diagonal, υt ∼ N (0ny , Iny), συσ
′
υ = Συ is a variance-covariance matrix and yτ0 is

θ0.

Therefore, the cyclical component yct is explained as a function of structural parameters

from the DSGE model Ωm whereas the non-cyclical component yτt is governed by filter

parameters ΩF ≡ {θ0, θ1,Συ}. With this approach, these two sets of parameters Ω ≡{
Ωm,ΩF

}
are jointly estimated using a Bayesian method.

2.1 Policy Implications

Given an estimated DSGE model, I consider two important questions policy makers

are interested in. These are: what is the impact of a shock in the economy, and what are

the main driving forces? These questions can be answered by computing impulse response

functions and variance decompositions from an estimated model. The impulse response

functions help explain the movements of macroeconomic variables in response to different

structural shocks and the variance decompositions measure the contribution of each type
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of structural shock to the forecast error variance. Given an estimated DSGE model whose

linear state-space representation is

ỹt = g(Ω̂m)x̃t

x̃t = h(Ω̂m)x̃t−1 + σ̂εεt,

the statistics of interest can be computed as follows.

Impulse response functions is defined as differences between the response of ỹt+s to a

change in a structural shock εt by 1 standard deviation at period t and the one without

the shock. Impulse response functions can then be expressed as a nonlinear function of

structural parameter estimates given by

IRF (s; Ω̂m) ≡
[
vec

(
∂ỹt+1

∂εt

)′
, . . . , vec

(
∂ỹt+s
∂εt

)′]′
= (σ̂′ε ⊗ g(Ω̂m)⊗ Is)b(s; Ω̂m)

where s is the number of periods ahead and b(s; Ω̂m) ≡
[
vec(h(Ω̂m)0, . . . , vec(h(Ω̂m)s)

]
.

The variance decompositions can also be expressed as nonlinear functions of structural

parameter estimates and s-period ahead, V D(s; Ω̂m). For each variable i, the contribution

of shock j to variation of the underlying variable at s-period ahead can be expressed as

V Dij(s; Ω̂m) =
ψij(s; Ω̂m)∑nε
j=1 ψij(s; Ω̂m)

where, for any matrix a, ai. is a ith row vector of matrix a and a.j is a jth column vector of

matrix a, ψij(s; Ω̂m) = σ̂ε,jgi.(Ω̂
m)h.j(Ω̂

m)s which can also be seen as an impulse response

of shock j to variable i,
∑nε

j=1 V Dij(s; Ω̂m) = 1 and σ̂ε,j is an estimated standard deviation

of shock j.

These statistics of interest are dependent on estimated structural parameters specified

in the model. Any distortion in structural parameter estimates can therefore result in

distortions in the estimates of these functions. The focus of this paper is on the distortion

of parameter, impulse response and variance decomposition estimates induced by trend

misspecification in an estimated DSGE model.
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2.2 Simulation Exercises

I study the role of trend misspecification upon policy implications by considering two

different trend specifications in the data generating process (DGP) and the DSGE model

used in the estimation, which may not be the same. The trend specifications of interest are

a deterministic-trend and a random-walk process. By alternating trend specifications of

interest, I examine two cases of correct trend specification and another two cases of trend

misspecification. The correct specification cases are a situation where the underlying trend

process coincides with the one assumed by the econometricians (in our experiments) in

their estimated models. The misspecification cases, on the other hand, are cases where the

trend process constructed in the DGP and the one assumed in the model are different. The

simulation exercises are summarised in Table 1. I consider two common specifications of

DSGE models used in the literature; a Real Business Cycle (RBC) and a New Keynesian

(NK) model.

In this paper, the distortion of parameter estimates is measured by mean squared

errors (MSE) which can be decomposed into a variance and a bias of parameter estimates.

The variance provides information on how far on average the posterior draws lie from

a posterior mean, while the bias measures difference between a posterior mean and a

true value specified in the DGP. The sign of the bias captures the directional bias of the

estimates. MSE can then be expressed as

V (Ω) =
1

N

N∑
n=1

diag[(Ω̄− Ω(n))(Ω̄− Ω(n))′]

Bias(Ω,Ω0) = Ω̄− Ω0

MSE(Ω,Ω0) = V (Ω) + diag[Bias(Ω,Ω0)Bias(Ω,Ω0)′]

where Ω̄ is a column vector of posterior means of parameter estimates, Ω(n) is a column

vector of parameter estimates for nth draw, Ω0 is a set of true parameter values and

N = 1, 000 is a total number of kept draws from a Markov chain.

The contribution of this paper is to demonstrate whether the parameter distortion

measured previously is significant in affecting the accuracy of policy statistic estimates. I

therefore measure the accuracy of these statistics by computing coverage rates of the 95%
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Highest Posterior Density Intervals (HPDI) of such statistics. This coverage rate is defined

as a fraction of times, across 150 simulations, that the 95% HPDI of statistic estimator

contains the relevant true values. A high coverage rate (i.e. more than 90%) indicates

that the distortion in parameter estimates due to trend misspecification is not significant

in reducing the accuracy of policy-relevant measurements. Hence, the policy conclusions

deduced from such statistics are considered reasonable.

3 Results and Discussion

This section begins with the specification of a standard Real Business Cycle (RBC)

model, which does not have policy implications. I consider this model to illustrate the

implementation of coverage rates as an accuracy measurement. Then, the consequences

of trend misspecifications upon policy implications is investigated given a New Keynesian

(NK) framework. At the end of each model section, results and implications from the

coverage rates will be discussed.

3.1 Exercise 1: A Standard RBC Model

This model is a simple variation of Chang et al. (2007). I consider the specification

where there is no adjustment cost of labour and exogenous processes evolve according to a

stationary AR(1) process. Households in this economy optimise their expected discounted

lifetime utility by choosing each period consumption (Ct), hours worked (Ht) and next-

period capital holding (Kt+1) subject to their budget constraint and a capital accumulation

equation. The endowment of time is normalised to be 1 which can be taken as leisure or

hours worked. The sources of income for households are from supplying capital and labour

services to firms. Income in this setting can be either consumed or invested. Firms optimise

their profit subject to the labour-augmenting Cobb-Douglas production.

Let, for any variable at, a log-deviation from a steady state value (a∗) and a trend

component (aτt ) be ãt = ln
(

at
a∗aτt

)
. The equilibrium conditions of this economy can be
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summarised in terms of log-deviation by the system of the following five equations.

ηC̃t = Et
{
ηC̃t+1 − (1− α)(1− β + βδ)(H̃t+1 − K̃t+1 + z̃t+1)

}
(1)

ηC̃t = αK̃t − (α+ γ)H̃t + (1 + γ)B̃t + (1− α)z̃t (2)

ScC̃t =

(
α+

(1− Sc)(1− δ)
δ

)
K̃t −

(
1− Sc
δ

)
K̃t+1 + (1− α)H̃t

+ (1− α)z̃t (3)

z̃t+1 = ρz z̃t + εz,t+1 (4)

B̃t+1 = ρBB̃t + εB,t+1 (5)

where Sc = C∗/Y∗ is a share of consumption, β ∈ (0, 1) is a discount factor, α ∈ (0, 1)

is a capital share, η > 0 is an inverse intertemporal elasticity of substitution, γ > 0 is

an inverse short-run (Frisch) labour supply elasticity, δ ∈ (0, 1) is a depreciation rate of

capital, ρz ∈ (0, 1) and ρB ∈ (0, 1) are measures of a persistence and εz,t+1 ∼ N (0, σ2
z) and

εB,t+1 ∼ N (0, σ2
B) are Gaussian shocks in the exogenous technology and preference shock

respectively.

These necessary conditions characterise the equilibrium decision rules for households

and firms. Equation (1) is an Euler equation for consumption stating that the marginal

rate of substitution between the consumption at period t and the consumption at period

t + 1 equals the marginal product of capital. Equation (2) is a labour supply equation

stating that the marginal rate of substitution between consumption and leisure must equal

the marginal product of labour. Equation (3) is a resource constraint which the equilibrium

allocations from both households and firms need to satisfy. Equations (4) and (5) present

the processes of technology and preference shocks respectively.

Data Generating Process

The simulated data of consumption and hours worked, {Ct, Ht}Tt=0, used in this exercise

are constructed following the specification presented in Section 2,

Ct
Ht

 =

Cτt
Hτ
t

+

Cct
Hc
t


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where the cyclical component yct ≡ (Cct , H
c
t )
′ is obtained from the log-linearised solution

of the RBC model with ỹt ≡ (C̃t, H̃t)
′ and x̃t ≡ (K̃t, z̃t, B̃t)

′.

For the non-cyclical component yτt ≡ (Cτt , H
τ
t )′, I consider two cases of data generating

processes. In the first case, a deterministic-trend specification is assumed in the non-

cyclical component. Hereinafter, I refer this case as DGP (dt) which is given by

Cτt
Hτ
t

 =

θ0

0

+

θ1

0

 t+

σC 0

0 0

 υt.

For the second case, a random-walk specification is assumed which can be presented as

Cτt
Hτ
t

 =

θ1

0

+

1 0

0 0


Cτt−1

Hτ
t−1

+

σC 0

0 0

 υt.

This case will be denoted as DGP (rw). Given these specifications, only consumption

contains the trend component. The trend in both cases has an initial value of θ0 and an

average growth rate of θ1. Therefore, the only difference between these two specifications

is the trend of consumption. The filter parameters are set as follows; θ0 = 2, θ1 = 0.0063,

σC = 0.007 and υt ∼ N (02, I2). The values of the structural parameters used in the data

generating process are summarised in Table 5 in the Appendix. For each case, T = 200

observations are generated, which is equivalent to 50 years of quarterly data.

Parameter Estimation and Qualitative Analysis

Given the framework of the RBC model, the structural parameters are

Ωm ≡ {β, α, δ, γ, η, ρz, ρB, σz, σB} and the filter parameters are ΩF ≡ {θ0, θ1, σC}. For

each realisation of a DGP, econometricians in our study implement the methodology

proposed by Komunjer and Ng (2011) to check necessary and sufficient conditions for

structural parameters Ωm to be identified.2 Consequently, I assume they fix the discount

rate β = 0.99 corresponding to a 4% annual interest rate and the capital share α = 0.33

2The procedure is briefly described in the Appendix. The identifiability of structural parameters is
important as the lack of identification can contaminate the likelihood and affect the parameter estimation.
There are many studies such as Canova and Sala (2009), Schorfheide (2011) and Guerron-Quintana et al.
(2013) investigating the issue and the consequences for parameter estimation as well as inference of these
estimates. By ensuring identifiability, the analysis in this paper is isolated from any bias induced by lack
of identification.
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to ensure the identifiability of structural parameters. The prior distributions of other

parameters are specified to be centred around the true values. The prior distribution of

σC is however bounded away from zero to guarantee that an estimated model with a

random-walk process is always misspecified when the underlying trend process is a

deterministic trend. The reason is that, once σC is allowed to be zero, there is a nonzero

probability such that a random-walk specification can collapse to a deterministic-trend

specification. The parameter distortions for the correct specification cases and the

misspecification cases are summarised in Table 2. Figures 1 to 4 depict the coverage

rates of the impulse response functions and the variance decompositions in each period

under both correct specification and misspecification cases.

Under the correct specification cases, the nonzero mean squared errors (MSE) of

parameter estimates in the first two blocks of Table 2 suggest that there are still some

distortions in the estimation that are unaccounted for. These distortions therefore affect

the dynamic of the model. Note that a bias in parameter estimates is presented as a

percentage deviation from a parameter’s DGP value. Given this set of trend

specifications, the inverse short-run labour elasticity (γ) and the inverse elasticity of

intertemporal substitution (η) are estimated about 20% and 3% higher than the true

values respectively. These estimates suggest that households become less elastic and

therefore they are less responsive on their consumption-labour equilibrium choice to any

shock in the economy, especially a shock to their preference (Bt). Estimated impulse

responses thus understate the true dynamic of macroeconomic variables. Moreover, the

perception of the expected size of exogenous shocks in the system is also distorted. In

particular, these shocks are estimated to be more volatile but less persistent than they

are in their corresponding DGPs. The magnitude of the bias varies depending on which

trend specification is considered. For instance, the standard deviation of the technology

shock is estimated to be approximately 13% higher than it really is in the case of a

deterministic-trend process while it is only 2% higher in the case of a random-walk

process. The estimated impulse responses thus overstate the initial true impact as the

size of the initial shock is normalised to 1 standard deviation, and converges back to zero

relatively faster than in the DGP. However, the 95% HPDI of the impulse response

functions is able to capture the associated true values more than 95% of the time as
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shown in Figures 1.3 Therefore, once the model is correctly specified, the coverage rates

suggest that the level of distortion in parameter estimates due to some unaccounted

factors is small and does not affect the accuracy of policy-relevant statistics.

The last two blocks of Table 2 report the parameter distortions under the

misspecification cases. Due to the trend misspecification, it is not surprising that

econometricians are unable to extract the trend component accurately and obtain

nonzero biases in filter parameter estimates. The structural parameter estimates in these

cases then become distorted to compensate for the misspecification. The block on the

left shows the parameter distortion in the case where the true trend component is

deterministic and estimated as if it were stochastic. The notation used for this case is

DGP (dt) − M(rw). According to the MSEs, these parameter estimates are as much

distorted as the ones in the correct specification cases, except for the persistence of

technology shock (ρz). Due to less persistence of technology shock, the impulse responses

to the shock converge back to zero relatively faster than the ones in the correct

specification cases. The coverage rates of the corresponding impulse responses, displayed

by dashed lines in Figure 3, therefore show a slight drop in later periods. The rates pick

up once the impulse responses converge to zero. However, the overall coverage rates of

impulse response functions in this case are still more than 90% throughout the entire

period. This result indicates that the accuracy of impulse response functions can still be

safely maintained. It is also worth mentioning that even though the MSEs are similar to

the correct specification cases, most of the parameter estimates in this case have smaller

bias but larger variance than in the cases of correct specification.

The block on the right shows the case where an econometrician estimates the model

with a deterministic-trend while the underlying process is in fact a stochastic trend. This

case is denoted by DGP (rw) −M(dt). Note that the numbers in parentheses are a ratio

of the distortions in the case of DGP (rw) − M(dt) relative to the ones in the case of

DGP (dt) −M(rw). A number greater than 1 thus implies that an estimated model with

a deterministic-trend process provides a larger distortion than an estimated model with

3I also consider another commonly used 95% credible interval to compute coverage rates in this paper.
In contrast to 95% HPDI, this interval for some parameter Ωi is defined as an interval [a, b] such that
p(Ωi < a|y) = p(Ωi > b|y) = 0.025. Even though the figures for the coverage rates are different, I arrive at
similar conclusions as using 95% HPDI. Therefore, I do not present the results in this paper but they are
available upon request.
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a random-walk process. As we can see, this misspecification induces a larger distortion

of structural parameter estimates compared to the competing misspecified case, except

for the persistence of technology shock (ρz). The upward biased inverse elasticity of

intertemporal substitution (η) and inverse short-run labour elasticity (γ) further disrupt

the equilibrium behaviour of agents in the system, and the perception of the expected

size of the exogenous shocks is further distorted. Particularly, the technology shock (zt)

is estimated to be even more volatile whereas the preference shock (Bt) is estimated to be

even less persistent and more volatile than in the case of DGP (dt) −M(rw). The impact

of these parameter distortions upon the accuracy of the impulse response functions can

be reflected by the coverage rates. From the solid lines in Figure 3, the upward biased

standard deviation causes the coverage rates of the impulse responses of the technology

shock to start off low before picking up higher rates in later periods. Due to a well-

estimated measure of persistence of the technology shock, reflected by an almost zero

bias, the coverage rates of the corresponding responses in later periods can be even higher

than the ones in the case of DGP (dt) −M(rw). The changes in the estimated equilibrium

behaviour regarding labour choice and the dynamic of the preference shock, on the other

hand, keep the coverage rates of the responses to the preference shock very low. Once

again, rates increase when the responses converge to zero. These low coverage rates imply

that the parameter distortions in this misspecified case are severe enough to greatly reduce

the accuracy of the impulse response functions. One general observation worth mentioning

here is that, despite having smaller variances compared to the case of DGP (dt) −M(rw),

the large biases in parameter estimates cause the 95% HPDI to concentrate and situate

in a wrong portion of the parameter space. This in turn leads to low coverage rates of

impulse response functions.

Another policy-related statistic that I consider is variance decompositions. Figure 4

shows coverage rates of variance decompositions using 95% HPDI. As variance

decompositions are closely related to impulse response functions, a poor performance in

estimating impulse response functions leads to a reduction in the accuracy of the the

function as can be seen in the case of DGP (rw) − M(dt). In particular, the poor

performance in estimating impulse responses of the preference shock contributes greatly

to inaccuracy of variance decompositions. However, it is not always the case that having
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high accuracy of impulse response functions will lead to high accuracy of variance

decompositions. In the case of DGP (dt) − M(rw), for instance, the variance

decompositions of consumption have very low coverage rates throughout the entire

period of interest and the coverage rates in the case of output decline significantly when

errors are forecast further ahead. This is due to nonlinearity of the variance

decomposition as a function of the impulse response function. Any small distortion in

estimated impulse response functions can be amplified and thus contribute to the

distortion incurred in estimated variance decompositions. As a result, policy makers

need to be careful in interpreting results of the variance decompositions when the trend

misspecification might be present. By comparing coverage rates between misspecification

cases, the case of DGP (dt) − M(rw) still performs better in estimating variance

decompositions than in the case of DGP (rw) −M(dt).

To sum up the results of the RBC model, the trend misspecification does impact the

estimation of structural parameters and policy-relevant statistics to a significant degree.

The structural parameters which are severely affected by the misspecification are the

two inverse elasticities associated with households, {γ, η}, and the parameters governed

the exogenous processes, {ρz, ρB, σz, σB}. The coverage rates show that the degree of

distortion among these parameter estimates is significant in affecting the accuracy of

policy-related statistics, especially variance decompositions.

3.2 Exercise 2: A New Keynesian Model

In this section, the RBC model in the previous exercise is extended by incorporating

a price stickiness and a central bank conducting a monetary policy rule. This is a slightly

larger model in terms of the number of parameters to be considered in the experiment. As

this type of DSGE model is popularly used by many policy makers, the experiment under

this framework will provide useful implications concerning the policy analysis.

The economy under this framework can be briefly described as follows. In the

beginning of period t, households have initial assets and allocate their income to

purchase a portfolio of Arrow securities in addition to the consumption of a basket of

differentiated goods and capital goods. A continuum of firms on the compact interval

[0, 1] stays in a monopolistically competitive environment and follows the calvo-price
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setting. That is, as firms produce differentiated goods, they are able to set up their own

prices. However, the firms receive signals with only constant probability in each period

to adjust the price levels. The central bank adjusts the monetary instrument, the

nominal interest rate in this case, according to a Taylor (1993) rule.

The equilibrium conditions of this economy can be expressed in terms of log-deviation

as follows. Define Ct as consumption, Yt as output, It as investment, Kt as capital goods, it

as nominal interest rate, πt as inflation and mct as real marginal cost whereas zt, eB,t and

eπ,t are exogenous processes of technology, demand and marginal cost shock respectively.

For any variable at, let a log-deviation from a steady state value and a trend component

be ãt = ln
(

at
a∗aτ

)
.

Ỹt = EtỸt+1 − (1− Sc)(EtĨt+1 − Ĩt)

− 1

η
(̃it − Etπ̃t+1) + eB,t (6)

ĩt − Etπ̃t+1 = (1− β + βδ)Et(m̃ct+1 + Ỹt+1 − K̃t+1) (7)

π̃t = βEtπ̃t+1 + m̃ct + eπ,t (8)

m̃ct =

(
γ + α

1− α

)
Ỹt −

(
1 + γ

1− α

)
K̃t + ηC̃t − (1 + γ)z̃t (9)

δĨt = K̃t+1 − (1− δ)K̃t (10)

Ỹt = ScC̃t + (1− Sc)Ĩt (11)

ĩt = φππ̃t + φyỸt (12)

z̃t+1 = ρz z̃t + εz,t+1 (13)

eB,t+1 = ρBeB,t + εB,t+1 (14)

eπ,t+1 = ρπeπ,t + επ,t+1 (15)

where Sc = C∗/Y∗ is a share of consumption, β ∈ (0, 1) is a discount factor, α ∈ (0, 1)

is a capital share, η > 0 is an inverse intertemporal elasticity of substitution, γ > 0 is

an inverse short-run (Frisch) labour supply elasticity, δ ∈ (0, 1) is a depreciation rate of

capital, θ ∈ (0, 1) is a fraction of sticky price firms, φπ is a policy response to inflation,

φy is a policy response to output, ρz ∈ (0, 1), ρB ∈ (0, 1) and ρπ ∈ (0, 1) are measures of

persistence and εz,t+1 ∼ N (0, σ2
z), εB,t+1 ∼ N (0, σ2

B) and επ,t+1 ∼ N (0, σ2
π) are Gaussian
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shocks in the exogenous technology, demand and marginal cost shock respectively.

Equations (6) to (15) summarise the equilibrium conditions of the agents in this

economy. Equation (6) is IS equation representing the relation of output, expected

inflation and policy instrument. As there is capital in the economy, Equation (7)

explains the connection between the real interest rate and marginal product of capital.

The NK Phillips curve presented in Equation (8) shows the dependency of current

inflation on expected future inflation and the real marginal cost. Equation (9) is the

marginal cost equation. Equations (10) and (11) are the capital accumulation and

resource constraint equation respectively. The reaction function of policy makers is given

by Equation (12) stating that the nominal interest rate responses according to the Taylor

principle where the degrees of monetary policy response to inflation and output are

φπ > 1 and φy > 0 respectively. The last three equations show that exogenous shocks in

this setting are governed by a stationary AR(1) process.

Data Generating Process

Similar to the data generating process in the RBC model, the simulated data of output,

nominal interest rate and inflation, {Yt, it, πt}Tt=0, used in the exercise are constructed as


Yt

it

πt

 =


Y τ
t

iτt

πτt

+


Y c
t

ict

πct


where the cyclical component yct ≡ (Y c

t , i
c
t , π

c
t )
′ is obtained from the log-linearised solution

of the NK model with ỹt ≡ (C̃t, Ĩt, Ỹt, ĩt, π̃t, m̃ct)
′ and x̃t ≡ (K̃t, z̃t, eB,t, eπ,t)

′.

Two cases of DGPs for the non-cyclical component yτt ≡ (Y τ
t , i

τ
t , π

τ
t )′ are considered; a

deterministic-trend and a random-walk process. The former case is denoted by DGP (dt)

and can be expressed as


Y τ
t

iτt

πτt

 =


θ0

0

0

+


θ1

0

0

 t+


σY 0 0

0 0 0

0 0 0

 υt.
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The latter case is presented as


Y τ
t

iτt

πτt

 =


θ1

0

0

+


1 0 0

0 0 0

0 0 0



Y τ
t−1

iτt−1

πτt−1

+


σY 0 0

0 0 0

0 0 0

 υt.

This case is denoted asDGP (rw). Here, only output contains a trend component. The filter

parameters in both cases are set as θ0 = 2, θ1 = 0.0063, σY = 0.007 and υt ∼ N (03, I3).

The values of structural parameters used in the data generating process are summarised

in Table 5 in the Appendix. For each case, I generate 200 observations, which is equivalent

to 50 years of quarterly data.

Parameter Distortion and Qualitative Analysis

Given the framework of a NK model, I have

Ωm ≡ {β, α, δ, γ, η, φπ, φy, ρz, ρB, ρπ, σz, σB, σπ} as the structural parameters and

ΩF ≡ {θ0, θ1, σY } as the filter parameters. The setting of the experiment is similar to the

experiment under a RBC model. That is, the priors are specified to be centred around

the true values. To ensure the identifiability of structural parameters under this

framework, I therefore assume that econometricians fix the share of consumption

Sc = 0.6 and the fraction of sticky firms θ = 0.75 in addition to the discount rate and the

capital share.4 The parameter distortions for both correct specification cases and

misspecification cases are summarised in Table 3. Figures 5 to 7 and 9 plot the coverage

rates of the impulse response functions and the variance decompositions in each period

under the correct specification and misspecification cases.

The results under the correct specification cases are similar to the ones estimated

using a RBC model. The nonzero MSEs reflect some distortion of parameter estimates

incurred during the estimation. However, the coverage rates arrive at the same conclusion,

suggesting that this level of distortion is not significant in affecting the accuracy of either

impulse response functions or variance decompositions. This can be seen as, more than

90% of the time, the relevant true values of both impulse response functions and variance

decompositions are maintained within 95% HPDI.

4See Appendix A for the procedure to check for the identifiability of structural parameters.
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As one would expect, once the trend process is misspecified, the filter parameters

are biased as suggested by nonzero biases. Similar to the RBC case, estimating the

model with an assumption of a random-walk process while the underlying process is a

deterministic-trend process, denoted by DGP (dt) −M(rw), provides a similar distortion

of structural parameter estimates as in the correct specification cases. The high coverage

rates of impulse response functions presented by the dashed lines in Figure 7 suggest that

the 95% HPDI of estimated impulse response functions does very well in capturing the

corresponding true values. However, in the case of DGP (rw)−M(dt), the policy parameters

responding to the deviation of output and inflation (φy and φπ respectively) in the Taylor

rule are distorted to compensate for this misspecification. The degree of distortion, on

average, is substantially larger (i.e. more than 5 and 10 times) relative to the alternative

misspecified case. The estimation errors of these policy parameters in our studies can

also be seen clearly in Figure 8. This figure plots the estimated policy parameters from

each simulation of both misspecification cases. While the estimates in the case of random

walk process are mass around the true values presented by the intersection of the two

dashed lines, the estimates in the case of deterministic trend disperse widely away from

the true values. The bias in the policy-rule parameter estimates implies drastically different

behaviour of the central bank reacting to a shock in the economy, especially a shock to

the marginal cost. In particular, the central bank is estimated to be much more aggressive

in conducting monetary policy to stabilise the economy. This causes other agents in the

economy to alter their equilibrium decisions accordingly. The degree of bias in these policy

parameter estimates is severe enough to distort the accuracy of impulse response functions.

As can be seen by the straight lines in Figure 7, the coverage rates of impulse responses

to the marginal cost shock are very low (i.e. less than 50% of the time) throughout the

entire period. As other parameters are equally distorted, the coverage rates of impulse

responses of both technology and demand shocks in these misspecification cases are similar

and high. The result here at least gives positive evidence that we can still implement this

misspecified model to study these shocks’ propagation.

Once again, estimated DSGE models with an incorrect trend assumption cannot

maintain the relevant true values of variance decompositions within 95% HPDI as well as

when they are implemented to compute impulse response functions. Figure 9 shows the
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coverage rates of variance decompositions using 95% HPDI. For the case of

DGP (dt) −M(rw) represented by dashed lines, only the variance decompositions of the

preference and marginal cost shock have high coverage rates. The coverage rates drop for

the variance decompositions of the technology shock where the rates are only a bit

higher than 50% of the time. The coverage rates become even worse in the case of

DGP (rw) −M(dt). The rates for all variables and shocks are not even above 50% of the

time, suggesting how inaccurate the estimated variance decompositions are. By

comparing the coverage rates between the misspecification cases, the case of

DGP (dt) −M(rw) is still able to provide a better estimation of variance decompositions

than the case of DGP (rw) −M(dt).

In conclusion, the structural parameter estimates that are severely distorted by the

trend misspecification in this framework are the policy-rule parameters responding to the

deviation of output and inflation, {φy, φπ}. This result is crucial to policy makers. Many

studies have an interest in estimating interest rate rules to study the role of monetary

policy in response to any shock in the economy over time and the determinacy of a

rational expectation equilibrium (see e.g. Judd and Rudebusch, 1998; Clarida et al.,

2000). However, the results above demonstrate a potential problem that should be given

careful consideration when conducting empirical work with this DSGE model. The

misspecification of a trend component in nonstationary macroeconomic data can result

in potential bias in policy-rule parameter estimates and thus affect implications of

monetary policy rules deduced from an estimated model.

Furthermore, similar to the RBC case considered previously, a misspecified NK

model with a random-walk process can provide smaller parameter distortion and higher

accuracy in estimating policy-relevant statistics compared to a misspecified NK model

with a deterministic-trend process. A possible explanation why a model with a

deterministic-trend process performs worse when the underlying process is in fact a

stochastic trend is discussed as follows. Given a random-walk specification in a DGP, the

trend specification can be expressed as a function of time period t and a sum of residuals,

yτt = θ1t+ συ

t∑
i=1

υi.
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This expression is similar to the deterministic-trend process except for the second term

which is due to a unit root. Our attention is then on the variance of trend innovation σ2
υ.

When συ is large to some extent, the sum of residuals does matter to trend innovation.

Incorrectly imposing a deterministic-trend specification as a filter function thus results in

larger estimation error in filter parameters as the specification is not flexible enough to

capture this permanent innovation. This in turn causes a bias in structural parameter

estimates. Even so, it is therefore possible that, if we consider a small true value of συ

in a DGP with a random-walk process, a misspecified model with a deterministic trend

might be able to perform as well as an alternative misspecification case. However, I do

not explore the sensitivity of the results to these parameter values in this paper.

3.3 Sensitivity Analysis

In this section, I consider small sample bias and illustrate the rate at which bias

reduces as the sample size grows. This gives a feel for the usefulness of asymptotic

behaviour of estimators. However, only sample sizes that are relevant for

macroeconometrics are considered. I redo the experiments for both the RBC and NK

modesl and, this time, increase the sample size from 200 to 500 observations. I find that

increasing sample size only improves the estimation of parameters that are not affected

by trend misspecification as can be seen by smaller MSEs, biases and variances.

Otherwise, affected parameter estimates such as estimates of inverse elasticities

associated with households {η, γ}, the policy-rule parameters {φy, φπ} and parameters

governed exogenous processes {ρz, ρB, ρπ, σz, σB, σπ}, remain at least as distorted as in

the case of having a smaller sample. Therefore, even in a larger sample size, the

parameter distortion induced by trend misspecification cannot be alleviated and

inaccuracies of policy-relevant statistics remain.5

5The coverage rates derived from these experiments suggest the same conclusions as in the case of
using a small sample. As a result, I do not present the results in this paper but they are available upon
request.
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4 Conclusion

This paper investigates the role of trend misspecifications upon policy implications

given a framework of a DSGE model. Trend misspecifications can be induced when

econometricians do not know the underlying trend process in nonstationary data. To

demonstrate the importance of trend misspecification, simulation exercises are conducted

where simulated data exhibits a deterministic-trend and econometricians estimate a

model with a stochastic trend, and vice versa. To incorporate sampling uncertainty, the

implications of trend misspecifications drawn in this paper are based on 150 simulations.

The findings can be summed up as follows. First, the misspecification of a trend

component can lead to distortion of structural parameter estimates. The degree of

distortion is significant in reducing the accuracy of policy-relevant statistics, especially

for estimated variance decompositions as suggested by coverage rates. Second, between

two competing misspecified models, an estimated model with a random-walk process can

provide a smaller parameter distortion and a higher accuracy of statistics of interest

compared to an estimated model with a deterministic-trend process. Third, the

structural parameter estimates that become biased due to trend misspecification are

different depending on a DSGE framework. Finally, the parameter distortion induced by

trend misspecification still remains even in a large sample size.

Even though an estimated model with a random-walk specification has better

performance than the other competing model, the accuracy of the estimated variance

decompositions under the presence of trend misspecification is still low for some

variables. Therefore, strategies to reduce or accommodate trend misspecification should

be implemented. Effort invested in determining the appropriate form of the trend is

warranted. Alternatively, one might employ Bayesian Model Averaging to extract

information on trend specifications and obtain a better estimation in terms of a bias in

estimates. The aim would be to obtain more accurate estimates of policy-related

statistics.
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Table 1: All Possible Combinations of Trend Specifications in DGP and Estimated Model

DGP Model (M)

Deterministic Trend (dt) Random Walk (rw)

Deterministic Trend (dt) Correct Specification 1 Misspecification 1

DGP (dt) −M(dt) DGP (dt) −M(rw)

Random Walk (rw) Misspecification 2 Correct Specification 2

DGP (rw) −M(dt) DGP (rw) −M(rw)

Figure 1: Coverage Rates of Impulse Responses under Correct Specification Cases given
a RBC framework
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Figure 2: Coverage Rates of Variance Decomposition under Correct Specification Cases
given a RBC framework

Notes: The x-axis indicates the s-steps ahead error.

Figure 3: Coverage Rates of Impulse Responses under Misspecification Cases given a RBC
framework
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Figure 4: Coverage Rates of Variance Decompositions under Misspecification Cases given
a RBC framework

Notes: The x-axis indicates the s-steps ahead error.

Figure 5: Coverage Rates of Impulse Responses under Correct Specification Cases given
a NK framework
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Figure 6: Coverage Rates of Variance Decomposition under Correct Specification Cases
given a NK framework

Notes: The x-axis indicates the s-steps ahead error.

Figure 7: Coverage Rates of Impulse Responses under Misspecification Cases given a NK
framework

29



Figure 8: Estimated Policy Parameters in the Taylor Interest Rate Rule

Figure 9: Coverage Rates of Variance Decompositions under Misspecification Cases given
a NK framework

Notes: The x-axis indicates the s-steps ahead error.
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Appendix

A Identification of Structural Parameters in DSGE Models

The methodology proposed by Komunjer and Ng (2011) to check the identifiability of

structural parameters can be described briefly as follows. Consider a DSGE model with

structural parameters Ωm in a set Θ ⊆ RnΩm . The linear state-space representation of a

DSGE model presented in Section 2 can be rewritten as

x̃t+1 = A(Ωm)x̃t + B(Ωm)εt+1

ỹt+1 = C(Ωm)x̃t + D(Ωm)εt+1

where x̃t is a nx × 1 vector of unobservable state variables, ỹt is a ny × 1 vector of log-

deviation variables, εt ∼ N (0nε , Inε) and E(σεσ
′
ε) = Σε is a variance-covariance matrix.

Given the system, assumptions required to obtain the rank and order conditions for

identification are as follows. First, the innovations εt is white noise. Second, the system

is stable, left-invertible and minimal. The system is minimal when it contains only the

smallest vector of state variables xt such that it is able to fully characterise the properties

of the model. Last, the mapping Λ(Ωm) : Ωm 7→ Λ(Ωm) is continuously differentiable on

Θ where Λ(Ωm) is the hyperparameter in the state-space solution given by

Λ(Ωm) ≡ ((vecA(Ωm))′, (vecB(Ωm))′, (vecC(Ωm))′, (vecD(Ωm))′, (vechΣε)
′)′.

If all assumptions hold then a necessary and sufficient rank condition for Ωm to be

locally identified at a point Ωm
0 is

rank∆(Ωm
0 ) = rank(∆Λ(Ωm

0 ) ∆T (Ωm
0 ) ∆U (Ωm

0 )) = nΩm + n2
x + n2

ε
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where

∆(Ωm
0 ) =



∂Φ(Ωm)
∂Ωm 0n2

R×n2
x

0n2
R×n2

ε

∂vecA(Ωm)
∂Ωm A(Ωm)′Inx − Inx ⊗A(Ωm) 0n2

x×n2
ε

∂vecB(Ωm)
∂Ωm B(Ωm)⊗ Inx Inε ⊗B(Ωm)

∂vecC(Ωm)
∂Ωm −Inε ⊗C(Ωm) 0nynx×n2

ε

∂vecD(Ωm)
∂Ωm 0nynx×n2

ε
Inε ⊗D(Ωm)

∂vechΣε
∂Ωm 0nε(nε+1)/2×n2

x
−2εnε [Σε ⊗ Inε ]


Ωm=Ωm0

≡

 ∂Φ(Ωm)
∂Ωm 0n2

R×n2
x

0n2
R×n2

ε

∆Λ(Ωm
0 ) ∆T (Ωm

0 ) ∆U (Ωm
0 ))


Ωm=Ωm0

,

Φ(Ωm) is a set of nR priori restrictions satisfying Φ(Ωm
0 ) = 0, εn = (G′nGn)−1G′n and Gn is

an n2 × n(n+ 1)/2 duplication matrix of 0s and 1s with a single 1 in each row.

Further, a necessary order condition is nΩm +n2
x+n2

ε ≤ nΛ, where nΛ = (nx+ny)(nx+

nε) + (nε + 1)/2. This condition requires the system to have the number of equations at

least as large as the number of unknowns in those equations.

I check all assumptions for both RBC and NK frameworks evaluated Ωm at both

estimated values and DGP values and then proceed with the rank and order conditions.

The restrictions are set such that some parameters are fixed at DGP values and a steady

state condition is satisfied. As the rank of ∆(Ωm
0 ) varies according to a tolerance value

used in Matlab, I consider the values ranging from 1e− 5 to 1e− 11. Given these values

of tolerance, both rank and order conditions are all satisfied ensuring the identifiability

of structural parameters specified in both frameworks. Table 4 presents the results of

identifiability evaluated at DGP values.
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Table 4: Rank and Order Conditions given a RBC and NK Frameworks
RBC NK

∆Λ ∆T ∆U ∆ Rank Order ∆Λ ∆T ∆U ∆ Rank Order
Required 9 9 4 22 14 16 9 39

1e-5 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-6 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-7 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-8 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-9 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-10 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass
1e-11 9 9 4 22 Pass Pass 14 16 9 39 Pass Pass

B Parameter Values and Priors

Table 5 summarises the parameter values used in the data generating processes (DGP)

in both RBC and NK exercises and the priors used in a Bayesian estimation. These

parameter values are in a reasonable range and common within the literature. For priors,

they are quite standard and centred around the true values.

Table 5: True structural parameter values used in DGP and Priors used in the estimation

Parameter True Prior Model
Value Density Mean S.D.

Structural parameters
β Discounted factor 0.99 - - - RBC, NK
α Capital share 0.33 - - - RBC, NK
δ Depreciation rate of capital 0.025 Beta 0.025 0.005 RBC, NK
γ Inverse short-run labor elasticity 1.89 Normal 1.9 0.75 RBC, NK
η Inverse intertemporal elasticity of substitution 1 Normal 1 0.1 RBC, NK
θ A fraction of sticky price firms 0.75 - - - NK
φπ Response of monetary policy to inflation 1.107 Gamma 1 0.1 NK
φy Response of monetary policy to output 0.12 Gamma 0.1 0.1 NK
ρz Persistence in technology shock 0.95 Beta 0.9 0.05 RBC, NK
ρB Persistence in preference shock 0.8 Beta 0.8 0.05 RBC, NK
ρp Persistence in cost-push shock 0.95 Beta 0.9 0.05 NK
σz Standard deviation of technology shock 0.007 IGamma 0.01 Inf RBC, NK
σB Standard deviation of preference shock 0.007 IGamma 0.01 Inf RBC, NK
σp Standard deviation of cost-push shock 0.007 IGamma 0.01 Inf NK

Filtered parameters
θ0 Average mean 2 Normal 2 0.01 RBC, NK
θ1 Average growth rate 0.0063 Normal 0.006 0.01 RBC, NK
σC 0.007 IGamma 0.01 0.01 RBC
σY 0.007 IGamma 0.01 0.01 NK
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