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Abstract

We analyze a static game of public good contributions where finitely many
anonymous players have heterogeneous preferences about the public good and het-
erogeneous beliefs about the distribution of preferences. In the unique symmetric
equilibrium, the only individuals who make positive contributions are those who
most value the public good and who are also the most pessimistic; that is, accord-
ing to their beliefs, the proportion of players who value the most the public good is
smaller than it would be according to any other possible belief. We predict whether
the aggregate contribution is larger or smaller than it would be in an analogous
game with complete information (and heterogeneous preferences), by comparing
the beliefs of contributors with the true distribution of preferences. A tradeoff be-
tween preferences and beliefs arises if there is no individual who simultaneously has
the highest preference type and the most pessimistic belief. In this case, there is
a symmetric equilibrium, and multiple symmetric equilibria occur only if there are
more than two preference types.
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1 Introduction

Paul Samuelson pioneered the analysis of public goods provision.! More recent litera-
ture on the provision of public good under incomplete information usually assumes that
incompleteness arises from either ignorance about players’ preferences (Bac [2], Menezes
et al. [8], Bag and Roy [3]) or from ignorance about opponents’ wealth (Andreoni [1],
Grandstein [5], Grandstein et al. [6]). However, in practice, it is unlikely that each in-
dividual knows the identity of all her many opponents. Even when each player knows
all identities, we may not wish to assume that each player is capable of forming a joint
distribution about the profiles of types for her opponents. It seems more reasonable that
each player simply has a general perception of the distribution of relevant characteristics
of the population.

Hellwig [7] introduces a general mathematical framework to work with incomplete
information games in a large population of anonymous players.? This is a convenient
modeling setup in games where only the aggregated action of the opponents is the relevant
variable for a player. Examples of this framework are voting games, Cournot competition
and public contribution games.

Our work analyzes a static game of individual contributions to a continuous public
good, in a finite population of heterogeneous anonymous players. The heterogeneity comes
from two sources: (i) the preferences for, or values of, the public good — what we refer to
as the player’s type or preference type, and (ii) the beliefs about the distribution of types
along the population. Unlike most of the literature, we do not assume that each player
knows the correct joint distribution of her opponents’ (preference) types. Instead, each
player has a belief about how the population is divided by types. Each individual has

quasi-linear utility in her private good consumption and chooses how much of her initial

!See Samuelson [11] and [12], as well as Olson [9].

2 As Hellwig [7] explains, " This formulation of incomplete information departs from the personalistic
approach where each agent is assumed to receive a signal about the underlying state of the world and uses
the signal to form probabilistic beliefs about the state of the world, about the signals received by the other
agents and about the other agents’ beliefs that are induced by their signals (...) here, agents do not form
beliefs about any particular other agents. They only form beliefs about the crosssection distribution of the
other agents’ characteristics."



endowment to consume or to give to the pool of contributions to the public good.

In this setup, we prove that there is always a symmetric equilibrium; that is, a Nash
equilibrium where all players with the same characteristic (same type and belief) make
identical contributions. In such symmetric equilibrium, only players with the highest
preference type and the most pessimistic belief (i.e., the one with the lowest proportion
of highest type players) make positive contributions, provided that there is at least one
such player. In this situation, the total contribution for the public good could be greater,
smaller or equal to the total contribution under an analogous game of complete informa-
tion and heterogeneous preferences. It is greater if and only if the players that actually
contribute are pessimistic in absolute terms, which means that they believe that the num-
ber of highest type players is smaller than it actually is. This result allows us to evaluate
how the classical free rider problem depends on the heterogeneity of beliefs and on the
preferences present in the population. If there are many possible types and players, and
only few of them have the most pessimistic belief, then the free rider problem is severe.
This is because only a relatively small minority of players contributes and these contribu-
tions are relatively large. Moreover, contributors may be better off than non-contributors
of different types. This is true because contributors benefit more from the same amount
of public good than players with a different preference type.

If there is no individual who simultaneously has the highest preference type and the
most pessimistic belief, a tradeoff between preferences and beliefs arises. Depending on
the parameters, there may be symmetric equilibria where all contributions are made by
players with the same characteristic or where players with different characteristics share
the contributions. There may also exist multiple symmetric equilibria, including cases
where some players with the highest preference type do not contribute, while, at the
same time, players with the second highest preference type contribute. When there are
exactly two possible preference types, the symmetric equilibrium is unique again. In this
equilibrium, high type players with the second most pessimistic beliefs in the population
may be the only contributors, or they may share the provision of the public good with

the most pessimistic players of low type. These two cases illustrate the tension between



preferences and beliefs. The total contribution may be greater, smaller or equal to the total
contribution under an analogous game of complete information. It is greater (smaller) if
and only if the second most pessimistic belief is pessimistic (optimistic) in absolute terms.

The next section describes the notation and the basic setup of the model. Section 3
calculates the symmetric equilibrium and describes its properties. The only contributors
are those players with the greatest public good value and with the most pessimistic belief.
Section 4 analyzes the game when these players are absent. Section 5 concludes the paper

and the Appendix contains all proofs.

2 Notation and Setup

There is a finite set J with exactly N = |J| € {2,3,---} players (potential contributors
for the public good). Depending on their preferences for public good consumption, each
player has a type t € T = {1,2,--- ,|T|}.

Individuals may also differ in their beliefs about the distribution of types in the pop-
ulation. Let I denote the set of possible beliefs; that is, possible probability distributions
over the set of types. There are exactly |I| € {2,3,---} different beliefs. For each i € I,
let 6 = (5§i), e ,(5(i) ), where (59 represents the probability of type ¢ € T" according to

T
()

T = 1, for every i € I, and we suppose

any player having belief 6. As usual, (5&“ +- 40
that 6\ > 0, for every pair (£, 7).

The characteristic of a player is a pair (¢,7) € T'x I. Let J(t,1) be the set of all players
with characteristic (¢,i), for each t € T and i € I and suppose that J(t,i) # @.3 Let
N = |J(t,i)| be the number of players with characteristic (t,i). For each t € T, let

Ny =>] Nt(i) be the number of type ¢ individuals. Hence, N = > N, is the total number
il teT

of players. The share of individuals of type ¢ with belief 6 is 5§“ = Nt(i) /Ny Thus,
> 5? = 1. There is perfect information regarding the conditional distributions of beliefs
i€l

given the types. For each type t € T, all players know the proportions of type ¢ players

that have each belief.

3Section 4 assumes that J(1,1) is an empty set in order to find and analyze the relationship between
beliefs and preferences that determines the symmetric equilibrium.



When G units of the public good are provided, a player j with characteristic (t,7)
consuming x; units of numéraire obtains utility U;(z;,G) = z; + A\ In(G), where the
constants Ay, with ¢ € T, are ordered by: Ay > Ay > -+ > Ay > 0.

Assume that the values 6", 6%, ... 6"V never coincide and 6{" = min{égi)| i=1,--,
|I|}. These are the proportions of players with type ¢ = 1, according to the |I| different
beliefs in 1. Thus, belief § () is the one of players assigning the minimum for the proportion
of players of type t = 1 in the population. Because type t = 1 players have the maximal
propensity to contribute to the public good (A; = max{\; |t € T'}), we refer to individuals
with belief 6 as the most pessimistic ones; that is, distribution 6" is the most pessimistic
in the sense that it has the lowest proportion of players of type t = 1.

For simplicity, suppose that all players have the same initial endowment w > 0. Each

individual j € J(t,) chooses her contribution g; in order to:
Max T+ A In Gm-(gj), (1)
9520

subject to:

Tj+gj =w,

where Gy ;(g;) is the total contribution perceived by j € J(t,4). We will specify that func-
tion in the next subsection. Assume that the common initial endowment w is sufficiently
large, avoiding positive corner solutions.

Define the simultaneous moves game of public good provision with individuals having

heterogeneous beliefs regarding the population distribution of types by:
]P) = {'L T7 Iv {5?% 5151) }tET;iEI; {)\t}tET} .

Remark 1 Throughout this paper, we assume a logarithmic quasi-linear specification for
the utility function of individuals. Quasi-linearity is a restrictive assumption; however,
the same qualitative results may be obtained if instead of In(G) we use any function ¢(Q)
with ¢ > 0, ¢" < 0, ¢'(0) = +o0, and ¢'(+o0) = 0. Indeed, the first order condition
Gi+ > A\t (to be stated in (2)) becomes G,y > N\, where \; = (qﬁ')*l (1/At). The existence
of (gb')fl (1/X\;) is guaranteed by the monotonicity of ¢', ¢'(0) = +oo, and ¢'(+00) = 0.
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3 Symmetric Equilibrium

The lack of determination of individuals in the same set J(t,7) leads us to consider the
symmetric equilibrium concept; which is a Nash equilibria where all players in J(¢,1)
make the same contribution, denoted géi).‘l Therefore, a symmetric equilibrium for the
game P is a profile of contributions (gt(i))ie r.ter such that, for each player j € J(¢,i), her
contribution is g; = gt(i), a solution of problem (1), given that the contributions of all
other players are those prescribed in the symmetric equilibrium. In other words, in the
symmetric equilibrium, no player has a unilateral profitable deviation, and every pair of
players with the same characteristic make identical contributions.

Let (t,i) € T x I. Fix a player j € J(t,i). She believes that there are §©3% N
individuals in J(7, k), for each 7 € T and k € I, each one of them contributing ggk) in a
symmetric equilibrium. If j decides that her contribution is g;, the total amount of public
good provision perceived by her becomes:

Guilgy) =g =g + 2> BV Ng®.

kel teT

Solving player j’s maximization problem (1), the second order condition always holds.

Hence, the solution is given by her first order condition:
Gi(gl) = A, with "="if g* > 0.
Equivalently:

7 =g+ 3" BWSING® > N, with "=" if g; > 0. (2)

kel TeT

The next result establishes the existence and uniqueness of the symmetric equilibrium.

Proposition 1 Suppose that the subset of players J(1,1) is non-empty. Then, there

exists a unique symmetric equilibrium (gii))iel,teT for the game P. The set of all symmetric

4There are many other Nash equilibria. In fact, if two players are making positive contributions in a
Nash equilibrium, then there is another Nash equilibrium where all other players play as before and the
two players slightly redistribute their contributions; the amount that one increases equals the decrease in
the other. This works as long as their final contributions are still non-negative.

5



equilibria is characterized by the following conditions, one for each pair (t,i) € T x I:
S350 > 2 with =1 if g > 0. 3)
kel €T

In the unique symmetric equilibrium, contributions of all players are zero, except for those

with characteristic (t,1) = (1,1). The only players making positive contributions are the

most pessimistic (belief 8V) of those who benefit most from the public good (type t =1).5

Formally, contributions are:

(1) A1

o) = Gomo  ond (4)
o pN

g’ = 0, i (i) £ (1,1). (5)

Andreoni [1] proves that if there is incomplete information about individual wealth,
then the proportion of contributors decreases as the number of players increases. By con-
trast, Proposition 1 reveals that the proportion of contributors may increase or decrease
depending on the proportion of players with characteristic (1, 1) among the entrants.

Consider two games with identical parameters, except for beliefs. These games have
the same symmetric equilibrium if and only if the belief parameter ¢ 51) coincides. This
neutrality result is similar to that of Gradstein et al. [6] who proved that the total amount
of the public good is invariant to wealth redistributions.

Let 6" = (67, -+ ,d7y) be the true distribution of types; namely §; = N;/N. Let G*
denote the aggregate provision of the public good in the symmetric equilibrium. Then:

G =33 8519 N = B{s1gi N
iel teT

Substituting equation (4) into this expression:

i
o =212
st

(6)

When all individuals have correct beliefs about the distribution of preferences for

public good in the population, then G* = \;. If the most pessimistic belief in relative

°If we change the hypothesis (551) < (552) to (551> = 5§2), then players with belief 6® and type t = 1 will
also make positive contributions to the public good.

6



terms, namely 0%, is also pessimistic in absolute terms; that is (551) < 07, then the
aggregate contribution is larger than what it would be if all players had correct beliefs
about the preferences’ distribution. Thus, 551) < 07 if and only if G* > A;.

If the subset J(1,1) is non-empty, players with characteristic (1,1) know this. In
particular, they know that 651) > 1/N. This inequality establishes the following upper
bound for G*:

G* < NojAL = NiAg.

If j € J(7,i), let t(j) = 7. In order to calculate the efficient provision of the public

good, a central planner chooses individual contributions {Zj}je ; in order to solve the

problem:
Max > (w =z + Ay In(G)) (7)
{zj}jes e
subject to:
zj > 0, for every j € J,
and:

jeJ
There are multiple solutions {Zj}je ; for the problem (7). However, all solutions lead

to the same total contribution:

G =) My =ND>_Gh=> N\ (8)

jeJ teT teT

Corollary 1 Suppose that the subset of players J(1,1) is non-empty. The total contri-
bution in the symmetric equilibrium of the game P is G* = (5;/(551)))\1. The greater the
pessimism of contributors (lower 551) ), the greater the total contribution in the symmet-
ric equilibrium. In addition, the equilibrium contribution G* is lower than the efficient

contribution G¢ given by equation (8).

There are some options for mitigating the classic under-provision of public good (free

rider problem). Bag and Roy [3] show that the total amount of public good increases if the



game is played in two stages, with first round contributions announced before the second
round. Bag and Roy [4] prove that the total provision of public good is larger in a two
period game where players may contribute only once, than in the static game. Corollary
1 states that, in our static game, the total contribution increases when the contributors
become more pessimistic.

Despite bearing the burden of providing the public good, the most pessimistic players
may attain greater payoffs than some of the defectors. This is the content of the next

result.

Proposition 2 Let u;; = Uj(w — gt(i), G*), for each (t,1) € T x I and each player j €
J(t,i). Then:

(i) Among individuals of type t = 1, the most pessimistic players (i.e., contributors)
are always worse off than other players with the same preferences. Formally, w1 < uy;,
for alli=2,3,---,|I].

(ii) Contributors may be better off or worse off than players with different types. For
eachi €l andt e T —{1}:

A1

U >, & N> .
(M — M) In(G)ath g

As N increases, players with characteristic (1, 1) become happier because G* remains
constant and the individual contribution gil) decreases, according to equation (4). The
utilities of all individuals with characteristic (¢,i), for i € [ and t € T — {1}, do not
depend on N. Hence, as N grows, eventually, the utility of contributors becomes larger

than the utilities of defectors of types t € T — {1}.

4 Beliefs versus Preferences

This section examines the game in absence of players with characteristic (¢,7) = (1, 1); that
is, the only individuals who were making contributions for the public good in the previous
analysis. This new analysis sheds light on the tradeoff between beliefs and preferences in

the provision of public good.



Consider the beliefs ordered by their first component (the probability of being of type
t = 1), and order the beliefs in such a way that 5&1) < 5&2) < < 5&‘1‘). Suppose that
there is no player with characteristic (1, 1); that is, J(1,1) = @. To calculate the new
symmetric equilibria we use system (3) for all (¢,7) # (1,1).

Proposition 3 If there is no player with characteristic (t,i) = (1,1), then there exist at
least one symmetric equilibrium. Every symmetric equilibrium (gt(i))(t,i)eTxI—{(Ll)} satisfies

g =0, for all i >2, t > 2; and also g =0, for all t > 3.

Proposition 3 asserts that in every symmetric equilibrium, only the individuals who
place the greatest value on the public good, or the most pessimistic individuals who place
the second largest value on the public good, may contribute. The next example shows

some symmetric equilibria that may arise.

Example 1 Consider the following specification: N = 100, T' = {1,2,3}, I = {1,2,3},
A = 200, Ay = 100, 0 < A3 < 100, and the beliefs 6V, 6@, 6@ are the rows of the

following matriz:

0.33 0.1 0.57
o=1 05 04 0.1
0.75 0.15 0.1

Let g, = 52) gf) + ﬁf’) gig) and g, = gl)gél). The first order conditions characterizing the

equilibria are (see proof of Proposition (3)):

A
09+ 039, = 033, +0.0g, > 2 =15 with "="if g >0,

A
0G4 075, = 050, +045, > o =2 with "="if g7 >0,

A
599, + 65, = 0.75g, + 0.15g, > Nl =2 with "="if ¢¥ > 0.



Figure 1 shows the position of each line above for the given parameter values.

SN SN 59N

Figure 1: Multiplicity ofequilibria in the public good
contribution model with heterogeneous beliefs

The point P corresponds to the solution g 4/6(2), glg) =0 (org, =4) and gé ) =0
(or G, = 0). In addition, the point Q) corresponds to another equilibrium: g, = 2.4 and
Gy = 2, and then, g(2) = 2.4/552), gf’) =0 and g(l) = 2/5&1).

If the parameter values are not those in matrix §, but instead they are such that point
Q s the intersection of the three lines in Figure 1, then there is a symmetric equilibrium

with positive contributions g( ) > 0, g(g) >0 and g(l) > 0.

If there are only two possible types for the preferences (|T'| = 2), multiple symmetric
equilibria cannot occur. The following result characterizes the symmetric equilibrium in

terms of the parameters.

Proposition 4 Suppose that T = 2 and there is no player with characteristic (1,1).

Then, the unique symmetric equilibrium (gt(i))(t,i)eTxf_{(l,l)} satisfies gt(i) = 0, for all
(t,1) ¢ {(1,2), (2 1)} and:
A 2 _ (1)
(i) If 2 < 5<2” then g, m >0 and g5’ = 0.
58 A =88 2o ) §Pa-sn

(ii) If 5 ’\2 > 9 (2), then g(2) >0 and gé

TG = PN =

10



(111) In both cases, the aggregate contribution of players with characteristic (t,i) =
(1,2) is larger than the aggregate contribution of players with characteristic (t,1) = (2,1).
Formally, ?) g§2) > 551) gél).

Independently of beliefs, the players who most value the public good contribute to
its provision. Players who value the public good the second highest may contribute,
depending on the parameter values. The value \y/)\; is the ratio of preference parameters
between "low" types (t = 2) and "high" types (t = 1). The greater (lower) this parameter,
the greater (lower) the public good value for individuals of type ¢ = 2. The ratio 6." /5%
measures how optimistic the belief 6V is when compared to belief 6®. The greater (lower)
this ratio, the more (less) optimistic the belief 6.

Part (i) of Proposition 4 establishes that if the ratio of preference parameters is low
when compared to the relative optimism of 6%, then only players of type t = 1 and belief
6@ contribute. Intuitively, this indicates that preferences dominate beliefs; only those
who gain the most from a given amount of public good contribute, even though there are
more pessimistic non-contributing players.

Part (4i) asserts that if the ratio of preference parameters is sufficiently high compared
to the relative optimism of belief 6V, then individuals with characteristics (¢,1) = (1,2)
and (¢,7) = (2,1) contribute. This is how preferences and beliefs interact.

The next result compares the total contribution to the public good provision in this
setting with the aggregate contribution in the framework of the previous section. Let G**

denote the aggregate contribution in the equilibrium of Proposition 4.

Corollary 2 If T' = 2 and there is no player with characteristic (t,i) = (1,1), then, in
the symmetric equilibrium described by Proposition 4:
(i) [f:\\—f < 2%—;;, then:
G = %)\1 < %)\1 =G

11



.. Ao 551)
(i) If 2 > Sz then:
1

5 — o 0 — o
G** _ 1 1 A 4 1 1 Mo 9
(552) ~ (55”) 1 <552) _ 551) 2 ( )

In particular, if 6%1) < 07, then:

G < W)\Q < E)\l =G".
1 1

(#i) In both cases above:
CA D VIS L

If the inequality defining Part (47) is strict; that is, Ao/ > 551)/ 552), then it is possible
that G** > G*. This occurs when 07 is sufficiently close to zero. Indeed, as 6] — 0, then
G* — (—551))\1 + 5%2))\2)/(5?) - 5&1)) and G* — 0; thus, the inequalities G** > G* and
Ao/A1 > 081 /6% become equivalent.®

Part (ii1) of Corollary 2 establishes that the aggregate contribution in equilibrium is
greater than it would be in the complete information game exactly when the belief 6® is
pessimistic in absolute terms.

Regardless of the case, if 551) <61 < 532), then the total provision for the public good
is a convex combination of \; and \. Indeed, by Part (i), the hypothesis 67 < 552)
implies that G** < A, If M/ < 60 /6% ) then G** = §:0 /6 > 6N /62 > .
If \y/ N > (551) / (552), then formula (9) establishes that G** is a convex combination of
A1 and Ay because the coefficients of A\; and Ay must be positive given the hypotheses
s < 5% <6 and 61 < 6,

5 Conclusions

This work analyzes a game of public good contribution in a population of anonymous

individuals who are heterogeneous in their preferences for the public good and also in their

0This argument is based on the continuity of the functions §; — G* and §; — G**.

12



beliefs about the population distribution over those preferences. In line with the literature,
only players who most value the public good bear the burden of the contribution. However,
not all of those individuals contribute in the unique symmetric equilibrium; only the most
pessimistic ones. If that set of individuals is empty, there is a tension between beliefs
and preferences and multiple symmetric equilibria may arise. When there are only two
preference types, uniqueness of symmetric equilibrium emerges. In such a case, depending
on the dominance of preferences over beliefs, there may be contributions only of high type
individuals with the second most pessimistic beliefs in the population, or a share of the
total contribution between that group and the most pessimistic players of low preference
type.

The public good is under-provided, as usual in similar games. When the set of players
who most value the public good and who hold the most pessimistic belief is non-empty,
the aggregate contribution is greater than the total contribution under complete infor-
mation if and only if the most pessimistic belief, denoted 5(1), is pessimistic in absolute
terms. Absolute pessimism means that the belief 6V assigns smaller probability to the
highest preference type than the true probability. If that subset of players is empty and
there are only two preference types, the aggregate contribution is greater than the total
contribution under complete information if and only if the second most pessimistic belief
in the population, denoted 6, is pessimistic in absolute terms. These results establish
a remarkable conclusion: if the policy maker does not take into account the existence of
beliefs heterogeneity, he may expect a total contribution significantly different from the
actual one, in either direction.

Further research could analyze a similar game in a dynamic context or when the
preferences are not quasi-linear. The first extension will incorporate mechanisms that
reveal (at least in part) the incomplete information. The second proposal could shed light

on the importance of wealth effects.

6 Appendix

This appendix contains all proofs.

13



Proof. (Proposition 1) Let (ggi))(t,i)eTﬂ be a symmetric equilibrium. Fix (¢,7) € T'x I.
If j € J(t,i), then gj = ¢\, Substituting this value in the first order condition (2) we
obtain (3). Reciprocally, suppose that (gt(i))(t,i)e;px ; satisfies condition (3) and all players,
except j, play according to their characteristics and the given profile. When g7 = ggi),
condition (2) holds because (gfi))(t,i)ecpx ; satisfies (3). Therefore, (g,gi))(tvi)egpx 7 is a Nash
equilibrium.

It is straightforward to check that the profile given by equations (4) and (5) satisfies
condition (3).

Finally, let us prove the uniqueness of the symmetric equilibrium. For each 7 € T', the

type-conditional expected contribution is:
7, = 3 4, (10)
kel

The system (3) is composed of || x |T'| equations that can be solved as follows. Fix

i € I and consider the following |T'| equations sub-system:

A

Solg, = T with "= g >0, t=1,0 [T

TeT
The first term in the inequalities above is the same for all t. Thus, gt(i) = 0, for every
t =2,---,|T|, because the X’s are ordered (A; > --- > Ajp|). Therefore, g, = 0 for all

T > 2and ), 59?7 = 5@?1. Finally, consider the first equation in each group given
TeT
above. Then, there are || conditions, namely:

> oG, =65, > %; with "="if ¢ >0, i =1,.--|1].

€T
For any equilibrium, it is necessary that g; # 0 (otherwise, the system above would imply
5@?1 =0 > A\/N, but by assumption A\; > 0 and N > 0). Using that 651) = min{dgi)|
i=1,--,|I|}, we conclude that ggi) =0,i=2,---,|I|,and g, = ﬁl)g?). Equalizing this
to A\1/N, we obtain the solution (4). =
Proof. (Corollary 1) Because 1/6\" < N and N&% = Np, then G* = A\6%/68" <

N(YI)\l = Nl)\l < Z Nt)\t =G’ =

tel

14



Proof. (Proposition 2) Part (z). This results from the fact that u;; = w — gil) +
A In(G*), and uy; = w + Ay In(G¥), for every i = 2,--- | |1].

Part (it). For every i € I and t > 2, then u;; = w + A\ In(G*). Hence, uyq > uy,; if
and only if ggl) < (M — A\) In(G*). Using the equilibrium value of ggl) given by equation
(4), after some simple algebra, we obtain this result. m
Proof. (Proposition 3) The argument for existence is similar to the one in the proof
of Proposition 1. When there is no player with characteristic (1, 1), the equilibrium is
defined by the solution of the following system: for each (t,i) € C =T x I —{(1,1)}:

> 590 ) > %; with "=" if g{ > 0. (11)
(1,k)eC
Fix ¢ > 2. Consider the following sub-system, with |T'| equations, one for each ¢t =
1, |T):
> a0k h > %; with "=" if ¢\ > 0.
(r,k)eC
The terms in the left-hand side of the inequalities above is the same, regardless of the
(@ _ (@) _ (1)

value of t. Hence, g,’ = g5 =97 =0 because A\; > Ay > -+ > Ay Indeed, if

(Z) > 0, for some t > 1 then the corresponding condition would hold with "=". Thus,
M/N = > (5(’)5 > A1/N, contradicting A\; > ;.

For i(;k)le,cthere is only a sub-system with |T| — 1 equations. For each t =2,--- | |T:

> sWpWgh > %; with "=" if g{") > 0.
(r,k)eC

Once again, the first term in the inequalities above is the same for all £. Thus, g( ) =

1 _ (1)

gy = g‘T| = 0 because Ay > A3 > -+ > N\
Using g = 0, for all £ > 2 and ¢ > 2, and also gt(l) = 0, for all t > 3, then
7, = Bg2)g§2) Jrﬁ(lf\) (\II), G, = 5(1) (1) . and:
S G080 = 50 (B0 + -+ BIG) + 808P = 505, + 607,
(r,k)eC

By the first order conditions (11), for all (¢,7) € {(2,1),(1,2),(1,3),---,(1,|I])}:
A A A ,
599, + 0\g, > Nt; with "=" if g\’ > 0.
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Hence, the equations defining the equilibrium are:
Mo s o A2 e (1)
011+ 03 gy = N with "="1if g, > 0, (12)
and, for all i = 2,--- ,|I|:
(o s 5 AL e ()

In order to prove that the system (12) and (13) has a solution, consider two cases.

Case I: Suppose that Aa/A\; < 551)/552).

The contributions gél) =0, 952) =N/ (552)B§2)N ), and ggk) = 0, for every k > 3, define
a solution for the system (12) and (13). Indeed, with those contributions, g, = A/ (552)N )
and g, = 0 will satisfy conditions (12) and (13), given the parameter conditions of this
case and 551) < 5§2) << 591‘).

Case II:” Suppose that Ay/A; > 617 /61,

Consider two sub-cases:

Sub-case Ila) Ao/ Ny > 5V /687 for every k > 2. We claim that ¢ = Ag/(éél)ﬁgl)N)
and g§k) =0, for all £ > 2 is a symmetric equilibrium. Indeed, in that contributions pro-
file, g, = 0 and g, = Ao/ (68VN'). This satisfies condition (12) with "=" and condition
(13) with ">" for all ¢ > 2.

Sub-case 1Ib) 3 k > 2 such that \y/N\ < (551)/5;]6). Define the set of indices
K = {k > 2| Ao/ < 5&1)/(59)}. Consider, for each m € K, the linear system:

A
sWg, +oVg, = 22 14
19110370 N (14)
A
g o sme AL
1 91 1t03 "Gy N’

We claim that, for each m € K, the corresponding system has a strictly positive

"The arguments in this proof follow from geometric constructions in the plane §; x g,. The idea is
to fix the straight segments defined by condition (13) and to consider two possibilities for the position
of the segment given by condition (12). In sub-case (Ila), the line (12) is above all segments defined by
condition (13). In sub-case (IIb), the line (12) intersects at least one of the segments (13).
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solution g; > 0 and g, > 0. Let A = (5&1)5;"0 — (5;1)557”). The solution of system (14) is:

N [ Y (15)
g1 = NA |\ (5ém) 5

TR P . 5t
92 = N A )\1 5(1m)

From the hypothesis Ao/A\; > 5&1)/552) (Case II) and because m € K, then 6\ /6% <
Ao/ A < 59) /6™ which implies that 551)53”) < 5§”5§2>. From the ordering of the beliefs
5@ then 676 < 6™ Therefore, A < 0.

The term in brackets defining g, in equation (15) is strictly negative because m € K.
Thus, g; > 0. Finally, using the condition of Case II and the order in 6%, then Ay /A1 >
51 /5P > 51 /st Thus, g, > 0.

For each m € K, let P™ = (x,,,yn) be the solution of system (14). Define m as the
index corresponding to the largest x,,. There might be more than one m, and if so, we
pick any arbitrary m such that =, = max{x,, | m € K}.

Claim: The contributions profile g( ™= .y B(m),
gt = Y/ B satisfies conditions (12) and (13) for all i > 2; that is, this profile is an

") — 0 for every k # m, and

equilibrium.

The contributions given above generate the average contributions g, = z,, and g, =

y-.. Because P™ comes from system (14), then condition (12) is satisfied with "=", and
condition (13) holds with "=" when i = m.

Now, pick m € K —{m}. Because P™ satisfies the first equation of system (14), then:

DT S I DY 0 35" o

SN g ! T T

2 2

5(771)1, + 5(m)y7 _ 5(m)x + 5(m) [

The last bracket of the equalities above has the same signal of § (m)é s (m)(5 = _A>o.
Using this and the definition of z,, then:

(m) <(1) (m)
(m) (m) (m) Oy 03 03 A2 (m) m),  _ A
0 'Tp + 0y Y > [(5 59) ] 6%1)]\/ =0 T+ 05 Ym = N

The last two equalities are true because P is solution of system (14). Therefore, condition

(13) is satisfied with ">", for every i € K — {m}.
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Finally, pick any i ¢ K. Then, A\y/A\; > 5&1)/5@, or equivalently, 5éi)N/)\1 > (5§1)N//\2.

The condition of Case II and the order of the values §®) imply that:

P R
—_ > = > —.

Then, 6/ N/A; > 6" N/A,. Therefore:

s N s$ON SN sUN
To + Ym > To +

A" A O Ay A2

Y- = 1.

The last equation holds because P™ is the solution of the first equation of system (14).

Therefore, condition (13) holds with ">" for every i ¢ K. m

Proof. (Proposition 4) Define f(i) = 0\”(g, — gy) + gy, for each i € I. Then, the first

order conditions characterizing the equilibrium become:

A
F(1) > NQ; with "="if ¢\ > 0;
and, for every i =2,--- ,|[]:
NSt : e ()
f@@) > N with "="1if g, > 0.

Claim I: g, > 5.

(16)

(17)

If this claim is not true (namely g, < g,), the function f(i) would be a weakly
decreasing function. From conditions (16) and (17), then f(1) > Ay/N. Thus, gél) =0

and g, = 0 = g, which is a contradiction.

The claim above implies that f(i) is a strictly increasing function.

Claim II: f(2) = \/N.

If £(2) > Ai/N, then f(i) > Ay/N, for all i > 2. Hence, g\’ = 0 and g, = 0, which

means that (by Claim I) g, < 0, but this is a contradiction.

Therefore, f(i) > A/N (because f(i) is a strictly increasing function), and so, ¢\” = 0,

for all 4 > 3. Thus, equations (16) and (17) have been reduced to:

>~

2

F1) > 22 with "="if ¢V > 0,

=1
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and
A1
f(2)= N

Part (i). Suppose f(1) > Xo/N. This implies g{" = 0 (or g, = 0) and substitut-
ing in (18), we find gf) = A/ (652)552)N ). Substituting in the condition of this case,
89N /(8 N) > Xy /N, which is the parameter condition in this part.

Part (¢2). Suppose f(1) = A\y/N. Let A = 5&2) - 551). By equation (18):

(18)

I . e
91 = N A )\1 (5(22) ’
I o0 VN DV
92 = NA |\ 5§2) .

The non-negativity condition g, > 0 corresponds to the parameter condition in this part
of the proposition, and it implies that A(1 — 5&2)) > M(1— 551)) and )\15&1) - )\259) >
A1—As > 0. Hence, \y/ A < 637 /6%, which implies that g, > 0. Computing ¢\* =g, /3
and gél) =7,/ 5§1), we obtain the result for this part.

Part (#ii). The inequality 3¢{? > g ¢{") is trivial in the case of Part (i). In the
case of Part (ii), §2) g§2) > 5@1) gél) is equivalent to A\; > Ay, which holds by assumption.
[

Proof. (Corollary 2):

Part (7). This result comes from the computation of G** = > 5§")5;‘g§i)N =
(t,p)eC

BP&{gPN = 01\1/ 5§2), where the values gt(i) are the ones in the corresponding case of

Proposition 4. Because 631) < 5&2), then:

G™ = W)\l < W)\l =G".
1 1

Part (¢). In this case:

() (2) @) )
- Dex (D)nr a2 ex (2) W Wnr 02 AL =05 Aa 07 Adg— 07 Ay
G = Z Bi 0ig: N = 170191 N+B5 0595 N = 07 5@ _ 5O 2 5@ _ 5O

(077 —017) (07" —617)

(t,p)eC

Substituting d5 = 1 — 6] and grouping the coefficients of \; and Ay, equation (9) follows.
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Now, suppose that (551) < 07. With some algebra:

01" — 0
Because A\; > Ay and (5&1) < 607, then G** is a decreasing function of (5&2), for every
552) > (5?))\1 /A2, and this inequality holds by the hypothesis of Part (i7). The maximum
of G** occurs exactly at 552) = 551))\1 /e, and at this point (substituting this value of 552)

in equation (19), after some algebra):

5*
= Sy, <
o)

01

@)\1 == G*

max
5 >5M A1 /a0

Part (). For Case (i), G** = 61, /0% > A, if and only if 0% < &%,
For Case (ii), G** > A\; if and only if

0; — oy oy — 8
(5§2) - 59) )\1 + 5g2) B 69) )\2 > )\1.
This inequality holds if and only if
o — & . 0% — 8 \
5 _ 5 5 _ 50 ’
or, equivalently, (A} — A2)0] > (A — )\2)5§2) (because 59) - 59) > 0). This condition is
satisfied if and only if (5&2) < 07 because A\ — Ay > 0. =
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