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EMPIRICAL RELEVANCE OF AMBIGUITY IN FIRST PRICE AUCTION MODELS∗

GAURAB ARYAL† AND DONG-HYUK KIM‡

ABSTRACT. We study the identification and estimation of first-price auction models with in-

dependent private values where bidders are risk averse and there is ambiguity about the

valuation distribution. When bidders’ preferences are represented by the maxmin expected

utility of [Gilboa and Schmeidler, 1989], we provide sufficient conditions for nonparametric

identification of the valuation distribution and bidders’ attitude toward ambiguity, separately

from the risk aversion (CRRA, CARA). We propose a semi-parametric method and apply it

to two datasets, one from experimental auctions and the other from USFS timber auctions.

We find, for both cases, that bidders are not only risk averse but also ambiguity averse. In

addition, we consider the multiplier preferences of [Hansen and Sargent, 2001] and identify

the valuation distribution using the same conditions, and show that normalizing, addition-

ally, (any) one quantile of the value, e.g. upper bound of the support, is sufficient to identify

the ambiguity parameter separately from the nonparametric utility.

Keywords: first-price auction, identification, Bayesian econometrics, ambiguity aversion.

JEL classification: C11, C44, D44, E61

1. INTRODUCTION

In this paper we study the identification and estimation of first-price auction models

with independent private values when risk averse bidders are ambiguous (uncertain) about

the valuation distribution. In particular, we consider an environment where bidders con-

sider many distributions as reasonable candidates for the true distribution instead of as-

suming that they know the correct distribution. One of the main contributions of this paper

is to provide sufficient conditions to nonparametrically identify the valuation distribution

and bidders’ attitude toward ambiguity separately from their attitude toward risk. In this

respect we depart from the current literature on empirical auctions by relaxing the (unver-

ifiable) assumption that all bidders commonly know the true valuation distribution and

they maximize their expected utility (EU, henceforth).

This common knowledge assumption can be untenable when bidders’ appraisal process

is complex (e.g. seismic prospecting for mineral/wildcat auctions, and timber auctions)
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2 ARYAL AND KIM

or when bidders have not yet learned the market fundamentals after any disturbance (e.g.

T-bill auctions after the 2007 financial crisis) leading to ambiguity.1 For such environments,

a model that allows for ambiguity may be preferable to the conventional EU framework

not only because it gives a robust inference by nesting EU but also because the presence

of ambiguity affects the optimal auction design: (a) the revenue equivalence theorem fails

[Lo, 1998]; (b) the first price auction is suboptimal [Bose, Ozdenoren, and Pape, 2006]; and

(c) the optimal reserve price decreases with ambiguity [Bodoh-Creed, 2012]. It is, therefore,

important to determine the empirical relevance of ambiguity. By proposing a way to do

that, we contribute to the empirical auction literature.

Ambiguity in probability judgements has been central in economics since [Keynes, 1921;

Knight, 1921], culminating to a position of eminence with [Ellsberg, 1961]. It arises when a

decision maker is either unable to pin down the unique probability of payoff-relevant-states

or is concerned with model misspecification. For example, when model primitives are par-

tially identified, a policy design such as assigning an individual to a treatment or choosing

a reserve price in auctions, can be viewed as a decision under ambiguity [Manski, 2000;

Aryal and Kim, 2013]. To model ambiguity, we use the maxmin expected utility (MEU,

henceforth) of [Gilboa and Schmeidler, 1989]. Under MEU, every bidder has a unique

convex and closed set of equally reasonable valuation distributions, and maximizes her ex-

pected utility, where the expectation is with respect to the most pessimistic distribution in

the set.

One difficulty with the MEU theory is that since it only guarantees the existence of a

unique set of distributions that is closed and convex, the same preferences can be repre-

sented by many sets of distributions, as shown by [Siniscalchi, 2006]. Hence, inference

would be sensitive to how we restrict the shape of the set.2 We therefore only assume that

the set has absolutely continuous distributions around the true distribution and that a bid-

der with the highest value (on the upper boundary of the value) knows that no rival has a

higher value, i.e., no ambiguity at the top.

To formulate bidders’ strategy, the set of distributions is common knowledge among the

bidders, and so is the fact that values are all independent. The most pessimistic distribution

is then also common knowledge, which guarantees the existence of a unique equilibrium

with a symmetric and monotonic bidding strategy. We innovate a mapping, the D-function,

that bridges the true distribution and the most pessimistic one, which plays an important

role in identification and give a testable restriction on ambiguity, i.e., the presence of ambi-

guity implies the D-function strictly below the 45◦ degree line, but under EU they coincide.

1 For instance, wildcat auctions are for offshore areas that haven’t been explored, discerning the entire dis-
tribution based on seismic prospecting seems unlikely. Likewise, in timber auctions, evaluating the quality of
timbers in a tract is a difficult and often error ridden process; see [Athey and Levin, 2001].

2 Example 1 elaborates more for more on this issue. Pedantically speaking, it is surprising that how we model
the set of distributions affects the preferences, once we recognize that under Savage’s sure-thing principle, state-
independence of preferences is implicitly assumed, which then separates the EU preference from the subjective
probability beliefs. That assumption is no longer valid under ambiguity.
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(analogous to the Lorenz curve.) Exploiting the bidding strategy, we trace back from the

data to the model structures – the valuation distribution, the utility function, and the D-

function.

We first show that the nonparametric utility function is not identified even when bid-

ders participation is exogenous (exclusion restriction). However, the valuation distribution

and the ambiguity function are nonparametrically identified under the exogenous partici-

pation for both constant relative risk aversion (CRRA) and constant absolute risk aversion

(CARA) specifications. Since the highest bidder has no ambiguity (no ambiguity at the top),

if she overbids, it must be attributable to risk aversion. Hence, the difference of her bidding

across two auctions identifies the risk aversion coefficient. Then, by comparing bid quan-

tiles across two auctions, we identify the D-function and the valuation distribution. The

exclusion restriction is used by [Guerre, Perrigne, and Vuong, 2009] to nonparametrically

identify the utility function under EU.

As identification relies on the highest valued bidder our estimator will be based on the

support of the observed data that in turn depends on some other parameters of interest,

leading to what is known as an nonregular model. So following the recommendation of

[Hirano and Porter, 2003], who show that in such cases MLE is generally inefficient but

Bayes estimator is efficient according to the local asymptotic minmiax criteria for conven-

tional loss functions, we use semi-parametric Bayes estimator. Our estimator is based on

Dirichelt process of [Ferguson, 1973] and the random Bernstein polynomial of [Petrone,

1999a,b].

The estimation of a auctions with ambiguity is new in the literature, so before we ana-

lyze the field data, we implement our estimation method in a sample from experimental

auctions of [Dyer, Kagel, and Levin, 1989] where values are drawn from a uniform distri-

bution. An advantage of using this data is that the experiment is simple and has also been

used by [Bajari and Hortaçsu, 2005] to estimate the risk aversion (CRRA) coefficient. We ex-

pect our estimated of valuation distribution to be uniform and the risk aversion parameter

to confirm with the estimates by [Bajari and Hortaçsu, 2005]. We not only match both these

parameters but we also find that the estimated ambiguity-function is significantly below

the identity mapping (45◦ - line), i.e. there is strong evidence of ambiguity.

Next we study the Timber auctions conducted by the U.S. Forest service to test for pres-

ence of ambiguity. As mentioned earlier, even though it has been acknowledged that tim-

ber auction has a relatively complex appraisal process [Athey and Levin, 2001], most of

the empirical analysis ignores the possibility that the bidders might not know the correct

distribution. Furthermore, another feature of the data that is important from the point of

ambiguity is the low reserve price, which has been largely ignored by earlier works. For

instance [Lu and Perrigne, 2008] argue that these reserve prices do not bind and can be

ignored. [Aryal and Kim, 2013], however, show that when the seller is ambiguity averse,

it is decision theoretically optimal to choose a low reserve price. So the argument goes, if
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USFS can be ambiguous about the distribution and if the appraisal process is complex, it

is highly plausible that bidders are also ambiguous. Hence, the timber auction provide a

natural setting to implement our model for ambiguity averse bidders. The posterior distri-

bution of the risk aversion parameters are consistent with the point estimates in [Lu and

Perrigne, 2008] and the estimates support the presence of ambiguity among bidders.

We show how the identification result can be extended to auctions with (non separa-

ble) unobserved heterogeneity and MEU preferences as long as there are three bidders in

each auction. The identification strategy follows that of [Hu, McAdams, and Shum, 2011].

Lastly, we consider identification of the Multiplier Preference (MP) model of [Hansen and

Sargent, 2001] as an competing model of ambiguity. Since MP can be transformed into a

risk averse model without ambiguity [Strzalecki, 2011], the nonparametric identification

of the utility function follows from [Guerre, Perrigne, and Vuong, 2009], and to identify

the ambiguity aversion parameter we show it is sufficient to normalize any one quantile of

valuation, such as the upper bound.3

Therefore our paper is related and contributes to the literature on empirical auction mod-

els studied by [Paarsch, 1992; Guerre, Perrigne, and Vuong, 2000, 2009; Athey and Haile,

2002; Haile and Tamer, 2003], among others. Our paper is also related to papers that use ex-

periments to elicit ambiguity preferences in decision theory [Halevy, 2007; Ahn, Choi, Gale,

and Kariv, 2011] and in auction [Chen, Katuščák, and Ozdenoren, 2007] and on measuring

expectation (or beliefs) [Manski, 2004]. We, therefore aim to contribute to the literature that

recognizes the importance of ambiguity/robustness in economic modeling as summarized

by [Hansen and Sargent, 2011].

In the next section we describe the model with MEU and the identification of the model

structure, in section 3 we present estimation results using experimental Timer auction data.

In section 4 we consider unobserved heterogeneity; identification of multiplier preferences

is presented in section 6 and we conclude. All technical details are collected in the Appen-

dices.

2. MODEL AND IDENTIFICATION

An indivisible private valued object is to be allocated to one of n ≥ 2 bidders without

reserve price. Each bidder i observes only her own value vi and bids bi. The highest bidder

wins the object and gets utility u(vi − bi) while the rest get u(0) = 0, where u(·) is an

increasing and strictly concave utility function. The objective of bidder i with value vi is to

solve:

max
bi
{u(vi − bi)× Pr(win)} ≡ max

bi

{
u(vi − bi)× Pr(bi ≥ bj, j 6= i)

}
. (1)

3Although MP model is widely used in macroeconomics, as far as we know, that literature has not considered
identification of this ambiguity parameter. Without identification a researcher has to select an arbitrary value or
use some other rule such as the detection probability error model of [Hansen and Sargent, 2010]. The choice of this
parameter is crucial, as the planner’s policy function varies with it; see [Svensson, 2001; Giordani and Söderlind,
2004].
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The nature draws values i.i.d. from F0(·|n, W) defined over [v(W, n), v(W, n)] but the bid-

ders do not know this distribution. Here, W ∈ W ⊂ RL is a vector of auction covariates that

is observed by both the bidders and the researcher. For notational ease, we shall suppress

the dependence on W until Section 3.3. Since, bidders do not know F0(·|n) they cannot

compute the “winning probability,” that is essential to solve (1). Following the literature

on decision under ambiguity, we assume that even though the bidders do not know F0(·|n)
they consider many equally reasonable distributions.

Let Pn be a convex set of all strictly increasing continuous distribution functions defined

over [v(n), v(n)] for a given n ∈ N := {n ∈ N : 2 ≤ n < ∞} such that F0(·|·) ∈ Pn.4 There

is also a need to model each bidder’s beliefs about others’ beliefs about the set of distribu-

tions because it will affect the equilibrium behavior. First, we assume that the number of

bidders n in an auction is common knowledge. Second, we also assume that even though

the bidders do not knowF0(·|n) it is commonly known that the values are all drawn from

only one distribution from the set Pn. This assumption of symmetry-in-beleifs among the

bidders keeps the model tractable because we do not have to model higher order beliefs ex-

plicitly. A justification for this is that bidders have access to a common training data from

which they can learn, e.g. in timber auctions bidders can “cruise” the same tracts before

bidding. Collectively, we make the following assumptions:

Assumption 1. It is common knowledge among the bidders that:

(1) There are n ∈ N bidders with an identical utility function u : R+ → R+ with u′ > 0,

u′′ < 0, and u(0) = 0.

(2) Their values v1, . . . , vn are independently and identically distributed.

(3) The true valuation distribution F0(·|n) ∈ Pn with density f0(·|n) > 0 is unknown to the

bidders, but any information about F0(·|n) other than realized values is shared among the

bidders.

We focus only on a symmetric pure strategy Bayesian Nash equilibrium. In particu-

lar, every bidder conjectures that her opponents use a strictly increasing (pure) bidding

strategy, and announces a bid that is a best response to that conjecture and at equilibrium

the conjecture turns out to be true.5 When the distribution F0(·|n) is common knowledge,

there is a unique symmetric Bayesian Nash equilibrium in pure strategy characterized by

a strictly increasing bidding function βn : [v(n), v(n)]→ R+; see Theorem 6 [Athey, 2001].

This bidding strategy maps the latent value to the observed bid. [Guerre, Perrigne, and

Vuong, 2000] shows that when bidders are risk neutral, this map can be inverted to link

each bid to a unique value, thereby identifying F0(·|n). [Guerre, Perrigne, and Vuong,

2009; Campo, Guerre, Perrigne, and Vuong, 2011] extend this result to allow for risk averse

4 The convexity assumption is without loss of generality because all preferences that are valid with a given
set of distributions are also valid for the convex hull of this set. In other words, the partial order of preference is
invariant to any convex combination of members in the set.

5 In our model, bidders do not have the option of using “ambiguous strategies”, i.e. they do not have access
to a subjective randomizing device (such as Ellsberg urns); see [Bade, 2011; Riedel and Sass, 2011].
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bidders. In the remaining of this section, we extend these results to the MEU and MP

representations.

Maxmin Expected Utility. The seminal article [Gilboa and Schmeidler, 1989] proposes an

axiomatic representation of preferences for decision makers (bidders) with multiple priors

(valuation distribution) about the state of nature (opponents’ values). We assume

Assumption 2. The preference ordering of each bidder satisfy

(1) Assumptions A1-A6 in [Gilboa and Schmeidler, 1989].

(2) Monotone Continuity.

Assumption 2 (1) coincides with axioms in the expected utility (EU) , except it allows deci-

sion makers to weakly prefer any convex combination of indifferent lotteries to each indi-

vidual one instead of restricting the combination to be indifferent– ambiguity aversion, and

uses a weaker version of independence. Let Ω be the set of the states of nature, ũ(·) the

utility function, and A the set of all feasible actions. [Gilboa and Schmeidler, 1989] shows

that a decision maker’s preference ordering satisfies assumption 2 if and only if there is

a unique set of distributions C over Ω such that she prefers an action a to b whenever

minP∈C EPũ(a) ≥ minP∈C EPũ(b). We begin by proposing a way to adapt the set of distri-

butions to represent the strategic effects of ambiguity.

If every bidder had a different set of distributions, we would have to explicitly model

the beliefs of other bidders about that set, and that bidder’s beliefs about what others be-

lieve. As mentioned earlier, to gain traction we follow the tradition of [Harsanyi, 1967], and

interpret the auction as a game of imperfect information among bidders, where although

all bidders are ambiguous about the true distribution, it is common knowledge that there

is one unique set of distribution that contains the true distribution. From assumptions 1

and 2, this implies that every bidder uses the most pessimistic distribution to determine

her expected utility and chooses a bid accordingly.

Then the next step is to model a set of distributions that is sufficiently general enough

to model ambiguity but at the same time should always has a unique lowest/worst distri-

bution that first order stochastically dominates all other distributions in the set; see [Gilboa

and Marinacci, 2010]. Before we define such a set we begin with an example that demon-

strates how the set of distribution we choose can affect our inference. To that end, we con-

sider the ε-contaminated model that is widely used, in economics and in robust statistics,

to model the set of distributions.[Nishimura and Ozaki, 2006; Kopylov, 2008] provide an

axiomatic justification for using ε-contamination set to model ambiguity in decision mak-

ing.6 Then we show that this model is observationally equivalent to a first price auction

without ambiguity.

6 This ε-contaminated model is widely used in the literature; see [Huber, 1973; Berger, 1985; Berger and
Berliner, 1986; Nishimura and Ozaki, 2004; Bose, Ozdenoren, and Pape, 2006; Bose and Daripa, 2009; Cerreia-
Vioglio, Maccheroni, Marinacci, and Montrucchio, 2011; Aryal and Stauber, 2013].



AMBIGUITY IN FIRST PRICE AUCTION 7

Example 1. Let ε ∈ (0, 1) be given and is commonly known to the bidders who, without loss of

generality, are assumed to be risk neutral. For a fixed n, under the ε-contaminated model, the set of

distribution is defined as

Γ′ := {F(·|n) : F(·|n) = (1− ε)F0(·|n) + εR(·|n) with R(·|n) ∈ Pn},

where R << F0 is a distribution. Let F∗(·|n) be the most pessimistic distribution and f ∗(·|n) its

density. Then we know

F∗(v|n) = (1− ε)F0(v|n) + min
R∈Γ′

R(v|n) =
{

(1− ε)F0(v|n), v < v

1, v = v.

so that

arg max
x∈[v(n),v(n)]

[v− βn(x)] [(1− ε)F0(x|n)]n−1 = arg max
x∈[v(n),v(n)]

[v− βn(x)]F0(x|n)n−1,

which means the solution to MEU model with the Γ′ as the set of distribution is also the solution to

EU model.

Intuitively, this transpires because ambiguity, as measured by ε, scales the true distribution

for all bidders by a (multiplicative) factor of (1− ε), and hence does not affect the relative

probability of winning. This means the the inverse hazard function that governs the bids is

independent ε and hence bidders can ignore ε. Therefore, the model is with ambiguity and

is observationally equivalent to the one without ambiguity, and the identification of F0(·|n)
follows from [Guerre, Perrigne, and Vuong, 2000] and is formally stated below:

Lemma 1. If the set of distributions is given by ε-contamination of F0(·|n) then the model is obser-

vationally equivalent to the first price auction model without ambiguity.

Therefore we want the set of distribution to be more general than Γ′ but not contain

any degenerate (Dirac) distribution.7 So we restrict ourselves to distributions that are ab-

solutely continuous with respect to F0(·|n). We begin our model by formalizing these as-

sumptions (symmetry, non-multiplicative ambiguity and absolute continuity).

Let Qn ⊆ Pn be a convex subset of all the probability distributions such that (a) Qn 3
F0(·|n) and (b) every element F(·|n) ∈ Qn is strictly increasing and differentiable. Hence,

Qn is convex and weak∗ compact [Parthasarathy, 1967] and contains distributions that are

absolutely continuous with respect to F0(·|n); see Theorem 6 [Gilboa and Marinacci, 2010].

In fact the assumption 2 implies the set Qn is weakly compact [Chateauneuf, Maccheroni,

Marinacci, and Tallon, 2005].

Since the probability of a bidder winning at a bid b depends on the joint likelihood

of everybody else bidding less than b, which in turn depends the joint distribution of the

values, we have to define such a distribution. In an auction with n bidders, for every bidder

7If degenerate distributions are allowed then the most pessimistic distribution will be the one that put all the
mass on the v so that bidding zero will be optimal.
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i, define

Γ̃−i = co{F(·|n)× F(·|n)× . . . F(·|n)︸ ︷︷ ︸
(n−1)times

: F ∈ Qn},

as the set of joint probability distributions of all (n− 1) bidders valuation, where coA de-

notes the convex hull of the set A. The set Γ̃−i represents bidder i′s beliefs about other

bidders’ values. By assumption bidders are symmetric, this set is the same for all bidders,

i.e. Γ̃−i = Γ̃−j for all i 6= j we may drop out the index −i. Moreover, since every mem-

ber of Γ̃ is a joint distribution of a random sample of size n − 1, for simplicity, we use Γ

to refer to the unique set of marginal distributions that are associated with the set of joint

distributions Γ̃.8

In line with [Gilboa and Schmeidler, 1989], the size of this set determines the degree of

ambiguity. For example, if it is singleton, there is no ambiguity, and the model becomes EU.

Alternatively, if Γ is a closed ball with a diameter ε > 0 around F0(·|n) for an appropriately

chosen metric, the larger ε, the bigger Γ, which means more ambiguity. We assume that all

the bidders are symmetric in terms of the ambiguity and information structure.

Assumption 3. The fact that F0(·|n) ∈ Γ and the set Γ itself are common knowledge among all

bidders.

Though every bidder can compute the lowest probability of winning by assumption 3,

the econometricians do not know Γ. We are interested in inferring this lowest probability

of Γ and therefore the true valuation distribution from the bid, under the assumptions

that bidders choose their bids to maximize their expected utility with respect to the worst

distribution. Since Γ is convex and weakly compact, its lower envelope F∗(·|n) belongs to

Γ and unique, and so is the density f ∗(·|n) almost everywhere.9

Let D : [0, 1]→ [0, 1] that solves the min part of the bidder’s objective, i.e. D [F0(v|n)] :=

F∗(v|n) = minF∈Γ F(v|n), ∀v ∈ [v(n), v(n)]. Equivalently, for all p ∈ [0, 1]

D(p) := F∗
[

F−1
0 (p|n)|n

]
, (2)

and hence it maps the true probability F0(·|n) to the most pessimistic one F∗0 (·|n) so D(p) ≤
p. Whenever there is ambiguity, D(p) will be less than p, for all p ∈ (0, 1) so that the

distance of D(·) from the 45◦ line measures the extent of ambiguity.

Now, we study the equilibrium bidding function and the identification of model primi-

tives. We focus on the equilibrium bidding strategy that is a best response to a bidder when

all other bidders adopt a strictly increasing, symmetric pure strategy bidding function.

[Athey, 2001] shows that the best response itself is a strictly increasing bidding strategy,

8Although we remain agnostic about the nature of symmetry and how all bidders have access to the same
data, a formal justification and representation might be possible if we follow [Klibanoff, Mukerji, and Seo, 2012],
something that is beyond the scope of this paper.

9 It is a lower envelope in the sense that it is first-order-stochastically-dominated by every distribution in the
set, i.e. F(v|n) ≥ F∗(v|n) for all v ∈ [v(n), v(n)] for all F(·|n) ∈ Γ.
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βn(·), such that a bidder with a value v behaves as if her value is z that solves

max
x∈R+

min
F∈Γ

u [v− βn(x)] F(x|n)n−1 = max
x∈R+

u [v− βn(x)] D [F0(x|n)]n−1 . (3)

The first-order condition with respect to z gives

−u′ [v− βn(x)] β′n(z)D [F0(x|n)] + u [v− βn(x)] (n− 1)D′ [F0(x|n)] f0(x|n) = 0

at x = v. By rearranging terms,

u [v− βn(v)]
u′ [v− βn(v)]

=
D [F0(v|n)]
D′ [F0(v|n)]

[
1

(n− 1) f0(v|n)/β′n(v)

]
.

Let λ(x) := u(x)/u′(x) for x ∈ R, then λ′(·) ≥ 1 and hence it is invertible. Let H(p) :=

D(p)/D′(p) for p ∈ [0, 1], or alternatively

H(p) = F∗
[

F−1
0 (p|n)

∣∣∣n] f0

[
F−1

0 (p|n)
∣∣∣n]

f ∗
[

F−1
0 (p|n)

∣∣∣n] . (4)

Note that H(·), unlike λ(·), is not necessarily monotone with a slope greater than 1. Sub-

stituting λ(·) and H(·) in the first order condition gives

λ [v− βn(v)] =
H [F0(v|n)]

(n− 1) f0(v|n)/β′n(v)
(5)

Identification. Let G(·|n) be the distribution of equilibrium bid b := βn(v) for v ∼ F0(·|n),
i.e., G(b|n) = F0[β

−1(b)|n] and its density is

g(b|n) :=
f0[β

−1(b)|n]
β′n[β

−1
n (b)]

.

Let vγ and bγ be the γ-th quantile of the value and the equilibrium bid. Since γ = F0(vγ|n) =
G[βn(vγ)|n] = G(bγ|n), for every γ ∈ [0, 1], (5) gives

λ(vγ − bγ) =
H(γ)

(n− 1)g(bγ|n)
(6)

for every γ ∈ [0, 1]. Under the i.i.d. assumption, g(·|n) is nonparametrically identified

from the bid data, but the model primitives are not in general identified without additional

assumptions, including the ones on the set Γ.

In the remaining subsection, we explore sufficient, yet plausible, conditions under which

the model primitives are identified. The following proposition establishes a negative result

that does not depend on the structure of the set Γ.

Proposition 1. Under assumptions 1, 2 and 3, the valuation distribution F0(·|n) is not identified

by the knowledge of bid distribution, i.e., g(·|n).

Proof. It would be sufficient just to consider risk neutral bidders. Then, (6) can be written

as (vγ − bγ)(n− 1)g(bγ|n) = H(γ). Since γ = F0(vγ|n),

[F−1
0 (γ|n)− bγ](n− 1)g(bγ|n) = H(γ), ∀γ ∈ [0, 1].
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This one equation has two unknowns: F−1
0 (γ) and H(γ). �

In view of this result, we consider auctions with exogenous participation and assume the

following.

Assumption 4. Exogenous Participation: n ∈ N , F0(·|n) = F0(·).10

Assumption 4 is widely used in the literature by [Athey and Haile, 2002; Guerre, Perrigne,

and Vuong, 2009; Aradillas-Lopez, Gandhi, and Quint, 2012] among others and is equiv-

alent to assuming that there is some n′ potential bidders with values (v1, . . . , vn′) out of

which a random subset of n ≤ n′ bidders participate in a given auction. This identifying

assumption is appropriate for our purpose because it holds in both the data sets (experi-

ments and timber auction) we use to estimate the model. While in the experimental data

the number of bidders are exogenously chosen by the experimenter, for timber auction

[Aradillas-López, Gandhi, and Quint, 2011] find the assumption to be valid.

Unfortunately, however, when the utility function is unspecified, this exclusion restric-

tion is not sufficient to identify the model structure as shown below.

Proposition 2. Suppose the econometrician identifies g(·|n1) and g(·|n2) where nj ∈ N with

n1 6= n2. Then under assumptions 1–4, the model structure [u(·), F0(·)] is not nonparametrically

identified.

Proof. We begin by stating (without a proof) the rationalizability lemma.

Lemma 2. Let Gj(·|nj) be the joint distribution of (bj
1, bj

2, . . . , bj
nj), conditional on nj for j = 1, 2.

There exists an IPV auction model with risk aversion and maxmin expected utility [u(·), F0(·)] that

rationalizes both G1(·|n1) and G2(·|n2) if and only if the following conditions hold:

(1) Gj(b
j
1, . . . , bj

nj |nj) = ∏
nj
i=1 Gj(b

j
i |nj), where Gj(·|nj) is the bid distribution form auction

with nj bidders.

(2) ∃λ : R+ → R+ and ∃H : [0, 1] → R+ such that λ(0) = 0, H(0) = 0 and λ′(·) ≥ 1

such that ξ ′(·) > 0 on [b, b] where ξ(b, u, G, n, H):

(a) ξ(b, u, Gj, nj) = b + λ−1
[

H(Gj(bj |nj))

(nj−1)gj(bj |nj)

]
, j = 1, 2.

(b) ∀γ ∈ [0, 1], b1
γ + λ−1

[
H(γ)

(n1−1)g(b1
γ |n1)

]
= b2

γ + λ−1
[

H(γ)

(n2−1)g(b2
γ |n2)

]
.

Following [Guerre, Perrigne, and Vuong, 2009] we can identify λ−1(·). Let [F(·), λ(·), H(γ) :=

γ] and [F̃(·), λ(·), H̃(γ) := γι], with ι ∈ (0, 1) be two model structures. Let F̃(·) be the dis-

tribution of ṽ defined as follows: For every quantile γ ∈ (0, 1] compute v(γ) = F−1(γ) and

determine bj
γ = β[vγ, F(·), nj, H] and

ṽγ = bj
γ + λ−1

[
γι

(nj − 1)gj(b
j
γ|nj)

]
.

10This also means that the set Pn is the same for all n ∈ N and because Γ will also be the same, so will F∗(·).
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Then, it is clear that the two model structures satisfy Lemma 2 and hence are observation-

ally equivalent. �

Without ambiguity the model structure [u(·), F0(·)] is just-identified by the knowledge of

g(·|n1) and g(·|n2) with n1 6= n2, and with ambiguity we have to identify an extra parame-

ter, the ambiguity-function D(·). In view of this result, we restrict ourselves to parametric

families of utility functions, CRRA and CARA, that are most widely used in the empirical

literature, nesting risk neutral bidders as a special case;

Assumption 5. (CRRA) The utility function is CRRA, i.e.,

u(w) =
w1−θ

1− θ
with θ ∈ [0, 1)

Assumption 6. (CARA) The utility function is CARA, i.e.,

u(w) =

{
[1− exp(−wθ)] /θ if θ > 0

w if θ = 0

Under assumptions 5 and 6, λ(·) becomes

λ(w) =


w

1−θ , under CRRA
1−exp(−wθ)
θ exp(−wθ)

, under CARA,

w, under risk neutrality.

As propositions 1 and 2 argue, the model is not identified without the exclusion restriction.

This is true even with the parametrized utility functions. It would be, therefore, useful to

understand the source of nonidentification without the exclusion restriction. Consider the

CRRA utility, since it is strictly increasing and concave, choosing a bid to maximize MEU

is equivalent to choosing a bid to maximize the certainty equivalence corresponding to a

worse distribution, i.e. 11

arg max
x

[v− βn(v)]1−θ

1− θ
D[F0(x|n)]n−1 = arg max

z
[v− βn(x)]D[F0(x|n)]

n−1
1−θ ,

which means a risk averse bidder with CRRA utility with parameter θ would bid the same

as a risk neutral bidder who is more pessimistic i.e. D(·)
1

1−θ . Hence, as far as the bid data

is concerned, there is a substitutability between risk aversion and the “pessimism”. This is

because both lead to over-bidding in the same way and hence cannot be disentangled by the

data. Consider now a bidder with the highest value, v. She should not distort her winning

probability, as she knows that she will win the auction with probability one (irrespective

of the true distribution) because the support is common knowledge, and hence there is no

ambiguity.

Assumption 7. No ambiguity at the top: D(1) = 1.

11And given our notation of the worst distribution, the certainty equivalence c.e(v, z, D, F0, θ) solves
c.e(v, v, D, F0)

θ = [v− β(z)]θ [D(F0(v|N))]n−1.
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This can be achieved if the set Γ is further restricted to consist of only those distributions F

with inverse Mill’s ratio that is equal to the true inverse Mill’s ratio at v, i.e. f (v)
F(v) = f0(v)

F0(v)
.

Once the risk aversion coefficient is identified by the highest bidder’s bidding behavior,

the exclusion restriction is sufficient to identify the bidder’s attitude toward ambiguity

and also the valuation distribution. We now formally establish the identification of the

model primitives, starting with CRRA specification with risk neutral case as its corollary

and CARA specification.

Proposition 3. Suppose that bidders’ utility function u is CRRA, i.e, assumption 5. Under as-

sumptions 1, 2, 3, 4 and 7, the valuation distribution F0(·), the utility function u, and the function

D are identified by g(·|n1) and g(·|n2) where n1, n2 ∈ N with n1 < n2.

Proof. Under assumption 5, λ(x) = x
1−θ ⇔ λ−1(y) = (1− θ)y. From (6), we get

v− b = λ−1
{

H[G(b|n)]
(n− 1)g(b|n)

}
= (1− θ)

{
H[G(b|n)]

(n− 1)g(b|n)

}
For each quantile γ ∈ [0, 1], let vγ ∈ [v, v] such that F0(vγ) = γ, and bj

γ := βnj(vγ). Then,

since G(bj
γ|nj) = G[βnj(vγ)|nj] = F0(vγ) = γ, for each γ ∈ [0, 1], we have

vγ = bj
γ +

(1− θ)H(γ)

(nj − 1)g(bj
γ|nj)

. (7)

where j ∈ {1, 2}. Equating the quantiles for v under two auctions, we get

(1− θ)H(γ) = (b2
γ − b1

γ)

[
1

(n1 − 1)g(b1
γ|n1)

− 1
(n2 − 1)g(b2

γ|n2)

]−1

,

which when evaluated at γ = 1 identifies θ since H(1) = 1. Once θ is identified, identifica-

tion of H(γ) is straightforward, which then identifies

D(γ) = exp
[
−
∫ 1

γ

1
H(t)

dt
]

,

as well as F0(·) from equation (7). Moreover, F∗(v) = D[F0(v)]. �

As mentioned above, the highest bidder’s bidding behavior identifies θcrra. After control-

ling the effect of risk aversion, any deviation from the standard model explains bidders’

attitude toward ambiguity, identifying D, from which the identification of F0 follows. An

immediate corollary is the identification with risk neutral bidders, which is the case of

θ = 0.

Corollary 2. Suppose that bidders are risk neutral. Under assumptions 1, 2, 3 and 4, the valuation

distribution F0(·) is identified by the knowledge of bid distributions g(·|n1) and g(·|n2) where

n1, n2 ∈ N with n1 < n2.

We now establish the identification of the auction model under CARA.
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Proposition 4. Suppose that bidders’ utility function u is CARA, i.e, assumption 6. Under as-

sumptions 1, 2, 3, 4, and 7, the valuation distribution F0(·), the utility function u, and the function

D(·) are identified by g(·|n1) and g(·|n2) where n1, n2 ∈ N with n1 < n2.

Proof. As in the previous proof, for each quantile γ ∈ [0, 1], let vγ ∈ [v, v] such that F0(vγ) =

γ, and bj
γ := βnj(vγ). Since

λ(w) =
1− exp(−wθ)

θ exp(−wθ)
=

1
θ
[exp(wθ)− 1],

its inverse is

λ−1(y) = log(1 + θy)/θ.

From (6), for every γ ∈ (0, 1], and j ∈ {1, 2} we have

vγ = bj
γ +

1
θ

log

[
1 +

H(γ)θ

(nj − 1)g(bj
γ|nj)

]
. (8)

Since vγ is the same for both j = 1, 2, we can equate the two equations to get

(b2
γ − b1

γ)θ = log

[
1 +

H(γ)θ

(n1 − 1)g(b1
γ|n1)

]
− log

[
1 +

H(γ)θ

(n2 − 1)g(b2
γ|n2)

]
(9)

Clearly, θ = 0, i.e. linear utility, solves this equation. For identification we want to show

that there is another θ 6= 0 that also solves the equation. The left hand side of (9) as a

function of θ is linear in θ, starts at the origin and is strictly increasing with a constant

slope of (b2
1 − b1

1). Let m(θ) be the right hand side of (9) and Rj := [(nj − 1)g(bj
1|nj)]

−1,

then because H(1) = 1 (from assumption 7) m′(θ) = [R1 − R2]/[(1 + θR2)(1 + θR1)] >

0, limθ→0 m(θ) = 0, limθ→∞ m(θ) = log
(

R1
R2

)
< ∞, and m′′(θ) < 0. That is, m(θ) is strictly

increasing and strictly concave, that starts at the origin and converges to a finite constant

from below. Thus, if m′(0) is greater than the slope of the LHS of (9), which is (b2
1 − b1

1)

then there is a unique θ > 0 that solves (9). From Lemma 2 condition 2, we know λ′(·) ≥ 1

and so
(
λ−1)′ (·) ∈ (0, 1). Then aggressive bidding in auction with n2 bidders imply the

rent under n1 auction is greater than under n2 auction and hence v1 − b1
1 > v1 − b2

1 ⇔
λ−1(R1) > λ−1(R2)⇔ R1 > R2. Therefore,

b2
1 − b1

1 = λ−1(R1)− λ−1(R2) < R1 − R2 = m′(0),

as desired. Once θ is identified, we can identify H(γ) from (9) as

H(γ) =
exp((b2

γ − b1
γ)θ)− 1

θ

[
1

(n1−1)g(b1
γ |n1)

− exp((b2
γ−b1

γ)θ)

(n2−1)g(b2
γ |n2)

] .

Once θ and H(γ) are identified, we identify

D(γ) = exp
[
−
∫ 1

γ

1
H(t)

dt
]

.

and F0(·) by (8), as well. Moreover, F∗(v) = D[F0(v)]. �
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The intuition of the identification under CARA is identical to that under CRRA, though the

nonlinearity of λ complicates the proof. We now end this subsection by an example where

the set of valuation distributions is determined by a total variation norm.

Example 3. For a fixed but unknown ε ∈ [0, 1], let

Γ = {F ∈ P : sup
t
|F0(t)− F(t)| ≤ ε}.

Let v1 solve F0(v1) = ε, then

D(F0(v)) = F∗(v) =

{
0, v ≤ v1

F0(v)− ε, v ≥ v1

Then, it is straightforward to note that any bidder with type less than v1 will bid zero and for the

rest, it will solve

β′n(v) =
[v− βn(v)](n− 1) f0(v)

F0(v)− ε

from which we can recover

v = b +
1

n− 1
G(b|n)− ε

g(b|n) ,

if v ≥ v1. The model is not identified but if we equate the quintiles of valuations across two auctions

with n1 < n2, (auction j = 1, 2, respectively) we get

b1
γ +

1
n1 − 1

γ− ε

g1(b1
γ)

= b2
γ +

1
n2 − 1

γ− ε

g2(b2
γ))

,

leading to

ε = γ−
(b2

γ − b1
γ)(n1 − 1)(n2 − 1)g1(b1

γ)g2(b2
γ)

(n2 − 1)g2(b2
γ)− (n1 − 1)g1(b1

γ)
.

So, we can first, estimate ε and then recover pseudo-values and identify only the truncated valuation

distribution.

3. ESTIMATION

In this section, we consider semiparametric Bayesian estimation of the MEU model using

experimental data used by [Dyer, Kagel, and Levin, 1989] and U.S. Timber auction data

studied by [Lu and Perrigne, 2008].12 A merit of using experimental data is that, unlike the

field data but like simulation we know the true valuation distribution but at the same time

unlike simulation we do not have to impose arbitrary risk preferences. If we can recover the

true distribution used in the experiment and also estimate the risk aversion parameter to

be similar as in [Bajari and Hortaçsu, 2005] who also use this data, we can be confident that

12 The dataset available at http://qed.econ.queensu.ca/jae/2008-v23.7/ archived by the Journal of Applied
Econometrics.
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when we use field data the estimates will be sensible. We begin with an estimation method

then we analyze the experimental data and end with the estimation of Timber Auctions.

3.1. Estimation Method. We use bj to denote the equilibrium bid of an auction with nj

bidders with j ∈ {1, 2}. First of all, notice that the upper bounds of the bid data, i.e., (b̄1, b̄2),

are parameters to be estimated. In this case, the associated statistical model is irregular and

standard asymptotic distribution theory does not apply. Consider the following, widely

used, example.

Example 4. Consider X1, . . . , Xn
iid∼ Uniform[0, θ] where θ is the unknown parameter. Then,

the maximum likelihood estimator (MLE) for θ is given by θ̂ML = max {X1, . . . , Xn} , and its

asymptotic distribution is a shifted exponential distribution, where the true parameter value does

not belong to the interior of the support of the asymptotic distribution of the MLE. The MLE is

therefore inefficient; see sections 9.4 and 9.5 of [van der Vaart, 1998].

For such non regular cases, [Hirano and Porter, 2003] shows that the maximum likelihood

estimator (MLE) is generally inefficient, but the Bayes estimator is efficient. Furthermore,

the asymptotic distribution of the two-step estimator proposed in [Guerre, Perrigne, and

Vuong, 2000] is yet unknown, possibly because both steps are nonparametric with esti-

mated (pseudo) values entering the second step. For this reason, we employ a Bayesian

approach. Furthermore, since identification of CRRA and CARA parameters rely on eval-

uating bid densities at the upper boundary b̄j (Propositions 3 and 4), we need to employ a

statistical model that is flexible and behaves properly at the boundaries. So we use Bern-

stein Polynomial Density (BPD) estimator in a Bayesian setup. [Leblanc, 2012] shows that

BPD estimators have optimal mean integrated squared error and uniform bias over the

entire support and hence have no boundary bias problem.13

Since we estimate the model twice, once using experimental data and again using the

Timber Auction data, and the two data differ only with respect to observed auction charac-

teristics - experimental data has no auction characteristics - we present a general framework

that allows for auction covariates. We begin by introducing some notations and extension

of the identification argument.

Recall that W ∈ W ∈ RL is a vector of observed auction covariates. The data includes

Wt covariates, nt bidders and a vector of bids {bW,t} in each t = 1, 2, . . . , T.14 Let PW(·) be

the marginal distribution of W and πn|W(·|W) be the conditional probability mass function

of n given W. We assume that the following:

13[Petrone, 1999a,b] develop a nonparametric Bayesian method of density estimation for univariate densities
based on Random Bernstein Polynomial. Given a function F on [0, 1], the Bernstein polynomial of order k of F is
defined by

B(x; k, F) =
k

∑
j=0

F
(

j
k

)(
k
j

)
xj(1− x)k−j

and for our purpose both k and F are random.
14We abuse notation and use b represent both the random variable and its realization.
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Assumption 8. There is a collection of {{bW,t}, Wt, nt}T
t=1 defined over some appropriate proba-

bility space (X , Σ, P) such that

(1) (Wt, nt) are i.i.d. across auctions with respect to πn|W(n|·)× PW(·).
(2) PW(·) is strictly increasing CDF and admits density pW(·) that is bounded away from zero.

(3) The density πn|W(·|·) has finite support N and πn|W(n|·) is strictly positive over interior

ofW .

(4) For any pair of (W, n) ∈ W ×N , we have

b1, . . . , bn|W, n iid∼ G(·|W, n). (10)

Now, we model G(·|W, n) in (10) by a semi-parametric specification, which has a full sup-

port in the space of the bid distribution while imposing a parametric structure on the de-

pendence of b upon W. The nonparametric part of the specification is given by

Ψ(x|k, ωk) :=
k

∑
j=1

ωj,kBeta(x|j, k− j + 1), (11)

where Beta(·|a1, a2) is the Beta distribution function with parameters a1 and a2 with density

denoted by beta(·|a1, a2), and

∆k−1 =

{
(ω1,k, . . . , ωk,k) ∈ Rk

+

∣∣∣ k

∑
j=1

ωj = 1, ∀j, ωj ≥ 0

}
,

which is often called the (k− 1) dimensional unit simplex; ∆0 = [0, 1] is the unit interval as

a special case. Note that (11) is also called the Bernstein polynomials, and it is known that

(11) forms a dense subset of the space of the distribution over ∆0 as k increases. [Petrone,

1999a,b] develop a nonparametric Bayesian method to estimate a distribution over ∆0 using

a Dirichlet Process prior over the family of (11) with k ∈ N, as we outline shortly. Let 1(A)

be the indicator for an event A. The semi-parametric model for a fixed k is then given by

G(b|W, n, ζ, η, k, ωk) := Ψ
(

G̃(b|W, n, ζ, η) · 1[b ≤ G̃−1(p|W, n, ζ, η)]

p

∣∣∣k, ωk

)
(12)

where (ζ, η, p) ∈ RL ×RL × ∆0 and G̃(·|·, ·, ·, ·) is a parametric CDF that is to be further

specified below depending on the application. In particular, we employ

G̃(b|W, n, ζ, η) =
b

30
· 1(b < 30) + 1(b = 30) (13)

for the experimental data, with no auction covariates, and we use, for the timber auctions,

G̃(b|W, n, ζ, η) := Φ[log(b)|W ′ζ, exp(W ′η)] (14)

where Φ(·|µ, σ2) be the Gaussian CDF with mean µ and variance σ2. Note that the argu-

ment of Ψ in (12) is a truncated version of G̃(·|·, ·, ·, ·), and the truncation quantile p ∈ ∆0

forms an estimate for the upper boundary of the bid data conditional on the covariate

(n, W) and the parameter (ζ, η), i.e., b ≤ b̄(W, n, ζ, η) := G̃−1(p|W, n, ζ, η). The truncated
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parametric distribution G̃(·|·, ·, ·, ·) approximates the bid distribution, G(·|W, n), in (10)

and the nonparametric part Ψ(·|·, ·) improves the approximation.

Markov Chain Monte Carlo. We explain here the Markov Chain Monte Carlo (MCMC) algo-

rithm to draw the parameter vectors from the posterior. The data contains
{

b̃1,t̃, . . . , b̃n,t̃, W̃t̃
}T̃

t̃=1.

For a notational convenience, we re-index all the bids and the covariates so that we have

zT := {bt, Wt}T
t=1 with T = n× T̃, i.e., T̃ is the number of auctions, T is the number of total

bids, and each Wt repeats n times in zT as in the example below;

Example 5. Suppose we observe
{
(b̃1,1, b̃2,1, W̃1), (b̃1,2, b̃2,2, W̃2)

}
, i.e., (n, T̃) = (2, 2). Then,

zT=4 := {(b1, W1), (b2, W2), (b3, W3), (b4, W4)} with W1 = W2 := W̃1 and W3 = W4 := W̃2

and (b1, b2, b3, b4) := (b̃1,1, b̃2,1,1 , b̃1,2, b̃2,2).

Let πn(·, ·, ·, ·, ·) be the joint prior density of (ζ, η, p, k, ωk) over the parameter space RL ×
RL × ∆1 ×N× ∆k−1. This parameter space here is infinite dimensional because k is un-

bounded and it determines the dimensionality of ∆k−1. It is, therefore, hard to draw

the whole parameter vector from the posterior all at once. For this reason, we employ

the Metropolis-within-Gibbs-sampler that iteratively updates the parameter vector part by

part. Specifically, for a given pair of (k, ωk), the model (12) is indexed by the parameter

(ζ, η, p) ∈ RL ×RL × ∆0. We update (ζ, η, p) by the usual Gaussian Metropolis-Hastings

algorithm regarding (k, ωk) as given. For a given parameter (ζ, η, p), we construct the ar-

gument in (12) as follows,

xt := G̃(bt|Wt, nt, ζ, η) · 1[bt ≤ G̃−1(p|Wt, nt, ζ, η)]

p
(15)

for all t = 1, . . . , T. Then, we draw (k, ωk) conditional on x1, . . . , xT and (ζ, η, p) by the

algorithm of [Petrone, 1999a,b]. In order to outline the Metropolis-within-Gibbs-sampler

more formally, let (ζs−1, ηs−1, ps−1, ks−1, ωs−1
k ) be the outcome of the (s − 1)-th iteration.

The algorithm, then, obtains the outcome of the s-th iteration via the following steps;

(1) draw (ζs, ηs, ps) conditional on (ks−1, ωs−1
k ; zT , πn) by the Gaussian Metropolis-

Hastings algorithm, i.e., we draw (ζ̃, η̃, p̃) from the multivariate Gaussian distribu-

tion with mean (ζs, ηs, ps) and covariance Ωs and let (ζs+1, ηs+1, ps+1) := (ζ̃, η̃, p̃)

with probability

min

[
1,

πn(ζ̃, η̃, p̃)
πn(ζs, ηs, ps)

T

∏
t=1

g(bt|Wt, n, ζ̃, η̃, p̃, ks, ωs
k)

g(bt|Wt, n, ζs, ηs, ps, ks, ωs
k)

]
, (16)

otherwise, let (ζs+1, ηs+1, ps+1) := (ζs, ηs, ps).

(2) draw (ks, ωs
k) conditional on (ζs, ηs, ps; zT , πn) and (xs

1, . . . , xs
T) by Petrone [1999a,b]

where xs
t is constructed as in (15) with (ζs, ηs, ps) in place of (ζ, η, p); this step is

involved and we explain it in a greater detail in appendix B.

The Metropolis-within-Gibbs-sampler is a standard MCMC procedure to simulate the pos-

terior; see [Zeger and Karim, 1991; Chib and Greenberg, 1996]. Let
{

ζs, ηs, ps, ks, ωs
k
}S

s=1 be



18 ARYAL AND KIM

an ergodic MCMC outcome for a large S, which allows us to explore the posterior distribu-

tion. From [Tierney, 1994], we know

1
S

S

∑
s=1

g(b|W, n, ζs, ηs, ps, ks, ωs
k)

a.s→ g(b|W, n, zT) (17)

where the predictive bid density g(b|W, n, zT) for a given (W, n, zT) is defined as

g(b|W, n, zT) := ∑
k≥1

πn(k|zT)


∫∫∫∫

∆k−1×∆0×R2L

g(b|W, n, ζ, η, p, k, ωk)πn(ζ, η, p, ω|k, zT)dζdηdpdω


with πn(k|zT) the posterior probability mass function of k given data zT and πn(ζ, η, p, ωk|k, zT)

the conditional posterior density function of (ζ, η, p, ωk) given k and data zT .15

Once we obtain the MCMC outcomes from the posterior densities πn(ζ, η, p, k, ωk|zT)

for n ∈ {n1, n2}, we may simulate the risk aversion parameter θ and the function D(·|·) for

any given W by repeating (1) and (2) below sufficiently many times.

(1) draw

ζ j, η j, pj, kj, ω
j
kj ∼ πnj(ζ, η, p, k, ωk|zT)

to construct gj(·|W) := g(·|W, nj, ζ j, η j, pj, kj, ω
j
kj) for each j = 1, 2.

(2) compute θ(W) using g1(·|W) and g2(·|W) and construct D(·|W). Note here that

we only use (ζ j, η j, pj, kj, ω
j
kj) with j = 1, 2 such that θ(W) and D(·|W) satisfy the

theoretical shape restrictions i.e., (i) θ(W) ∈ R+ for CARA and θ ∈ ∆0 for CRRA,

and (ii) D(q|W) ≤ q for all q ∈ [0, 1].

Since we have distributions of θ(W) and D(·|W), we can obtain their (posterior) predictive

estimate by averaging the simulated quantities. Moreover, if W varies in the sample, we

may intergrate it out with respect to the empirical distribution of W.

3.2. Experimental Data. The subjects were MBA students at the University of Houston.

There were three experimental runs with six different subjects participating in each run,

for a total of 18 subjects. In these experiments, bidders were assigned independently and

identically distributed (i.i.d.) values v drawn from the uniform distribution on [0, 30]. In

the event that they won, subjects were paid their value minus their bid. Each subject partic-

ipated in 28 auctions over the course of two hours. The number of bidders was determined

at random in the experiment. With probability one-half, there were n1 := 3 bidders and

with probability one-half, n2 := 6 bidders. Subjects submitted two contingent bids and one

non-contingent bid. After the bids were submitted, a coin was tossed to determine whether

the contingent or non-contingent bids would be used in determining the winner. A second

coin toss determined whether n = n1 or n = n2. If the contingent treatment was selected,

the first n1 contingent bid was used if n = n1, and the n2 contingent bid was used if n = n2.

Otherwise, the non-contingent bid was used so that the bid could not be conditioned on

15 The predictive bid density g(b|W, n, zT) also depends on the prior πn(·) and the parametrization of G̃, which
is suppressed for notational simplicity.
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FIGURE 1. Experimental Data: Panels (a)–(c) show the histograms of contingent bids for
n1 = 3, n2 = 6, and true values (drawn from U[0, 30]) along with the upper bound of the
value (30) by a dashed vertical line. Panels (d) and (e) are the scatter diagrams of values
against bids along with the 45 degree line, and panel (f) does similarly between bids n1 and
n2 along with the 45 degree line and the marks for the upper bound of values.

n. After each auction, bids and corresponding private values were publicly posted on a

blackboard.

We only use the contingent bids; see Figure 1.16 Panels (a)–(c) show the histograms of

contingent bids for n1, n2, and true values. The vertical dashed lines on panels (a) and (c)

are the upper bound of the value. Panels (d) and (e) are the scatter diagrams of values

against bids along with the 45 degree line, and panel (f) does similarly between bids n1

and n2 along with the 45 degree line and the marks for the upper bound of values. Total

number of values (thus, the number of bids for each n) is 705.

Some features of the data suggest that the subjects deviate from the usual bidding strat-

egy. First, four subjects choose to obtain nonpositive utility: among them, two bid zero

while their values are strictly positive (say, 0.1 and 0.5) and two other bid higher than or

equal to their own values for both n1 and n2, e.g., Figure 1 shows that a subject bid 32 for

both n’s, whereas his or her value was 29.02. Second, 33.5 % of the subjects bid higher for

auctions with n1 than the auctions with n2, i.e., b1 ≥ b2, whereas it must be that b1 < b2

because n1 < n2. Third, subjects tend to overbid. In particular, 87.1% of the subjects bid

higher, in the auctions with n1 bidders, than the equilibrium bid with no risk aversion

under EU, and 61.4% did in the auctions with n2 bidders.

16 For detailed analysis on the data see [Bajari and Hortaçsu, 2005].
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Mean St. Dev 2.5th Median 97.5th

θCRRA 0.9045 0.0337 0.8202 0.9110 0.9515
θCARA 0.5898 0.2013 0.2600 0.5600 1.0350
b̄N=3 26.3319 0.2758 26.0385 26.2725 27.0706
b̄N=6 27.4371 0.3295 27.0387 27.3641 28.2746

TABLE 1. Point Estimates: The posterior mean (the posterior standard deviation) of the
parameters of risk aversion and the upper boundaries of the bid distributions, where qth is
the qth percentile.

Note: The subjects in this experiment were told the values were drawn i.i.d from uniform

distribution, but that does not mean we cannot use the data to estimate model with am-

biguity. It is our view that if there is no distinction between “being told” and “knowing”

the distribution, it will be reflected in the estimation and we will reject presence of ambi-

guity. Moreover, this experiment was not designed for ambiguity and any finding should

be interpreted within the context of this model.

3.2.1. Estimation Results. Table 1 shows the posterior means (the posterior standard devia-

tions in parentheses) of the parameters (θcrra, θcara) and the upper boundaries (b̄N=3, b̄N=6).

What is interesting and important to note is that [Bajari and Hortaçsu, 2005]’s estimate

of the CRRA parameter (using the same data) is contained within the 95% credible band

[0.8202, 0.9515] of our estimate. This means that even though our model is new in the liter-

ature, it matches the estimates in the literature.

We are also interested to see if D(·) can be reasonably approximated by the 45◦ line. If

it can be, we conclude that there is no evidence for ambiguity, but otherwise we conclude

that there is evidence for ambiguity. To that end, we compute the posterior distribution of

‖D(γ)− γ‖2.17 The mean, standard deviation, 2.5th percentile, median and 97.5th of poste-

rior distribution of the L2 distance for CRRA and CRRA utilities, respectively are given in

Table 2. As can be seen the estimates supports the hypothesis that there is ambiguity, i.e.

D(·) is indeed different from identity mapping.

The estimation results are also presented in Figure 2. The first row contains the his-

togram of bids along with the posterior predictive bid densities g(·|n) and a 95% credible

band for n = 3 and 6, respectively. The bids are normalized to be between [0, 1] by the fac-

tor of the estimate of the bid upper bounds. The second row contains the point-wise mean

of D(·) (the solid line) with its 95% credible band (dashed), the distribution of L2-norm

‖ · ‖2 to measure the distance between D(·) and the 45◦ and the posterior distribution of

the risk aversion parameter, all for CRRA utility in Panels (c)-(e) respectively. Similarly

the third row contains the same thing for CARA utility. As can be seen the visualization

supports the hypothesis that there is ambiguity, i.e. D(·) is indeed different from identity

mapping.

17The L2 distance of the 45◦ line from the horizontal axis ‖γ− 0‖2 is equal to 0.5774.
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FIGURE 2. Estimation results: Panels (a) & (b) show the histogram of the data, where the
middle dotted curves is the posterior predictive density of g(·|n) with its 95% credible band,
for n = 3 and n = 6, respectively. Panel (c) & (f) is the (nonparametrically) estimated D(·) by
its point-wise mean (solid) along with its 95% credible band (dashed); Panels (d) & (g) are the
distribution of L2 distance between estimated D(·) and the 45◦ line; and Panel (e) & (g) are
the posterior distribution of the risk aversion parameter, for CRRA and CARA specifications,
respectively.

Mean St. Deviation 2.5th Median 97.5th

CRRA 0.2807 0.0935 0.0857 0.0987 0.1310
CARA 0.3508 0.0953 0.1381 0.1712 0.2156

TABLE 2. Posterior Probability of ‖D(γ)− γ‖2, where qth is the qth percentile.

3.3. Timber Auctions. As mentioned earlier, the fact that our estimates of CRRA coeffi-

cient is almost identical to that of [Bajari and Hortaçsu, 2005] and the estimated valuation

distribution is uniform like the true data generating process, reassures that our estimate for

ambiguity is reasonable. It is also desirable to know if similar results would hold for field

data where the bidding procedure is more complex than in the experiment. To answer that

question in this section, we study a sample from the sealed bid U.S timber auctions data

that has been widely used in the literature. We begin by explaining the data, then we show

how we can exploit the special feature of the data to achieve nonparametric identification

and finally estimate the model.

3.3.1. Data. The U.S. Forest Services sells the timber from publicly owned forests. We use

the auction data organized in the western half of the U.S. (regions 1-6) in 1979. The data

contains information about the the identity and the average bid for every tract of each
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participating bidder, detailed information on the estimated total volume (in mbd) and ap-

praisal value (per unit of volume, in dollar) of timber by the Forest Service, the season

during which the auction was held and the exact location of the timber parcel. characteris-

tics of the lot from the Forest Service sale announcement. In this paper we focus on auctions

with n1 = 2 and n2 = 3 and for identification we assume that these numbers are exoge-

nous.18 As shown by [Lu and Perrigne, 2008] reserve prices are too small and nonbinding,

so we too ignore them.19 The most interesting feature about the data is the way in which

the bidders gather information about a tract. First the Forest Service officials “cruise” the

selected tract of timber and estimate the quantity of each spices, which are then publicly

announced. Then the bidders may conduct their own cruises to form their own estimates.

Cruising a tract is considered something of an art by industry experts and bidders either

have in-house experts in forestry or hire some experts in the market with varying degree of

experiences and skills; see [Athey and Levin, 2001; Athey, Levin, and Seira, 2011] for more.

Therefore, it seems plausible that although a bidder can determine the worth of the tract

knowing the exact distribution of opponents’ appraisal is at least questionable and should

be verified from the data.

There are T1 = 107 auctions with n1 bidders, for which the average (standard deviation)

of the bids is 88.50 (52.91), and the minimum and maximum are 2.78 and 295.03, respec-

tively. In Figure 3, panels (a) and (b) are the scatter plots of the bids against the logarithms

of total volume and bids against the log of appraisal value per unit, respectively for auc-

tions with two bidders. Similarly, panels (c) and (d) are for auctions with three bidders.

The correlation coefficient between the winning (losing) bid and the total volume is -0.15

(-0.17), and the one between the winning (losing) bid and the appraisal value is 0.72 (0.78).

There are T2 = 108 auctions with n2 bidders, for which the average (standard deviation)

of the bids is 84.44 (52.63) and the minimum and maximum are (1.05, 328). The correlation

coefficient between the winning (2nd,3rd) bid and the total volume is -0.18 (-0.16,-0.25), and

the one between the winning (2nd,3rd) bid and the appraisal value is 0.64 (0.69,0.77).

3.3.2. Estimation Results. The analog of Figure 2 for Timber auction is Figure 4. Since there

are 215 different auctions, we estimate each parameter evaluated at each Wt, t = 1, . . . , 215.

The first column corresponds to posterior mean D(·|Wt) evaluated at Wt, t = 1, . . . , 215.

As can be seen, D(·|·) is significantly different from the identity mapping, suggesting am-

biguity for both CARA and CRRA specifications. In column two contains the density of

L2− distance between D(·|·) and 45◦ line and column three is the posterior densities of the

risk aversion parameter. These densities show that the risk aversion parameter for CRRA

is concentrated around 0.5 while the CARA coefficient is close to 0, i.e. risk neutral. This

estimates are consistent with [Lu and Perrigne, 2008], which shows we do as good as the

18 [Aradillas-López, Gandhi, and Quint, 2011] show that this exogenous participation assumption is valid for
Timber auction.

19Our estimation method can be extended to allow for binding reserve price, something which we do not
pursue in this paper in view of the objective.
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FIGURE 3. Scatter Plot of Timber Auction: Panels (a) and (b) show the bids and log of total
volume and bids and log of appraisal value per unit, respectively for auctions with n = 2
bidders; and Panels (c) and (d) are for auctions with n = 3 bidders. Legend: ‘·′ (red) is the
winning bid and ‘+′ (blue) is the 2nd highest bid and ‘x′ (green) is the 3rd highest bid.

Minimum 2.5th 5th Median Mean Std. Dev.
minimum 0.0042 0.03257 0.0619 0.3955 0.3737 0.1160

CRRA median 0.0483 0.0864 0.1204 0.4451 0.4076 0.1406
maximum 0.1329 0.1736 0.2201 0.4945 0.4540 0.1674
minimum 0.0057 0.0507 0.0868 0.4397 0.4041 0.0981

CARA median 0.0632 0.1121 0.1691 0.4870 0.4433 0.1281
maximum 0.1696 0.2339 0.2908 0.5251 0.4736 0.1557

TABLE 3. Posterior Probabilities of ‖D(γ)−γ‖2: The summary statistics of posterior prob-
ability of the L2 distance between D(·) and 45◦ line, where the minimum, median and the
maximum are across 215 auctions.

previous literature in terms of risk aversion but we also estimate ambiguity that is novel.

A further evidence that the L2− distance is strictly bounded away from zero is presented

in Table 3. Under CRRA specification we compute different moments from the posterior

distribution of L2− distance, one for each Wt, t = 1, . . . , 215 and for each such moment we

compute the mean, median and the maximum across all covariates Wt. We do the same

for CARA specification as well. From Table 3 we can see under CRRA specification, the

median of the distance ranges from 0.3955 to 0.4945 with a median at 0.4451. Similarly, for

CARA it ranges between 0.4397 and 0.5251 with a median at 0.4870. The minimum distance

across all auctions is 0.0042 for CRRA and 0.0057 for CARA. We can safely conclude that

there is evidence of ambiguity in the data.
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FIGURE 4. Estimation Results (Timber Auctions): Panels (a) & (e) are the (nonparametri-
cally) estimated D(·|W) by its point-wise mean evaluated; Panels (b) & (f) are the nonpara-
metric density of the L2− distance between D(·|·) and 45◦ line; and Panels (c) & (g) are the
posterior distribution of the risk aversion parameter, for CRRA and CARA specification. All
of these estimates are evaluated at 215 different auction covariates W observed in the data.

4. EXTENSION: UNOBSERVED HETEROGENEITY

In this section we consider auctions auctions with nonspearable unobserved heterogene-

ity. As [Krasnokutskaya, 2011] showed, some auctions have traits that are observed by

bidders and affect the valuation but are unobserved by the econometricians. Failure to in-

corporate such traits in estimation adversely effect the inference. Therefore we augment

our model to allow for unobserved heterogeneity that is nonseparable.20

Let Y ∈ [y, y] ⊂ R
i.i.d∼ PY(·) denote those auction specific traits that are observed only by

the bidders such that v|Y = y i.i.d∼ F0(·|y). For every auction the realization of Y is common

knowledge among all bidders and let the set of (conditional) valuation distributions be ΓY,

which now depends on Y. Everything else defined earlier works as long as we consider

conditional distributions. We begin with the following assumption:

Assumption 9. (Monotonicity) For all y′ > y, F0(·|y′) ≤ F(·|y) for all vi with strict inequality

for some.

This is a strong but important assumption that guarantees existence of symmetric equilib-

rium. Since bidders observe Y and values are conditionally independent the observed bids

are also conditionally independent. In other words, let bi be the bid of bidder i and G(·|n, y)

be conditional bid distribution, then (b1, . . . , bn)|Y = y ∼ i.i.d. G(·|n, y), with conditional

20[Krasnokutskaya, 2011] considers vi = ṽi ×Y, where ṽi is the individual value.
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density g(·|n, y). Let b(y) be the highest bid in the auction with Y = y. Then we follow

[Hu, McAdams, and Shum, 2011] and make the following technical assumptions.

Assumption 10. Unobserved Heterogeneity

(1) The functional max supp(bi|y), the maximal of the equilibrium bid support be is strictly

increasing in y.

(2) For all i, k and s : b → R with bounded conditional expectation, if E[s(bk)|bi] = 0 for all

b ∈ [0, b(y)], then s(bk) = 0 for all bk ∈ [0, b(y)].

(3) For all i and s : [y, y]→ R with bounded conditional expectation, if E[s(Y)|bi] = 0 for all

bi ∈ [0, b(y)], then s(y) = 0 for all y ∈ [y, y].

Part 1 of the assumption can be shown to follow from assumption 9. The remaining two

(technical) assumptions are the usual completeness assumptions.21 We state the main iden-

tification result of this subsection.

Lemma 3. Let assumptions 1- 4, 9 and 10 be satisfied and all auctions have at least three bidders.

Then

(1) if assumption 5 holds, then the CRRA parameter θ,

(2) or if assumption 6 holds the CARA parameter θ

and the conditional valuation distribution F0(·|Y), the function D(·) and the marginal distribution

of P(·) are nonparametrically identified by g1(·|n1) and g2(·|n2) with n2 > n2.

Sketch of the proof: From [Hu and Schennach, 2008; Hu, McAdams, and Shum, 2011] we can

identify the joint cdf of (b1, . . . , bn, Y) from the cdf of (b1, . . . , bn) and hence the conditional

distribution G(·|n, y) and the marginal distribution PY(·). Repeating this for two auctions

with n1 and n2 bidders we identify G1(·|n1, y) and G2(·|n2, y) and their corresponding

densities. Since the equilibrium strategy is still strictly increasing, there is a one-to-one

mapping between bids and valuation, given Y, identification of the structural parameters

follows exactly like before.22

5. MULTIPLIER PREFERENCES

[Hansen and Sargent, 2001] considers a situation where decision makers, i.e., bidders,

have an initial estimate of the true distribution, but are worried about a misspecification

of it, and consider other distributions that are not too far away in terms of relative en-

tropy.23 Within our environment, the initial estimate will be the true distribution F0(·|n),
suppressing the dependence on observed covariates ω unless mentioned otherwise, and

any departure (in terms of the bidding behavior) from it will be attributed to ambiguity.

21These assumptions are widely used in the literature on nonparametric instrument variables [Newey and
Powell, 2003; D’Haultfoeuille, 2011] and in nonlinear measurement error models [Schennach, 2004]. If Y is finite
or when the model is linear then the assumptions are equivalent to the widely used rank conditions.

22Estimation of this auction model, however, is an open question; see [Schennach, 2004] for more on this.
23 Let K(F‖F0) is the Kullback-Leibler divergence (or the relative entropy) of F(·|n) with respect to the true

distribution F0(·|n).
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Assumption 11. The preference order of each bidder satisfies assumptions A1-A6, A8 and P2 in

[Strzalecki, 2011].

If there are at least three disjoint non-null events, then assumption 11 is necessary and

sufficient for each bidder’s preferences to have the multiplier preference representation, so

that a bidder with value v solves

max
x∈[v,v]

min
F∈Pn

{
u[v− βn(x)]F(x|n)n−1 + αK(F‖F0)

}
. (18)

Here α ∈ (0, ∞] captures the bidders’ confidence on their initial estimate F0(·|n), and can

be thought of as the degree of ambiguity. For instance, if α = ∞, the minimization is

solved by F0(·|n) with the interpretation that the bidders are certain that F0(·|n) is the true

distribution. It is also known that (18) is equivalent to

max
x∈[v,v]

Λα (u[v− βn(x)]) F0(x)n−1 (19)

where

Λα(t) := 1− exp
(
− t

α

)
(20)

where α > 0 in assumption 6; see appendix A and also [Strzalecki, 2011]. Since (20) is a

concave function, the MP representation for ambiguity averse bidders is equivalent to the

EU representation for more risk averse bidders without ambiguity, i.e., U(·) := Λα ◦ u(·).
Intuitively, therefore, the bidders attitude toward risk and that for ambiguity cannot not be

separately identified;

Proposition 5. Under assumptions 1, 2, 3, 4 and 11, the distribution function F0 is nonparamet-

rically identified but the utility function u is identified up to a multiplicative constant α by the

knowledge of bid distributions g(·|n1) and g(·|n2) where n1, n2 ∈ N with n1 < n2. Moreover, if

bidders are risk neutral, α is identified by g(·|n1) and g(·|n2).

Proof. By [Guerre, Perrigne, and Vuong, 2009], U and F0 are nonparametrically identified

by g(·|n1) and g(·|n2). From (20), we have u(t) = −α log[1−U(t)]. Hence, if bidders are

risk neutral, i.e., u(t) = t, the MP parameter α is identified, i.e., α = −t/ log[1−U(t)]. �

As proposition 5 indicates, if bidders are risk neutral, the ambiguity parameter under MP

is given by

α = − t
log[1−U(t)]

.

The fact that RHS is a constant provides a testable restriction. When bidders are risk averse,

however, the utility function is not identified as MP is equivalent to EU with more risk

averse bidders. Though MP is observationally equivalent to EU, it is important to consider
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the bidders’ attitude toward ambiguity, i.e., α, separately from that toward risk. Failure to

identify α would force an investigator to choose the parameter arbitrarily.24

The structure of ambiguity, however, affects the optimal auction design just like under

MEU [Bose, Ozdenoren, and Pape, 2006; Bodoh-Creed, 2012]. So it might be desirable to

find other plausible condition that identifies α even when bidders are risk averse. One

such condition is to normalize one quantile of the valuation distribution. For illustration,

suppose the highest value v is a either known to the researcher or just a function of n and

the observed auction covariates W.25 Then, the optimality condition gives

u(v− b(1)) =
1
α

ln
(

1 +
α

(n− 1)g(b(1)|n, W)

)
,

where everything except α is known, and has a unique solution in α because the RHS is

strictly decreasing and convex in α.

Lemma 4. Under assumptions 1, 2, 3, 4 and 11, the distribution function F0(·|n, W), the utility

function u(·) and the ambiguity parameter α are (nonparametrically) identified from g(·|n1, W) and

g(·|n2, W) where n1, n2 ∈ N with n1 < n2, if in addition γ quantile v(γ; n, W) = v(γ; n, W, τ)

for all γ ∈ (0, 1] where τ ∈ Rd′ is a d′ dimensional unknown parameter.

An application of this result would be to estimate this model and do a model selection

between MEU and MP, since there is no guidance in the literature about which of the many

representations should be used for empirical analysis. We leave this line of inquiry for

future research.

6. CONCLUSION

In this paper we analyze first-price auction where (risk averse) bidders are ambiguous

about the valuation distribution. We depart from classic EU where it is assumed that the

true distribution is commonly known by all bidders and instead allow bidders to con-

sider a set of distributions as likely candidate for valuation distribution, and determine an

equilibrium in symmetric and monotonic bidding strategies under MEU representation.

Using variation in the number of bidders across auctions we show the valuation distri-

bution and a function that governs ambiguity can be nonparametrically identified besides

the risk aversion (CRRA or CARA) coefficient. In the process we also propose simple and

implementable test for ambiguity in data. We propose a semiparametric Bayesian estima-

tion procedure and use it to study an experimental auction and USFS timber auctions and

conclude that estimates in both data show evidence of ambiguity.

It is shown that the identification strategy extends even to auctions with non separable

unobserved heterogeneity as long as there are at least three bidders in each auction. We

24“...policy recommendations based on such a model would depend on a somewhat arbitrary choice of the
representation. Different representations of the same preferences could lead to different welfare assessments and
policy choices, but such choices would not be based on observable data.”–[Strzalecki, 2011].

25 We can estimate this function from the data as long as we know the functional form, but for the identification
argument we assume we know the function.
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also consider ambiguity with multiplier preference and show that while the identification

of the utility function follows from [Guerre, Perrigne, and Vuong, 2009], the parameter

that governs ambiguity is identified if we normalize a quantile of the distribution, such

as the highest value. We do not estimate this model because it requires us to estimate

nonparametric utility function, which is beyond the scope of this paper. Nonetheless, using

our identification argument one could follow [Kim, 2013] to estimate the nonparametric

utility function, which can then be used to shed light on which of the two, maxmin or the

multiplier preferences, explains the data better.

Some other potentially important applications of our model includes T-bill auctions dur-

ing a financial crisis, electricity market with wind turbine generators which makes the sup-

ply of electricity uncertain and auction of a new product, etcetera. Finally, allowing affili-

ation among bidders is also important from the point of view of empirical auction design,

and left as a future research topic.

APPENDIX A. MULTIPLIER PREFERENCES

In this section, we show that (18) is equivalent to (19). The purpose of this section is to

convince readers about the equivalence relation between (18) and (19). It exploits a result

that is already known in the literature of decision theory; see [Strzalecki, 2011]. From (18),

we have

min
F∈Γ

{∫
udF + αK(F‖F0)

}
= α min

F∈Γ

{∫ u
α

dF + K(F‖F0)

}
= α min

F∈Γ

{∫ u
α

dF +
∫

log
(

dF
dF1
· dF1

dF0

)
dF
}

= α min
F∈Γ

{∫ u
α

dF + K(F‖F1)−
∫

log
(

dF1

dF0

)
dF
}

.

The second equality holds because for all F ∈ Γ we have F � F0 and F0 � F. Let F1 be the

candidate equilibrium such that

dF1

dF0
:=

e−u/α∫
e−u/αdF0

.

Using this definition of F1, the RHS in the last equality become

α min
F∈Γ

{∫ u
α

dF + K(F‖F1)−
∫ u

α
dF− log

∫
exp

(
−u

α

)
dF0

}
= α min

F∈Γ

{
K(F‖F1)−

∫
log
[∫

exp
(
−u

α

)
dF0

]
dF
}

= α min
F∈Γ

{
K(F‖F1)− log

[∫
exp

(
−u

α

)
dF0

]}
.

We can then see that the second term is independent of F and the minimum is achieved

when K(F‖F1) = 0, which happens if and only if F = F1. Therefore, F1 defined above

solves the minimization problem as desired and the minimum is equal to
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−α log
[∫

exp
(
−u

α

)
dF0

]
,

and in auction the utility is u(v− b) if the bidder wins the auction and u(0) = 0, otherwise.

Therefore, (18) can be written as

max
z∈[v,v]

−α log
{

exp
[
−u(v− βn(z))

α

]
F0(z)n−1 + exp(0)

[
1− F0(z)n−1

]}
= min

z∈[v,v]

{
exp

[
−u(v− βn(z))

α

]
F0(z)n−1 +

[
1− F0(z)n−1

]}
= max

z∈[v,v]

{
1− exp

[
−u(v− βn(z))

α

]}
F0(z)n−1

= max
z∈[v,v]

Λα (u[v− βn(z)]) F0(z)n−1,

which (19) as desired.

APPENDIX B. THE NONPARAMETRIC METHOD OF [PETRONE, 1999A,B]

In this section, we explain the step (2) in the Metropolis-within-Gibbs-sampler. For the

specification in (11), Petrone [1999a,b] propose a class of prior distributions that has full

support over P , the set of all distributions with support ∆0 and can easily select an ab-

solutely continuous distribution function with a continuous and smooth derivate. Since

the algorithm is based on Dirichlet distribution and Dirichlet process, we introduce these

concepts first; see Ferguson [1973] for a thorough treatment. Let Dir(a1, . . . , ak) be the

Dirichlet distribution over ∆k−1 characterized by parameter vector a ∈ Rk
+. Consider

ωk ∼ Dir(a1, . . . , ak) and let a0 = ∑k
j=1 aj. Then,

E[ωj,k] =
aj

a0
, V[ωj,k] =

aj(a0 − aj)

a2
0(a0 + 1)

, and Cov[ωi,k, ωj,k] = −
aiaj

a2
0(a0 + 1)

for i 6= j. (21)

Then the Dirichlet Process over P is characterized by parameters α0 ∈ R+ and P0 ∈ P and

is denoted by DP(α0P0). Consider P ∼ DP(α0P0), then

P(A1,k), . . . , P(Ak,k) ∼ Dir[α0P0(A1,k), . . . , α0P0(Ak,k)] (22)

for any k ∈ N and any partition A1,k, . . . , Ak,k of [0, 1], i.e. ∪k Aik = [0, 1] and Aik ∩ Ai′k =

∅ for all i 6= i′. Using (21) the moments become E[P(Aj,k)] = P0(Aj,k); Var[P(Aj,k)] =
P0(Aj,k)[1−P0(Aj,k)]

α0+1 and Cov[P(Ai,k), P(Aj,k)] = −
P0(Ai,k)P0(Aj,k)

α0+1 for all i 6= j. Note that the DP

is indexed by its mean P0 and precision α0.

Consider as data generating process (DGP), like Petrone [1999a], that

(1) draws k ∼ πk(·) and P|k ∼ DP(α0P0); and

(2) draws x1, . . . , xT
iid∼ H(·|k, ωk) in (11) where ωj,k := P

(
Aj,k

)
with Aj,k :=

(
j−1

k , j
k

]
.

Here, x1, . . . , xT are observed and [πk(·), P0(·), k] represent the prior beliefs. Moreover,

the prior beliefs can be equally represented by [πk(k), πωk |k] where πωk |k is the density of
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Dir[α0P0(A1,k), . . . , α0P0(Ak,k)].
26 To develop a tractable MCMC algorithm, Petrone [1999a]

exploits the fact that this DGP is equivalent to the one that

(1) draws k ∼ πk(·) and P|k ∼ DP(α0P0);

(2) draws y1, . . . , yT
iid∼ P|k; and

(3) for t = 1, . . . , T, draw independently xt|y1, . . . , yT , k, P ∼ Beta(·|jt, k− jt + 1) where

jt is such that yt ∈ Ajt ,k, i.e., jt = dytke, the smallest integer greater than ytk.

This DGP draws the latent label y1, . . . , yT from a random probability measure P to pick

a bin Ajt ,k for each t, and draws xt from the ‘smoothed’ histogram, Beta(·|jt, k − jt + 1),

over Ajt ,k.27 Then to draw k, ωk from the posterior distribution conditional on the sample

x1 . . . , xT and the prior [πk(·), πωk |k(·|·)] we follow Petrone [1999a] and use the following

algorithm:

(1) Draw k from the probability mass function proportional to

πk(k)
T

∏
t=1

Beta[xt|dytke, k− dytke+ 1].

(2) Let ω0
j,k := P0(Aj,k) with Aj,k :=

(
j−1

k , j
k

]
. For every t = 1, . . . , T, let yt = ys̃

with probability qt,s̃ ∝ beta (xs̃|dys̃ke, k− dys̃ke+ 1) for all s̃ ∈ {1, . . . , T} \ {t}, and,

otherwise, draw yt from a density proportional to

p0(y)beta (xt|dyke, k− dyke+ 1)

with probability qt,0 ∝ α0h(xt|ω0
k , k). Note that ∑T

s̃=0 qt,s̃ = 1 with qt,t = 0.

(3) Let rk be the k dimensional vector where each j-th element counts the number of

ys’s in the interval
[

j−1
k , j

k

]
, and finally ωk ∼ Dir[α0(ω

0
k + rk)].

(4) Iterate steps 1–3, until convergence.
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