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Abstract.

Estimation in models with endogeneity concerns typically begins by searching for instruments.

This search is inherently subjective and identification is generally achieved upon imposing the

researcher’s strong prior belief that such variables have no conditional impacts on the outcome.

Results obtained from such analyses are necessarily conditioned upon the untestable opinions of

the researcher, and such beliefs may not be widely shared.

In this paper we, like several studies in the recent literature, employ a Bayesian approach to

estimation and inference in models with endogeneity concerns by imposing weaker prior assump-

tions than complete excludability. When allowing for instrument imperfection of this type, the

model is only partially identified, and as a consequence, standard estimates obtained from the

Gibbs simulations can be unacceptably imprecise. We thus describe a substantially improved

“semi-analytic” method for calculating parameter marginal posteriors of interest that only re-

quires use of the well-mixing simulations associated with the identifiable model parameters and

the form of the conditional prior. Our methods are also applied in an illustrative application

involving the impact of Body Mass Index (BMI) on earnings.
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1. Introduction

Practitioners seeking to estimate the impact of an endogenous treatment on an outcome or

set of outcomes generally follow a similar research strategy. First and most importantly, a set

of variables are found that (a) are believed to be conditionally related to the treatment decision

yet (b) can plausibly be excluded from the outcome equation. The first of these two conditions

is empirically testable, while the second is untestable. The determination of such variables is

so critically important to the process that their availability (or non-availability) often defines

the research agenda; when plausible instruments present themselves, research ensues and papers

are written that exploit their existence, while interesting economic causal effect questions that

lack obvious exclusion restrictions often remain unexplored or under-explored. Second, once a

set of variables of this type are determined, a variety of suggestive evidence is presented with

the intention of bolstering the case for the instrument’s validity. Finally, traditional estimation

methods such as MLE, IV or 2SLS estimation are applied, producing a (hopefully consistent)

estimate of the causal effect of interest.

To the Bayesian, a view that one has valid instrumental variables is akin to employing a

particular dogmatic prior in which the researcher imposes that coefficients associated with these

variables have zero values in the outcome equation. These priors are controversial in many / most

cases, and attempts to “prove” the appropriateness of such priors, though ubiquitous, are perhaps

totally unfounded from the subjectivist’s perspective. Furthermore, even seemingly valid, highly

influential and often used instruments such as quarter of birth in education studies [e.g., Angrist

and Krueger (1991)] have recently come under scrutiny as valid exclusion restrictions [Buckles and

Hungerman (2010)], potentially suggesting difficulty in ever finding fully convincing instruments

with observational data. Thus, while one might not only question the value in any effort that

tries to “prove” the correctness of the prior, even if such exercises were deemed useful, it is not

likely that they will ever be completely convincing with non-experimental data.

A goal of this paper, following the interesting work of Conley et al (2012), Kraay (2012) and

Nevo and Rosen (2010) among others, is to offer an operational alternative to the dogmatic priors

that are commonly employed in empirical work of this type. The priors we employ in our paper

are somewhat similar in spirit to those employed in Conley et al (2012), and our paper does not

claim to make a substantial contribution in terms of prior specification. Our focus instead is

to document the potential for serious inaccuracies when standard Gibbs approaches to posterior

simulation are conducted in the presence of imperfect excludability, and to introduce a new and
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significantly more efficient computational approach for calculating marginal posteriors of interest

and for investigating prior sensitivity.

We formally discuss how learning takes place regarding (non-identified) parameters of our

partially identified model and use the lessons learned in that exercise to improve upon standard

Gibbs approaches to posterior simulation. Specifically, the lack of point identification leads to

very poor mixing of the Gibbs simulations, and this problem is exacerbated as one increases

prior uncertainty surrounding the validity of the instruments. We thus develop a “semi-analytic”

scheme for the calculation of parameter marginal posterior distributions and their features. This

technique only uses the form of the conditional prior and the well-mixing identified posterior

simulations from the standard Gibbs algorithm to perform the requisite calculations. Given the

Rao-Blackwell spirit of the methods we develop, we can even improve upon iid sampling from the

posterior.

We illustrate our methods using data from a recent study by Kline and Tobias (2008). These

authors investigate the causal impact of BMI (Body Mass Index) on earnings, and use parental

BMI as exclusion restrictions. We obtain results under the assumption that parental BMI is

excludable, and also under the assumption that these variables are not excludable. Our results

suggest that, when departing from the dogmatic prior of Kline and Tobias and those commonly

used in this literature, we are still able to obtain informative posterior results. Furthermore, we

find evidence that the BMI log-wage relationship is negative under a variety of different weak

prior beliefs.

The outline of this paper is as follows. The following section presents a stylized model, describes

our priors and briefly discusses our posterior simulator under those priors. Section 3 formally

describes how learning takes place regarding the structural parameters of the model, illustrating

this issue specifically for the causal effect parameter. Section 4 provides an illustrative example

investigating the impact of Body Mass Index (BMI) on earnings and compares our methods for

posterior calculation with results obtained using traditional methods. The paper concludes with

a summary in section 5.

2. The Model and Prior

Our primary model is a two-equation triangular system, with y denoting a continuous outcome

variable and s denoting a single continuous (and potentially endogenous) explanatory variable.
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The basic specification we consider has the form:1

yi = α0 + ziα1 + xiα2 + siγ + ui,(1)

si = β0 + ziβ1 + xiβ2 + vi,(2)

where  ui

vi

∣∣∣∣xi, zi iid∼ N

0,

 σ2
u ρuvσuσv

ρuvσuσv σ2
v

 .
The distinction between x and z in (1) and (2) is that x represents covariates that are not believed

to be potential exclusion restrictions and thus are introduced to affect both the endogenous

variable and the conditional outcome. The variable z, like x, is also included in both equations

although there is a reasonably strong prior belief that it could be dropped from (1). Instead

of imposing a priori that α1 = 0, however, we permit the possibility that there may be some

“direct effect” of z on y above and beyond its influence through s. Given our understanding of

the problem under study, and its potential excludability from (1) derived from that knowledge,

we will differentiate z from x in the priors that we employ over their respective coefficients.

The triangular system in (1) and (2) is not fully identifiable even under Gaussianity: the model

contains ten (sets of) parameters — α0, α1, α2, γ, β0, β1, β2, ρuv, σ
2
u and σ2

v — but only nine

moment conditions that can be exploited for their estimation.2 To see this, employ a marginal-

conditional decomposition and factor the likelihood p(y, s|·) into p(y|s, ·) and p(s|·). Then note

that the expectation and variance of s (marginal of y yet conditioned on the covariates and model

parameters) are, respectively

E(s|·) = β0 + β1z + xβ2, Var(s|·) = σ2
v ,

which gives four (sets of) moment conditions. In addition, the conditional expectation E(y | s)
and conditional variance Var(y | s) provide another five:

E(y | s, ·) =

(
α0 −

ρuvσu
σv

β0

)
+

(
α1 −

ρuvσu
σv

β1

)
z + x

(
α2 −

ρuvσu
σv

β2

)
+

(
γ +

ρuvσu
σv

)
s

Var(y | s, ·) = (1− ρ2uv)σ2
u.

1We fix ideas on the continuous-treatment, continuous-outcome case throughout this paper.
2Since the normal distribution is characterized by its first two moments, given the nine moment conditions we

can reconstruct the likelihood. In other words, all the information in the likelihood is summarized by the nine

moment conditions.
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Hence, the identified parameters are ψ = (a0, a1, a2, β0, β1,β2, σ
2
v , b, c

2)′ where

a0 ≡ α0−
ρuvσu
σv

β0, a1 ≡ α1−
ρuvσu
σv

β1, a2 ≡ α2−
ρuvσu
σv

β2, b ≡ γ+
ρuvσu
σv

, c2 ≡ (1−ρ2uv)σ2
u,

whereas the structural parameters are θ = (α0, α1,α2, β0, β1,β2, γ, σ
2
u, σ

2
v , ρuv). In other words, the

data are only informative regarding some structural parameters of interest, and certain functions

of their values.

2.1. Priors (Implicitly) Employed in the Literature. The usual exclusion restriction path

to model identification proceeds by thinking of a z for which the prior p(α1) = 1l(α1 = 0) can be

credibly maintained, yet β1 6= 0. The priors we introduce in this paper relax this dogmatic stance,

and are more easily defended in practice, although their use leads us to work with a partially

identified model.

One possible restriction one could employ — instead of imposing that α1 = 0 — would instead

order the sizes of z’s possible relationships with y: α1, which we term the “direct” effect of z on

y, (which is commonly imposed to equal zero), should be smaller than the instrument’s primary

channel of influence, which is through its relationship with the endogenous variable s.

There are a number of ways to impose this type of belief. Such an ordering could be imposed

by specifying, for example, a conditional prior of the form:3

(3) α1|β1, γ ∼ T N (−|β1γ|,|β1γ|)(0, V α1
),

with T N (a,b)(µ, σ
2) denoting a normal distribution with mean µ and variance σ2 that is truncated

to the interval (a, b). Thus, we choose to center α1 over zero a priori (since our knowledge of the

problem and identification of z as a candidate instrument suggests that it may be excludable),

and also impose that it must be smaller in absolute magnitude than |β1γ| — which we term the

“indirect effect” — the absolute marginal effect of z on y through its relationship with s.4

While this prior seems sensible and asserts far less than the dogmatic α1 = 0, it is important

to note that adopting this prior precludes the possibility of finding no causal effect — that is,

3Note that priors like this one, and the others we consider, yield posteriors for which direct analytic solutions

are not available. Thus, in general, one will need to use simulation methods to calculate posterior statistics of

interest.
4In the context of the prominent example mentioned in the introduction, our prior would allow quarter of birth

to have some conditional relationship with earnings, but impose that the size of this direct effect must be smaller

than indirect effect that arises through the relationships between quarter of birth and educational attainment, and

educational attainment and earnings.
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0 will not be contained in the support of the marginal posterior of γ.5 Given this consequence,

we believe that such a prior might be credible to employ in some situations, such as determining

the effect of education on earnings (which is widely believed to be non-zero), yet may be rather

questionable in others, such as investigating the impact of body mass on earnings (for which

existing results are decidedly mixed).

One can sidestep this issue by eliminating γ from the conditioning in (3). To obtain a prior

similar to that in (3) but free of γ, one could instead elicit something like a maximal value for

the causal effect and call this value γ∗.6 In the spirit of our previous prior which orders the direct

and indirect effects, we could adopt a prior of the form:

(4) α1|β1 ∼ T N (−|γ∗β1|,|γ∗β1|)(0, V α1
).

This specification may help in terms of prior elicitation, as the product γβ1 is a marginal effect

directly comparable in scale to α1 and researchers, either from past work or from informed prior

beliefs, are likely to have a reasonable sense about values of the causal effect γ. If it is desired to

have some degree of uncertainty in the selection of γ∗, a hierarchical specification could also be

adopted, as in

(5) α1|β1, γ∗ ∼ T N (−|γ∗β1|,|γ∗β1|)(0, V α1
), γ∗ ∼ T N (γ,γ)(µγ∗ , Vγ∗).

The priors in (4) and (5) do not exclude 0 from the support of the γ posterior distribution,

although they no longer enforce the ordering of direct and indirect effects. They instead place

bounds on α1, which are revised by the data through learning about β1, by thinking about values

the primary “indirect” marginal effect is likely to take. The prior in (4) is quite similar to that

used in the work of Conley et al (2012), who consider priors of the forms α1 ∼ N(µ, δ2) and

α1|γ ∼ N(0, δ2γ2). This second version of their prior, by choosing δ to be small, embodies the

idea that the direct effect of z on y is likely to be smaller than the causal effect γ of s on y.

In practice one can, of course, end up with approximately the same priors through appropriate

choices of δ and γ∗. We believe that representing the prior as we have in (4) and (5) could

be useful to the practitioner for elicitation purposes, as one might choose γ∗, the approximate

counterpart of δ in the Conley et al prior, as a perceived large or maximal value of the causal effect

— a parameter for which the researcher may have reasonable prior information. In what follows,

5This point will be demonstrated formally in section 3.1.
6Given this interpretation, the marginal prior for γ should then be chosen to be consistent with the selection

of γ∗.
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we will employ all of these conditional priors in (3) - (5) our empirical work and investigate how

posterior results change under different sets of prior information. We will primarily focus on (3)

in the exposition, although this is essentially without loss of generality.

In addition to these alternate priors over α1, we also consider the use of a potentially more

informative prior for the error correlation ρuv. Specifically, instead of the usual conditionally

conjugate Wishart analysis for the error covariance matrix, we also consider truncated normal

priors for this parameter:

(6) ρuv ∼ TN(ρ
l
,ρ
u
)(µρ, V ρ),

with ρ
l

and ρ
u

denoting the lower and upper truncation limits, respectively.

Motivation for the prior in (6) comes both from our own personal experience (which suggests

that, when the model is sufficiently specified to enable estimation of ρuv, the estimated value is

typically “small”) as well as related approaches in the literature.

To make this connection to the literature more specific, consider that, as an alternative to

traditional IV / 2SLS, a comparatively small set of studies have pursued the “kitchen sink”

approach to identification, estimation and inference. In this approach, a rich set of controls are

included in x and, conditioned on this extensive set of controls, any remaining correlation between

u and ε is believed to be quite small. As a result, one may approximately assume that ρuv = 0,

thus escaping the need for instruments, and pursuing estimation of (1) using traditional methods

such as OLS. Deaerden et al. (2002) is a prominent, well-crafted example7 that exemplifies this

identification strategy.

We recognize that such an approach simply achieves identification through different prior in-

formation: instead of searching for a z for which α1 = 0 can credibly be imposed, the researcher

instead makes the case that x is rich enough so that ρuv = 0. Although this identification strategy

seems to remain the exception to the rule, it does highlight the idea that ρuv = 0 is an alternate

approach to identification, and in many cases, this correlation is likely to be modest in value.

Given that the set of controls available in x is often quite extensive, we therefore consider priors

that allow for the imposition of this type of information, and will investigate the nature of learning

about γ and α1 when such information is imposed. Of course, sensitivity analysis can and should

be conducted to see how changes in this type of belief influences posterior results. Finally, for the

remaining parameters, we will specify normal priors for the elements of γ,β and α, and inverse

7They write (page 3), “In our view, the best way to deal with endogeneity issues with data such as ours is to

control for the variables that are likely to be driving [school] selection...”
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gamma priors for the variance parameters σ2
u and σ2

v . These will be described in full detail in the

following section.

2.2. Relation to the Existing Literature. We begin by recognizing that there are a number

of applied Bayesian studies in the treatment-response literature that are relevant to own work,

and share similarities with our MCMC implementation, including Li (1998), Chib and Hamilton

(2000), (2004), Li and Poirier (2003a) (2003b), Geweke et. al (2003), Munkin and Trivedi (2003)

(2008), Deb et. al (2006), and Kline and Tobias (2008), among others. These studies, however,

do not deal with issues of imperfect instruments, which is the central theme of this paper.

Our idea to allow for some “imperfectness” in the instrument is not new, and indeed, simi-

lar methodologies have been recently advanced by other authors. Koop and Poirier (1997) and

Poirier (1998), for example, discuss Bayesian learning in partially identified models, the latter

study specifically addressing learning in the related generalized Roy model of selectivity. Ash-

ley (2009) derives asymptotic results for the IV estimator under different assumptions regarding

the correlation structure between the outcome error and instruments. Numerous non-Bayesian

papers employ (typically nonparametric) bounding strategies and illustrate how learning regard-

ing the structural parameter of interest takes place under different prior assumptions, such as

monotonicity [e.g., Manski and Pepper (2000) and Gundersen and Kreider (2009), among others].

Nevo and Rosen (2010) derive bounds on the causal effect parameter given sign restrictions on

the correlations between the endogenous variable and the error and the instrument and the error,

and potentially, an ordering of the magnitudes of these two correlations.

As mentioned previously, Conley, Hansen and Rossi (2012) employs methods that are quite

similar to our own and one of the four approaches they discuss to model instrument imperfection

is, in fact, a fully Bayesian analysis. In an interesting article Kraay (2012) also considers a

Bayesian analysis of a just-identified version of the continuous outcome, continuous endogenous

variable model like the one we consider here. Just identification produces a one-to-one mapping

between the reduced form and structural coefficients, and thus enables the researcher to work

directly with (and derive analytical results for) the reduced form posteriors. These results can

then be used to back out implied marginal posterior distributions for structural coefficients of

interest. Kraay (2012) documents a rather considerable loss in the precision of marginal posterior

distributions as one departs from point identification, and also describes how such losses are

related to quantities like the sample size and the strength of the instrument.
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The primary focus of our paper is not in crafting priors to allow for degrees of instrument

imperfection or to theoretically document changes in posterior distributions as one departs from

point identification. We do not require just identification, we allow for the specification of proper

priors directly over the structural rather than reduced form parameters, and we also consider

priors that preclude fully analytic derivations. As such, we take up cases where MCMC is used to

conduct the model fitting, similar to the situation considered by Conley et al (2012). Our paper,

with a slightly different focus than these important papers on which we build, thus emphasizes

computational considerations and seeks to provide an improved method for posterior calculation

given nothing more than the “standard” MCMC output.

In the following section we formally discuss the mechanism for learning about non-identified

“structural” parameters of interest like the causal effect γ in this partially identified model.

This exercise also reveals a quite useful computational strategy for calculating various marginal

posterior distributions. This procedure will combine analytic results associated with the forms

of the conditional priors with available well-mixing posterior simulations associated with the

identifiable model parameters. We find and demonstrate that posterior calculations based solely

on simulations from the non-identified model can be quite unstable and can produce unacceptably

large numerical standard errors. We discuss an efficient alternative to this problem in the following

section. We believe that doing so will provide researchers with an efficient recipe for calculating

posterior quantities of interest when instruments are allowed to be imperfect, and thus allow

researchers to reliably report a range of posterior results under different types of prior information.

3. Learning and Posterior Calculation

Recall that the parameters of interest are θ = (α0, α1,α1, β0, β1,β2, γ, σ
2
u, σ

2
v , ρuv)

′, while the

identified parameters are ψ = (a0, a1,a2, β0, β1,β2, b, σ
2
v , c

2)′. What we are primarily interested

in are marginal posterior densities of the forms p(θi |y, s) and characterization of the marginal

posterior for the causal effect parameter [p(γ |y, s)] in particular. For θi = β0, β1, β2 or σ2
v , the

marginal posterior densities p(θi |y, s) and their features can be calculated in the usual way from

the simulated output, as those components of θ are identifiable. For elements in θ that are not

identifiable, we seek to investigate their marginal posteriors in greater detail. To this end, we
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note that, for a non-identified θi:

p(θi |y, s) =

∫
p(θi,ψ |y, s)dψ

=

∫
p(θi |ψ,y, s)p(ψ |y, s)dψ.(7)

In the last equation, the rightmost density is simply the posterior for the identifiable parameters.

The leftmost density in the integrand, p(θi|ψ,y, s), with a little work, can be shown to equal the

conditional prior p(θi|ψ). To see this, note:

p(θi |ψ,y, s) =
p(y, s | θi,ψ)p(ψ, θi)

p(ψ,y, s)
(8)

=
p(y, s |ψ)p(ψ, θi)

p(y, s |ψ)p(ψ)

=
p(ψ, θi)

p(ψ)

= p(θi |ψ),

where the second step follows since the data density does not depend on θ given ψ. Substituting

this into (7), we obtain:

(9) p(θi |y, s) =

∫
p(θi |ψ)p(ψ |y, s)dψ,

which simply shows that the posterior density of interest is the posterior expectation of the

conditional prior. The result in (9) echoes the general conclusions of Poirier (1998) and Moon

and Schorfheide (2011), who argue that, conditionally, no updating of the structural parameter

of interest will take place. Moon and Schorfheide (2011) also demonstate that, asymptotically,

the marginal posterior for θi in (9) will equal the conditional prior evaluated at the MLE.

3.1. Issues Surrounding Posterior Computation. Objects of interest like (9) can be cal-

culated in a variety of ways. First, and most naturally, one can simply fit the model in the

θ-parameterization using Gibbs sampling or, if priors like those in equations (3)-(6) are em-

ployed, Gibbs/ Metropolis Hastings, and directly use the post-convergence simulations for the θi

to calculate posterior statistics of interest. We suspect that this would be the prevailing approach

in the applied literature.

Although this approach is quite natural, a problem with its use is that simulations of the

non-identified elements of θi often prove to be highly autocorrelated, rendering such “direct”

estimates of posterior means and standard deviations unreliable. Furthermore, the severity of
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autocorrelation among the non-identified simulations increases with the degree of uncertainty

surrounding the validity of the instruments. We will document this issue in the following section.

While posterior simulations for the non-identified components of θ can mix very poorly, the

identified parameters ψ usually enjoy very good mixing properties. This suggests the potential

for significant improvement in performance provided the identified simulations can somehow be

used for posterior computation purposes in place of the non-identified simulations.

We take advantage of this insight and introduce a second method for calculating posterior

statistics and densities of the non-identified elements of θ. Equation (9) reveals that the poste-

rior simulations associated with the identified parameter vector ψ can be used to calculate the

desired marginal posterior distribution, provided the conditional prior p(θi|ψ) is known or easily

sampled. In what follows, then, we describe a scheme for calculating this conditional prior and

thus offer a “semi-analytic” scheme for calculating the marginal posterior p(θi|y, s). Specifically,

we will compute the one-dimensional density p(θi |ψ) on a grid. From (9), we can then average

these densities over a sufficiently large number of posterior draws from p(ψ |y, s) to approximate

p(θi |y, s) arbitrarily well.

To operationalize this semi-analytic strategy, we first need to characterize the conditional prior

p(θi|ψ). To this end, suppose the prior p(θ) for the structural parameters is given and, to fix

ideas, suppose we wish to derive the marginal posterior distribution of the causal effect parameter

p(γ |y, s). In this regard, let us consider the transformation gγ : θ 7→ ψγ:



γ

σ2
v

β0

β1

β2

α0

α1

α2

ρuv

σ2
u



7→



γ

σ2
v

β0

β1

β2

ga0(θ)

ga1(θ)

ga2(θ)

gb(θ)

gc2(θ)



≡ ψγ,
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where

ga0(θ) = α0 −
ρuvσu
σv

β0, ga1(θ) = α1 −
ρuvσu
σv

β1, ga2(θ) = α2 −
ρuvσu
σv

β2,

gb(θ) = γ +
ρuvσu
σv

, and gc2(θ) = (1− ρ2uv)σ2
u.

It is easy to show that the inverse of the transformation g−1γ : ψγ 7→ θ is given by



γ

σ2
v

β0

β1

β2

a0

a1

a2

b

c2



7→



γ

σ2
v

β0

β1

β2

g−1α0
(ψγ)

g−1α1
(ψγ)

g−1α2
(ψγ)

g−1ρuv(ψγ)

g−1σ2
u

(ψγ)



,

where

α0 = g−1α0
(ψγ) = a0 + (b− γ)β0,

α1 = g−1α1
(ψγ) = a1 + (b− γ)β1,

α2 = gα2(ψγ) = a2 + (b− γ)β2

ρuv = g−1ρuv(ψγ)
(b− γ)σv√

c2 + (b− γ)2σ2
v

,

σ2
u = g−1σ2

u
(ψγ) = c2 + (b− γ)2σ2

v .
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Let J(ψγ) be the Jacobian matrix associated with the transformation from θ to ψγ :

J(ψγ) =

(
∂θi
∂ψγ,j

)
=

 J11
ψγ

J12
ψγ

J21
ψγ

J22
ψγ



=



1 0 0 0 01×kx 0 0 01×kx 0 0

0 1 0 0 01×kx 0 0 01×kx 0 0

0 0 1 0 01×kx 0 0 01×kx 0 0

0 0 0 1 01×kx 0 0 01×kx 0 0

0kx×1 0kx×1 0kx×1 0kx×1 Ikx 0kx×1 0kx×1 0kx×kx 0kx×1 0kx×1

−β0 0 −γ 0 01×kx 1 0 01×kx β0 0

−β1 0 0 −γ 01×kx 0 1 01×kx β1 0

β2 0kx×1 0kx×1 0kx×1 γIkx 0kx×1 0kx×1 Ikx β2 0kx×1
∂ρuv
∂γ

∂ρuv
∂σ2
u

0 0 01×kx 0 0 01×kx
∂ρuv
∂b

∂ρuv
∂c2

−2(b− γ)σ2
v (b− γ)2 0 0 01×kx 0 0 01×kx

∂σ2
u

∂b
1



.

Since

det[J(ψγ)] = det[J11
ψγ

]det[J22
ψγ
− J21

ψγ
(J22

ψγ
)−1J12

ψγ
] = det[J22

ψγ
],

and applying this result again to the lower (2,2) block, it follows that the Jacobian term is

surprisingly simple:

|detJ(ψγ)| =
∣∣∣∣∂ρuv∂b

− ∂ρuv
∂c2

∂σ2
u

∂b

∣∣∣∣
=

σv√
c2 + (b− γ)2σ2

v

.

With the Jacobian and inverse transformations in place, the conditional prior density can be

calculated up to proportionality:

(10) p(γ |ψ) ∝ p(γ,ψ) = p(ψγ) = |detJ(ψγ)|p(g−1γ (ψγ)),

where all terms on the rightmost side of this equation can be evaluated given ψγ = (ψ, γ).

Equation (10) provides the foundation for a general procedure for calculating marginal poste-

riors and their associated statistics. The specific form of (10), of course, depends on the form of

the prior p(θ). Below, we consider results based upon the prior in (3) as well as widely-employed
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priors for the remaining model parameters:

γ ∼ N(µ
γ
, V γ)

σ2
v ∼ IG(s1v, s2v)

σ2
u ∼ IG(s1u, s2u)

β ≡ [β0 β1 β
′
2]
′ ∼ N(µ

β
,V β)

α0 ∼ N(µ
α0
, V α0

)

α2 ∼ N(µ
α2
,V α2

)

ρuv ∼ TN(ρ
l
,ρ
u
)(µρ, V ρ)

α1|γ, β1 ∼ TN(−|γβ1|,|γβ1|)(µα1
, V α1

).

From (10), we are then able to obtain our conditional prior up to proportionality:8

p(γ|ψ) ∝

(
σv√

c2 + (b− γ)2σ2
v

)
[c2 + (b− γ)2σ2

v ]
−(s1u+1)

[
Φ

(
|γβ1| − µα1√

V α1

)
− Φ

(
−|γβ1| − µα1√

V α1

)]−1

exp

−1

2

([γ − µ
γ√

V γ

]2
+

[
a0 + (b− γ)β0 − µα0√

V α0

]2
+

[
a1 + (b− γ)β1 − µα1√

V α1

]2
+

2[s−12u (c2 + (b− γ)2σ2
v)]
−1 + [a2 + (b− γ)β2 − µα2

]′V −1α2
[a2 + (b− γ)β2 − µα2

]+ (b− γ)σv√
V ρ[c

2 + (b− γ)2σ2
v ]
−

µ
ρ√
V ρ

2) I (|a1 + (b− γ)β1| < |γβ1|)

I

(
ρ
l
6

(b− γ)σv√
c2 + (b− γ)2σ2

v

6 ρ
u

)
,

where, consistent with (3), we anticipate choosing µ
α1

= 0.

Of course, other choices for p(θ) will lead to different conditional priors p(γ|ψ), although the

general procedure for its calculation will remain the same: For a given ψ ∼ p(ψ|y, s), we calculate

p(γ|ψ) via a change of variables up to proportionality over a fine, discrete grid of γ values. The

resulting collection of ordinates is then normalized to obtain a proper discrete conditional prior

8This can be simplified further; we present it in this way as it is the direct result of applying (10), given the

Jacobian and inverse mappings.
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density. Following (9), this process is repeated for all ψ post-convergence simulations, producing

a collection of conditional prior densities. These are then averaged to numerically approximate

the marginal posterior. Posterior means, standard deviations and other statistics can also be

easily calculated from this approach.

Calculations for the remaining non-identified elements of θ other than the causal effect γ follow

a similar procedure to what we have just described. Each new parameter θi 6= γ requires us to go

through a similar change of variables exercise, and we provide these details for all non-identified

parameters in the appendix.9 Similar derivations can also be performed when priors like those

in (4) or (5) are employed; we do not present these here in the interest of brevity, although such

results are available upon request.

3.2. Prior Sensitivity and Other Computational Possibilities. We close with a few obser-

vations regarding this method. First, the sensitivity of posterior results to changes in the prior

can be approximately investigated in sufficiently large samples by simply changing the hyperpa-

rameters in p(θi|ψ) and repeating the previous process. That is, if the sample size is large enough,

and the implied priors on ψ are sufficiently dispersed, we would not expect p(ψ|y, s) to change

significantly under the new prior, whereas p(θi|ψ) will certainly be affected. So, at least as a

quick approximation, the researcher could assess the influence of the prior on posterior results

without having to refit the model under each new prior under consideration, and can instead

simply follow the procedure just outlined with the same set of ψ values but with updated defi-

nitions of the prior hyperparameters. This is decidedly not the case if one simply fits the model

in the θ-parameterization and uses the θi simulations to calculate quantiles of interest; in this

case, the model should be refit under each new prior, or some alternate approach must be used

to investigate prior sensitivity.

Second, there seems to be the potential for a variety of “intermediate” solutions which neither

use the θ simulations directly nor need to analytically characterize the conditional prior.10 To

see this, consider calculation of

(11) E(θi|y, s) = Eψ|y,s [E(θi|ψ)] .

9A reparameterization is required in order to apply this technique to calculate statistics associated with the

variance parameter σ2
u. These details are contained in the appendix.

10We can imagine, in more elaborate models, where it will be quite difficult to determine the Jacobian term.

In these cases, the semi-analytic methods like we have described here would be difficult to apply.
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Upon fitting the model, a set of posterior simulations for ψ are produced. Numerically calculat-

ing (11) based on these simulations then requires evaluation of the conditional prior expectation.

One could approximate the conditional expectation E(θi|ψ = ψ(m)) a number of ways, per-

haps using kernel methods, given a set of simulations from the joint prior. Specifically, note

p(θ,ψ) = p(ψ|θ)p(θ) = 1l[ψ = g(θ)]p(θ). Thus, a draw from the joint prior can be obtained

by first sampling θ(j) from p(θ) and then calculating ψ(j) = g(θ(j)). Given (a very large) J such

simulations, we can calculate:

µ̂m = ̂E(θi|ψ = ψ(m)) =

∑J
j=1 θ

(j)
i K

[
(ψ(j) −ψ(m))′Σ̂−1(ψ(j) −ψ(m))

]
∑J

j=1K
[
(ψ(j) −ψ(m))′Σ̂−1(ψ(j) −ψ(m))

]
for a given ψ(m) ∼ p(ψ|y, s). In the above, ψ(m) denotes the mth post-convergence simulation of

the identified parameter vector, K denotes a kernel function and Σ̂ denotes an estimate of the

posterior covariance matrix of ψ. The posterior mean can then be estimated as:

̂E(θi|y, s) =
1

M

M∑
m=1

µ̂m.

This approach has the potential to be advantageous in that it requires very little in terms of

inputs: a set of simulations of the identified parameters ψ from the joint posterior and a series

of draws from the joint prior. These are easily obtained. In addition, it exploits the result

that the conditional posterior is simply the conditional prior, and uses (iid) simulations from the

prior while avoiding use of the poorly mixing θ posterior simulations in the calculation. In high

dimensional situations, however, the usual dimensionality concerns will apply and will mitigate

the potential benefits of this method. We do not explore the possibility of using this approach

in the present paper, given that we were able to derive the conditional prior analytically. In the

following section, we illustrate the efficiency gains associated with calculating posterior moments

using our semi-analytic method, while documenting the potential for considerable inaccuracy

when directly making use of the θ posterior draws.

4. Illustrative Application

In our illustrative application we reconsider the results of Kline and Tobias (2008). These

authors were interested in estimating the causal effect of BMI (Body Mass Index) on earnings, a

question which has received considerable attention in the labor economics literature [e.g., Cawley

(2004)].
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Kline and Tobias (2008), using data from the British Cohort Study, employed maternal and

paternal BMI as instruments for the respondent’s BMI in the log wage outcome equation. The

argument behind their choice was that parental BMI surely correlates with child BMI, yet con-

ditioned upon the BMI of the employee (child), parental BMI plays no direct role in his / her

earnings production. While there has been a precedent for such instruments in the literature

(as Cawley (2004), for example, employs sibling BMI as an instrument), and a variety of other

controls were employed to bolter the case for the validity of the instruments, it remains entirely

possible that unobserved family background characteristics may simultaneously correlate with

child BMI and child wages, undermining the validity of the instrumental variable strategy. With

this possibility in mind, we reanalyze their data for a subsample of females, which contained

n = 1, 782 observations.

Before discussing posterior results from this data, and then documenting sensitivity of those

results to the prior, we first illustrate differences in the mixing properties of the identified and

non-identified posterior simulations. These results are obtained upon using priors like those in

Conley et al. which specify α1i
iid∼ N(0, .052), i = 1, 2. 11 We thus begin by choosing priors for the

“direct” parental BMI effects that are quite spread out, though regarding it very unlikely that a

one unit increase in parental BMI could raise or lower hourly wages by, say, more than 10 percent.

We choose this rather dispersed prior as a starting point to starkly illustrate the potential for

estimation inaccuracy when using standard Gibbs with such weak prior information. Priors for

the remaining parameters of the model are less critical, but for the intercepts of each equation we

specify α0, β0 ∼ N(0, 5), all other remaining slope coefficients are assigned independent N(0, 1)

priors and Σ ∼ IW (4, I2). Unless otherwise noted, the priors just listed are used in all of the

calculations contained in this section.

[Figure 1 about here.]

[Figure 2 about here.]

Figure 1 presents lagged autocorrelations for a selection of non-identified parameters. These

include the causal effect parameter γ, the error correlation ρuv as well as the coefficients on the

instrumental variables α11 and α12. As the figure clearly reveals, the mixing of these simulations

is very poor: even if we were to use every 1, 000th iteration from the sampler, the autocorrelation

between those draws would be in excess of .8. This suggests that simply fitting the model in the θ

parameterization, and directly using the simulations that are produced from the sampler will yield

11In this application we have two potential instruments (both maternal and paternal BMI).
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very unreliable estimates of posterior moments. This is particularly true given conventions that

are sometimes followed in applied work, where 50,000 or 100,000 simulations are often believed to

be sufficient to safeguard the researcher from most simulation-related problems. This is decidedly

not the case in this particular model once we depart from point identification.12

In contrast to Figure 1, Figure 2 plots lagged autocorrelations for four identifiable parameters:

a1, a2, b and c2.13As can be seen from this figure, the lag-1 autocorrelations are essentially zero

and mimic what we would observe in an iid sample. This figure reveals great promise for our

proposed approach to posterior calculation: the identifiable parameters mix essentially as an iid

sample, and these are the only simulations that we will use to calculate posterior moments for

the non-identified parameters. In fact, in the spirit of Rao-Blackwell (since we use the form of

the conditional prior to calculate the marginal posterior), we expect that estimates obtained from

our method will be as good as, if not better than, those we would obtain from an iid sample of

equal size.

Table 1 presents results of an experiment of sorts using the actual Kline and Tobias data. We

perform this experiment as follows. We first fit the model using a standard two-block Gibbs

sampler14 and obtain one million post-convergence simulations. We then use these simulations

to calculate values of the identified quantities ψ for each post-convergence iteration. Finally, we

employ our semi-analytic method to calculate posterior moments of all the parameters and treat

these estimates as if they were the exact posterior means.

Given these posterior moments, we ask the following question: how many post-convergence

simulations would be required in order to achieve a NSE that is less than one percent of that mean?

We ask this question of both our semi-analytic method as well as the “standard” Gibbs method

that uses the θi simulations directly when calculating the first moment. The choice of one percent

is a rather exacting standard, but seems reasonable given that posterior moment estimation

uncertainty is often ignored in applied work (and thus one would hope that the estimated mean

12Kraay (2012) makes an important related point, noting that posterior standard deviations for parameters like

the causal effect are strongly affected by even moderate degrees of prior uncertainty regarding the validity of the

instruments. This increase, of course, also contributes to an increase in NSE’s for estimated moments.
13Recall, from section 2, their definitions: a1 ≡ α1 − ρuvσu

σv
β1, a2 ≡ α2 − ρuvσu

σv
β2, b ≡ γ + ρuvσu

σv
, c2 ≡

(1− ρ2uv)σ2
u,.

14We can use standard Gibbs when a prior like α1 ∼ N(0, Vα) is employed; otherwise we employ a Gibbs /

Metropolis-Hastings scheme for posterior simulation. Details associated with model fitting are not central to this

paper, but are available upon request.
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is quite close to the actual posterior mean), and simply offers a reasonable metric that can be

used for comparison purposes.

As shown in Table 1, for example, we would require approximately 3.4 billion simulations to

achieve this level of precision for the causal effect parameter γ using the Gibbs output directly!

Our method, however, can achieve this level of precision in a manageable 146,000 simulations.

Coefficients on the endogenous variable BMI, the potential instruments (MomBMI, DadBMI)

and the error correlation ρuv are, not surprisingly, the most problematic of the non-identified

parameters in terms of accurately calculating their posterior means.

The fourth column of the table also offers a measure of the computation time required to

achieve this level of numerical accuracy. These times are calculated when assuming that it takes

1 second to obtain 100 post-convergence simulations in the Gibbs sampler15 and then determining

how long it would take to achieve this level of precision.

It is also important to note that for these non-identified parameters, the posterior standard

deviation does not decline to zero as the sample size increases. In fact, in sufficiently large

samples, the marginal posteriors will behave as the conditional priors (evaluated at the MLE).

For the causal effect BMI coefficient, for example, we calculate a posterior standard deviation of

.08. This suggests that, under iid sampling, one million posterior simulations would be needed

to achieve this level of precision. Our method, by exploiting the known conditional density in a

Rao-Blackwell sense, even offers a significant improvement over this gold standard.

A lesson here, however, is that regardless of the method employed, accurate estimates of the

posterior moments will require a large number of simulations, significantly larger than the num-

bers that we might see in treatment-response modeling of this sort. The partial identification

of the model conspires to slow down mixing, and marginal posteriors for the non-identified pa-

rameters do not collapse, again leading to increased numerical uncertainty in the estimation of

posterior moments. Our semi-analytic method significantly lessens these computational demands

and mitigates the potential for inaccuracy, although it is still prudent to generate a large number

of posterior simulations of ψ.

15This was roughly consistent with our own experience on our own PCs. Admittedly, this performance will vary

widely across machines and over time as computing power increases, but we regard it as useful benchmark simply

for illustration purposes. The calculations are also biased in our favor since our semi-analytic method requires

evaluation of the conditional prior over a grid for each post-convergence simulation. The extra time required to

do this, however, is mostly negligible and does not in any way alter the conclusions drawn from the table.
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[Table 1 about here.]

In Table 2 we repeat the analysis of Table 1 after strengthening the prior by choosing α1i
iid∼

N(0, .012), i = 1, 2. This, to us, seems to be a reasonable prior to adopt: we center the direct

effects of the instruments over zero and regard it as unlikely that a one point in parental BMI will

directly increase or decrease child earnings by more that 2 percent, given the set of controls that

we employ (which include the BMI of the respondent). As we see from the table, the increased

prior information improves the performances of both the standard method and our semi-analytic

approach. The few cases for which the required number of iterations are observed to increase

in Table 2 (relative to Table 1) under this tighter prior are those for which the posterior means

have become closer to zero, thus requiring a higher precision standard for the entries in this

second table. 16 This improvement in performance is, of course, sensible, since the tighter prior

leads us closer to a point identified model. However, even in this case with a reasonably strong

prior, simply averaging the Gibbs simulations still proves to be potentially problematic. For the

causal effect coefficient, coefficients associated with the parental BMI instruments and the error

correlation, we would still require many millions of simulations in order to achieve the set level of

accuracy. On the other hand, our semi-analytic approach can accomplish the same goal within a

few hundred thousand iterations, and within one hour of computation time.

[Table 2 about here.]

4.1. Posterior Results and Prior Sensitivity. As we reanalyze the data of Kline and Tobias

(2008) in further detail, we proceed as follows. We first obtain results, reported in Table 3,

under the conventional assumption employed by Kline and Tobias (2008), that the instruments

are completely excludable. We will then relax this assumption using our methods and thereby

investigate the sensitivity of results to the imposition of this dogmatic prior belief.

Our results under the dogmatic prior (based on 45,000 post-convergence simulations) mimic

those reported in Kline and Tobias (2008), essentially replicating their results.17 We and they

find a clearly negative impact of BMI on earnings (in our analysis, a one point increase in BMI

16Said differently, had the posterior means in Table 2 remained constant, the required number of iterations

would have decreased for all model parameters.
17Posterior means and standard deviations are quite close to those reported in Table II of Kline and Tobias

(2008), although not identical. These authors, however, used a skew-t model for the wage equation, and treated

the BMI-earnings relationship nonparametrically. These specification differences likely account for the slight

discrepancy in posterior results.
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lowers expected wages by approximately 1.8 percent on average, with Pr(γ < 0|y, s) ≈ .99, and

endogeneity is important in the sense that Pr(ρuv > 0|y, s) ≈ .98. Kine and Tobias (2008) also

separately examined the BMI-log wage relationships by BMI category (normal weight, overweight

and obese) and obtained, for example, an average BMI penalty of 1.6 percent over the normal

weight range. This, again, is broadly consistent with our results.

[Table 3 about here.]

4.2. Truncated Normal Priors for the IVs. We now seek to determine the sensitivity of

posterior results in Table 3 to prior information concerning the excludability of the instruments.

To this end, following (3), we begin by considering a variety of priors that formally impose the

ordering of direct and indirect effects and some that truncate the support of the error correlation

ρuv. The variants of (3) and (6) we consider are the following four:

• P1 : α1i | γ, β1i ∼ TN(−|γβ1i|,|γβ1i|)(0, .0082), i = 1, 2, and ρuv ∼ TNI(−1<ρuv<1)(0, .2
2)

• P2 : α1i | γ, β1i ∼ TN(−|γβ1i|,|γβ1i|)(0, 1), i = 1, 2, and ρuv ∼ TNI(−1<ρuv<1)(0, .2
2);

• P3 : α1i | γ, β1i ∼ TN(−|γβ1i|,|γβ1i|)(0, 1), i = 1, 2, and ρuv ∼ TNI(−1<ρuv<1)(0, .5
2);

• P4 : α1i | γ, β1i ∼ TN(−|γβ1i|,|γβ1i|)(0, 1), i = 1, 2, and ρuv ∼ TNI(−.5<ρuv<.5)N(0, .52).

[Figure 3 about here.]

Marginal posteriors for the causal effect parameter, γ under these four different priors are

reported in Figure 3. Prior P1, in the absence of the ordering restriction, puts a small prior

standard deviation of .008 on the direct IV effects, suggesting it would be unlikely that a one

point increase in parental BMI will directly increase/deacrease child earnings by more than 1.6

percent. In addition, this prior also asserts that the error correlation is likely to be modest in

value, placing approximately 95 percent of its prior mass over (-.4,.4). As we move from P2 to P1,

we visualize the change in the causal effect posterior as a result of tightening this (untruncated)

variance parameter from 1 to .0082. We find that the posterior under P2 is slightly more spread

out than that under P1, but not dramatically so, as most of the information contained in the

posterior is coming through the ordering restriction itself. P3 might be interpreted as saying

very little a priori, apart from simply ordering the direct and indirect effects. With the adoption

of this relatively weak prior information, the posterior spreads out over a much wider range and

places much more mass over large negative values, clearly illustrating the impact of the prior

on posterior results. Analysis of results under P4 then reveals how much is learned relative to

P3 when restricting the error correlation to lie in the interval (−.5, .5). As the figure shows,

this truncation of the error correlation results in a substantial tightening of the causal effect



22

posterior relative to that obtained under P3, and the posterior becomes flatter over the interval

(−.06,−.02). This suggests that priors truncating the error term can lead to much sharper

posteriors; in our view, ruling out very large values of the error correlation is sensible in this

application and may be sensible in many applications, given the large set of controls that are

commonly employed.

All of the marginal posteriors in Figure 3 place all their mass over negative values and no mass

over zero. As mentioned in section 2.1 and revealed in the conditional prior following equation

(10), this is a consequence of the ordering restriction in the prior. We thus consider results under a

variety of other priors to see if the finding of a negative impact of BMI on earnings is maintained.

First, Table 4 reports parameter posterior means and related features when adopting priors

similar to those in Conley et al (2012). Specifically, we obtain results when assuming α1i
iid∼

N(0, .0082), and keeping the remaining priors like those used in the experiments at the beginning

of this section. Here, we find several interesting results. First, point estimates of parameters in

the BMI equation in Table 4 have not significantly changed relative to those reported in Table 3,

which is to be expected given that these parameters are identifiable and thus minimally influenced

by the change in prior. Second, despite the fact that our prior for the causal effect parameter

is symmetric and centered over zero, the posterior shifts to place most of its mass over negative

values, with Pr(γ < 0|y, s) ≈ .85. Thus, we would continue to argue that BMI has a negative

impact on female earnings, even when allowing for this uncertainty over instrument validity and

not taking a stand a priori on the sign of the causal impact. In terms of point estimates, the

posterior mean for the causal effect under this prior (-.0169) is quite similar to that obtained

when the IVs are assumed to be perfectly excludable (-.018) although the posterior standard

deviation for this parameter has more than tripled relative to that reported in Table 3. This loss

in precision is to be expected as a natural consequence of the reduced prior information and the

ensuing partial identification of the model.

[Table 4 about here.]

Tables 5 and 6 provide results under priors like those in equations (4) and (5), respectively. In

Table 5, we report results under the priors:

α1i|γ∗, β1i
iid∼ TN(−|γ∗β1i|,|γ∗β1i|)(0, .0082), i = 1, 2

where we choose γ∗ = −.025. As discussed in section 2, one possible way of eliciting the value of

γ∗ is to think about something akin to a maximal causal effect, so that the resulting prior can
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be interpreted as approximately restricting the range of the direct IV impacts α1i to be smaller

than the maximum value of the indirect effect. The identifiable parameter β1 is introduced into

the prior to think about things in this way, and thereby to aid in eliciting hyperparameters of the

prior. As shown in Table 5, results here are again very similar to those obtained previously, with

a causal effect posterior mean equal to -.0173. In addition, this prior leads to a tighter posterior

distribution for the causal effect parameter (relative to Table 4) as Pr(γ < 0|y, s) ≈ .93.

[Table 5 about here.]

Table 6 considers the hierarchical prior specification

α1i|γ∗, β1i
iid∼ TN(−|γ∗β1i|,|γ∗β1i|)(0, .0082), with γ∗ ∼ TN(0,.05)(.025, .012).

Results under this prior are, again, very close to those reported in Table 5 and similar to those

obtained under complete excludability.

[Table 6 about here.]

These results of this reexamination clearly indicate that priors will matter in terms of the

causal effect posterior distributions. This is necessarily the case, given the partial identification

of the model when non-dogmatic priors are employed. What we argue here is that it seems

desirable to provide a menu of posterior results in these types of analyses which correspond to the

adoption of different types of prior information. The viewpoint that the instruments are perfectly

excludable simply represents a single item on this menu - an item that may be unpalatable

to some. When assigning reasonable limits on the likely extent of instrument imperfection, or

formally / approximately ordering the direct and indirect effects, our results continue to provide

evidence of a negative impact of BMI on female earnings. Finally, our semi-analytic approach

enables us to calculate these effects from the partially identified model reasonably quickly and

reliably.

5. Conclusion

In the context of the triangular linear SEM, we have considered the issue of instrument imper-

fection. Instead of imposing that the instruments are excludable, we, like others have recently

done in the literature, introduced a prior that allows the instruments to directly influence the

outcome, but impose that this effect must be small. Our notion of “small” here is primarily

a relative one, as our prior imposes the belief that the direct effect of the instrument must be
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smaller than the indirect effect of the instrument through its intermediate relationship with the

endogenous variable.

In addition to introducing and motivating this prior, we also documented issues surround-

ing posterior computation. Specifically, we showed that the non-identified simulations mix very

poorly, and as a consequence, posterior statistics based on direct use of those simulations can

prove unreliable. As an alternative, we derived a semi-analytic approach that characterized the

conditional priors analytically and used these results in conjunction with the well-mixing identified

posterior simulations to perform the calculations.

Finally, we illustrated our methods in studying the effect of BMI on earnings, using the data

set employed by Kline and Tobias (2008). We approximately replicated their results when ex-

cludability is assumed, and obtained a set of new results when that viewpoint is relaxed. The

different priors employed all seemed to point toward the same conclusion that BMI had a negative

impact on female earnings.

We hope the general idea of providing a range of posterior results under different types of prior

beliefs continues to become more popular in these types of studies. In addition, we plan to continue

working on different types of models, such as nonlinear ones, where the semi-analytic scheme can

be applied, as well as thinking about alternate numerical strategies, as briefly mentioned in the

paper, when the analytic derivations are difficult to come by or simply not available.
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6. Appendix

Section 3 presents a method for calculating (up to proportionality) the conditional prior p(γ|ψ),

and describes the results of this calculation in detail. This approach can be applied to all non-

identified parameters, and marginal posterior statistics for each of these can be obtained from

this more efficient procedure. Doing so requires repeating the change of variables for each new

parameter under consideration, deriving the inverse transformations and the associated Jacobians

of the transformations. We list key results for those exercises below. We, again, assume that the

prior in (3) has been adopted, although we have derived similar results for the priors in (4) and

(5).

6.1. p(αi|ψ):

With a slight abuse of notation, we consider here derivation of a conditional prior of the form

p(αi|ψ). Although α2 is a vector, the result given here applies to any specific element of α2,

or directly to either the intercept α0 or the instrumental variable coefficient α1. Thus, when we

index the parameters by i, we mean i ∈ {0, 1} or that i simply indexes the individual elements of

α2.

Here, we consider the transformation from θ = [αi σ
2
v β0 β1 β2 α−i γ σ

2
u] toψαi

= [αi σ
2
v β0 β1 β2 a−i b c

2],

with x−i denoting all elements of x other than the ith. One can show, following the arguments

presented in section 3, that the non-trivial inverse transformations in this case are of the forms:

α−i = g−1α−i
(ψαi

) = a−i + β−iβ
−1
0 (αi − ai)

γ = g−1γ (ψαi
) = b− β−10 (αi − ai)

σ2
u = g−1σ2

u
(ψαi

) = c2 + σ2
vβ
−2
0 (αi − ai)2

ρuv = g−1ρ (ψαi
) =

σvβ
−1
0 (αi − ai)√

c2 + (αi − ai)2σ2
vβ
−2
0

This leads to the following Jacobian of the transformation:

σu|β−1i |
c2 + (αi − ai)2σ2

vβ
−2
i

and thus

p(αi|ψ) ∝ p(ψαi
) =

σv|β−1i |
c2 + (αi − ai)2σ2

vβ
−2
i

p[g−1αi (ψαi
)].

The methods discussed in section (3) can then be used to calculate marginal posterior statistics

for αi.
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6.2. p(ρuv|ψ). :

To derive the kernel of this conditional prior, we consider the transformation from θ =

[ρuv σ
2
v β0 β1 β2 α0 α1 α2 γ σ2

u] to ψρ = [ρuv σ
2
v β0 β1 β2 a0 a1 a2 b c

2] : In this case, the

non-trivial inverse mappings are of the forms:

α0 = g−1α0
(ψρ) = a0 + β0σ

−1
v

√
c2

1− ρ2uv

α1 = g−1α1
(ψρ) = a1 + β1σ

−1
v

√
c2

1− ρ2uv

α2 = g−1α2
(ψρ) = a2 + β2σ

−1
v

√
c2

1− ρ2uv

γ = g−1γ (ψρ) = b− σ−1v ρuv

√
c2

1− ρ2uv

σ2
u = g−1σ2

u
(ψρ) =

c2

1− ρ2uv

This leads to the following Jacobian of the transformation:

(1− ρ2uv)−1

and thus

p(ρuv|ψ) ∝ p(ψρ) = (1− ρ2uv)−1p[g−1ρ (ψρ)].

6.3. p(σ2
u|ψ):

Derivation of this conditional prior is slightly more complicated than the others considered thus

far. To establish this conditional prior up to proportionality, we choose to first reparameterize

ρuv as:

ρuv = sign(ρuv)|ρuv| ≡ ζφ,

so that ζ ∈ {−1, 1} and φ > 0. If we employ the following independent priors,

P(ζ = −1) = P(ζ = 1) = 0.5, φ ∼ TN(0,1)(0, V ρ).

then the induced prior on ρuv is

ρuv ∼ TN(−1,1)(0, V ρ),
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similar to the prior described in (4).18

Let θ̃ = (σ2
u, σ

2
v , β0, β1,β

′
2, α0, α1,α

′
2γ, φ)′ and write the prior in (ζ, θ̃) parameterization as

p(θ̃ | ζ)p(ζ).

Since

p(σ2
u |ψ) ∝ p(σ2

u,ψ) = 0.5p(σ2
u,ψ | ζ = −1) + 0.5p(σ2

u,ψ | ζ = 1),

it suffices to derive an expression to evaluate p(σ2
u,ψ | ζ). As will be shown below, conditioning on

ζ, the sign of ρuv, facilitates the change of variables exercise and motivates our reparameterization.

We consider the transformation gσ2
u

: θ̃ 7→ ψσ2
u

= [σ2
u σ

2
v β0 β1 β2 a0 a1 a2 b c

2] (throughout ζ

is fixed). The non-trivial inverse mappings are of the forms:

α0 = g−1α0
(ψσ2

u
) = a0 + ζ

√
σ2
u − c2
σ2
v

β0,

α1 = g−1α1
(ψσ2

u
) = a1 + ζ

√
σ2
u − c2
σ2
v

β1,

α2 = gα2(ψσ2
u
) = a2 + ζ

√
σ2
u − c2
σ2
v

β2,

γ = g−1γ (ψσ2
u
) = b− ζ

√
σ2
u − c2
σ2
v

,

φ = g−1φ (ψσ2
u
) =

√
1− c2

σ2
u

.

The Jacobian of this transformation can be shown to equal:

|detJ(ψσ2
u
)| =

∣∣∣∣ ∂φ∂c2
∣∣∣∣ =

1

2σu
√
σ2
u − c2

.

The conditional prior density can therefore be calculated up to proportionality:

p(σ2
u |ψ) ∝ p(σ2

u,ψ) = 0.5[p(σ2
u,ψ | ζ = −1) + p(σ2

u,ψ | ζ = 1)],

where

p(σ2
u,ψ | ζ) = |J(ψσ2

u
)|p(g−1σ2

u
(ψσ2

u
) | ζ).

18It is of course possible to construct in a similar way an induced prior of the form TN(ρ
l
,ρ

u
)(µρ, V ρ). We

consider the above prior for illustration purposes.
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30 Figures

Figure 1. Lagged Autocorrelations for a sample of Non-Identified Parameters.
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Figure 2. Lagged Autocorrelations for a sample of Identified Parameters.
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32 Figures

Figure 3. The marginal posterior densities p(γ |y, ) under various prior assump-
tions: P1 (left top), P2 (right top), P3 (left bottom) and P4 (right bottom).
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Table 1. Number of draws (in thousands) required to have the NSE less than one
percent of the posterior mean: α1i ∼ N(0, .052).

Wage Equation

Number of Iterations Computation Time
Parameter E(·|Data) Gibbs Semi-Analytic Gibbs Semi-Analytic
BMI .008 3,377,208 146 390 days 24 minutes
Constant 1.756 5,685 1.50 15.8 hours .25 minutes
MomBMI -.0092 363,582 8 42.1 days 1.2 minutes
DadBMI -.0073 317,180 24 36.7 days 4.0 minutes
FamilyIncome .0007 218 63 0.6 hours 10 minutes
HighSchool .062 5,659 14 15.7 hours 2.4 minutes
Alevel .266 899 1.92 2.5 hours .32 minutes
Degree .355 903 .58 2.5 hours .09 minutes
Union .031 6,852 38 19.0 hours 6.3 minutes
Married -.018 55,708 106 6.4 days 17 minutes

Other Parameters

Parameter E(·|Data) Gibbs Semi-Analytic Gibbs Semi-Analytic
ρuv -.097 965,848 5 112 days .90 minutes
σ2
u .225 12,293 .03 1.4 days .005 minutes
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Table 2. Number of draws (in thousands) required to have the NSE less than one
percent of the posterior mean: α1i ∼ N(0, .012).

Wage Equation

Number of Iterations Computation Time
Parameter E(·|Data) Gibbs Semi-Analytic Gibbs Semi-Analytic
BMI -.016 14,516 35 40.3 hours 5.8 minutes
Constant 1.965 27 .52 4.5 minutes .08 minutes
MomBMI -.0006 1,253,226 282 145 days 47 minutes
DadBMI -.0008 338,364 391 39.1 days 65 minutes
FamilyIncome .0007 4 3 0.6 minutes .58 minutes
HighSchool .070 72 4 12 minutes .65 minutes
Alevel .278 13 .39 2.1 minutes .06 minutes
Degree .339 18 .38 2.9 minutes .06 minutes
Union .035 104 14 17 minutes 2.3 minutes
Married -.012 2,464 99 6.8 hours 17 minutes

Other Parameters

Parameter E(·|Data) Gibbs Semi-Analytic Gibbs Semi-Analytic
ρuv .092 47,041 130 5.4 days 22 minutes
σ2
u .133 52 0.06 8.6 minutes .01 minutes
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Table 3. Parameter posterior means, standard deviations and probabilities begin
positive. Exclusion restrictions imposed.

Wage Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 1.989 .1477 1.00
JobTenure .0212 .0075 .9978
JobTenure2 -.0009 .0006 .0487
Experience .0243 .0150 .9522
Experience2 -.001 .0008 .1103
FamilyIncome .0007 .0002 1.00
HighSchool .0707 .0226 .9992
ALevel .2798 .0346 1.00
Degree .3378 .0309 1.00
Union .0357 .0194 .9675
Married -.0111 .0179 .2642
MomDegree .0629 .0500 .8983
MomManProf -.0062 .0253 .4027
DadDegree -.0074 .0278 .3908
DadManProf .0566 .0222 .9948
BMI -.0182 .0051 .0003

BMI Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 8.616 .9260 1.00
FamilyIncome .0007 .0016 .6658
HighSchool .3188 .2373 .9006
ALevel .5212 .3509 .9378
Degree -.7041 .2714 .0060
Union .1683 .2078 .8026
Married .2758 .1953 .9295
MomBMI .3648 .0260 1.00
DadBMI .2709 .0315 1.00

Other Parameters

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
ρuv .1234 .0602 .9780
σ2
u .1270 .0047 1.00
σ2
v 16.10 .5413 1.00
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Table 4. Parameter posterior means, standard deviations and probabilities of

being positive, α1i
iid∼ N(0, .0082), i = 1, 2.

Wage Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 1.972 .2136 1.00
MomBMI -.0004 .0064 .4948
DadBMI -.0006 .0051 .4613
JobTenure .0212 .0075 .9974
JobTenure2 -.0009 .0006 .0507
Experience .0244 .0150 .9487
Experience2 -.0010 .0008 .1097
FamilyIncome .0007 .0002 1.00
HighSchool .0701 .0233 .9990
ALevel .2789 .0361 1.00
Degree .3387 .0337 1.00
Union .0353 .0199 .9624
Married -.0114 0.0186 .2776
MomDegree .0629 .0498 .8956
MomManProf -.0062 .0254 .4030
DadDegree -.0080 .0277 .3858
DadManProf .0566 .0222 .9949
BMI -.0169 .0180 .1521

BMI Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 8.638 .9279 1.00
FamilyIncome .0007 .0016 .6722
HighSchool .3067 .2377 .9026
ALevel .5192 .3521 .9292
Degree -.7045 .2717 .0050
Union .1691 .2043 .7956
Married .2760 .1919 .9242
MomBMI .3649 .0262 1.00
DadBMI .2703 .0317 1.00

Other Parameters

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
ρuv .1032 .1913 .7260
σ2
u .1309 .0096 1.00
σ2
v 16.085 0.5425 1.00
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Table 5. Parameter posterior means, standard deviations and probabilities of

begin positive: α1i|β1i, γ∗
iid∼ TN(−|γ∗β1i|,|γ∗β1i|)(0, .0082), i = 1, 2, with γ∗ = −.025.

Wage Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 1.978 0.1755 1.00
MomBMI -0.0002 0.0043 0.4781
DadBMI -0.0005 0.0034 0.4416
JobTenure 0.0212 0.0076 0.9975
JobTenure2 -0.0009 0.0006 0.0509
Experience 0.0245 0.0150 0.9505
Experience2 -0.0010 0.0008 0.1095
FamilyIncome 0.0007 0.0002 1.00
HighSchool 0.0703 0.0229 0.9990
ALevel 0.2792 0.0353 1.00
Degree 0.3382 0.0321 1.00
Union 0.0352 0.0195 0.9628
Married -0.0115 0.0179 0.2603
MomDegree 0.0634 0.0499 0.8984
MomManProf -0.0062 0.0254 0.4061
DadDegree -0.0078 0.0278 0.3895
DadManProf 0.0569 0.0222 0.9947
BMI -0.0173 0.0118 0.0689

BMI Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 8.590 0.9123 1.00
FamilyIncome 0.0007 0.0015 0.6707
HighSchool 0.3057 0.2367 0.9025
ALevel 0.5234 0.3500 0.9341
Degree -0.7022 0.2742 0.0047
Union 0.1682 0.2071 0.7920
Married 0.2755 0.1922 0.9232
MomBMI 0.3653 0.0261 1.00
DadBMI 0.2718 0.0312 1.00

Other Parameters

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
ρuv 0.1111 0.1913 0.7770
σ2
u 0.1288 0.0085 1.00
σ2
v 16.089 0.5423 1.00
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Table 6. Parameter posterior means, standard deviations and probabili-

ties of being positive: α1i|γ∗, β1i
iid∼ TN(−|γ∗β1i|,|γ∗β1i|)(0, .0082), with γ∗ ∼

TN(,.05)(.025, .012).

Wage Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
Constant 1.983 0.1758 1.00
MomBMI -0.0001 0.0042 0.4921
DadBMI -0.0004 0.0032 0.4484
JobTenure 0.0213 0.0075 0.9976
JobTenure2 -0.0009 0.0006 0.0498
Experience 0.0242 0.0149 0.9471
Experience2 -0.0009 0.0008 0.1130
FamilyIncome 0.0007 0.0002 1.00
HighSchool 0.0705 0.0229 0.9991
ALevel 0.2801 0.0349 1.00
Degree 0.3381 0.0323 1.00
Union 0.0355 0.0196 0.9643
Married -0.0110 0.0180 0.2706
MomDegree 0.0634 0.0495 0.9002
MomManProf -0.0065 0.0255 0.4005
DadDegree -0.0078 0.0278 0.3902
DadManProf 0.0567 0.0221 0.9955
BMI -0.0178 0.0120 0.0677

BMI Equation

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)

Constant 8.599 0.9222 1.00
FamilyIncome 0.0007 0.0016 0.6702
HighSchool 0.3076 0.2384 0.9007
ALevel 0.5219 0.3491 0.9323
Degree -0.7048 0.2730 0.0053
Union 0.1678 0.2064 0.7903
Married 0.2770 0.1929 0.9240
MomBMI 0.3653 0.0261 1.00
DadBMI 0.2716 0.0311 1.00

Other Parameters

Variable E(· |y)
√

Var(· |y) P(· > 0 |y)
ρuv 0.1163 0.1272 0.8159
σ2
u 0.1289 0.0066 1.00
σ2
v 16.088 0.5416 1.00
c 0.0229 0.0096 1.00
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