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ABSTRACT. This paper proposes a decision theoretic method to choose a
single reserve price for partially identified auction models, such as [Haile
and Tamer, 2003], using data on transaction prices from English auctions.
The paper employs [Gilboa and Schmeidler, 1989] for inference that is ro-
bust with respect to the prior over unidentified parameters. It is optimal to
interpret the transaction price as the highest value, and maximize the pos-
terior mean of the seller’s revenue. The Monte Carlo study shows substan-

tial gains relative to the average revenues of the Haile and Tamer interval.

Keywords: optimal reserve price, statistical decision theory, partial identi-
fication, maxmin expected utility.
JEL classification: C11, C44, D44, E61

1. INTRODUCTION

This paper considers the problem of choosing a reserve price using a sam-
ple of transaction prices from English auctions with independent private
values (IPV). Under a weak behavioral assumption that the winner always
obtains a nonnegative surplus as in [Haile and Tamer, 2003] (HT), the pa-
per proposes a decision rule that selects a single reserve price following the
framework of [Gilboa and Schmeidler, 1989] (GS).

[Paarsch, 1997] employs the button auction model, which regards ob-
served bids as latent values, to point identify the valuation distribution and
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2 G. ARYAL AND D. KIM

then chooses a revenue maximizing reserve price (RMRP) implied by the es-
timated valuation distribution.’ Many English auctions, however, impose a
minimum bid increment, and often bidders raise the price by more than the
minimum bid increment (jump bidding), thereby invalidating this identify-
ing assumption.” As a result, using this assumption may lead to a severely
incorrect inference; see HT.

HT employs an incomplete model instead, only assuming that the bidders
neither overbid their values nor let the auction terminate at a price they can
profitably overbid. For this partially identified model, HT proposes a set
estimator for the RMRP (the HT interval). This approach is robust to any
misspecification of bidding behavior. But, the HT interval does not provide
a practical guidance for the seller to choose a single reserve price because
a significant fraction of the interval can be less profitable than zero reserve
price (34-52% ; Table 1).

To solve the seller’s problem, this paper, while using the incomplete model,
chooses a single reserve price employing the maxmin expected utility frame-
work of GS, thereby complementing HT. GS extends the classic expected
utility theory to allow the decision maker to have many equally reasonable
distributions over the random vector that affects the payoff. GS shows that
if he is uncertainty averse, he behaves as if he maximizes the lower envelop
of the equally reasonable expected utilities.” Maxmin criteria provides a ro-
bust framework to select an optimal policy for partially identified models;
see [Song, 2010; Kitagawa, 2010, 2011; Menzel, 2011] for recent applications.

To formulate the seller’s problem within this framework, the paper con-
siders the parameter vector that indexes the valuation distribution as the
random vector that affects the revenue. The paper then divides the param-
eters into two groups: identified and unidentified. The former indexes the
density of the transaction price and the latter captures any discrepancy be-

tween the densities of the transaction price and the highest values.* The

! Following the convention in the literature, the term ‘revenue’ refers to the seller’s
expected revenue where the expectation taken with respect to the values density.

2 There does not exist an equilibrium with jump bidding under assumptions reasonable
in many auction settings [Lellouche and Romm, 2009].

3Uncertainty aversion means a decision maker prefers known risks to unknown risks.

*Within the setting of [Paarsch, 1997], there would be no need for the second group as
the two densities would be the same.
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seller is assumed to have a unique prior distribution over the identified pa-
rameters, but many reasonable priors over the unidentified ones, where a
prior is said to be ‘reasonable’ if it does not contradict the only behavioral
assumption — the transaction price does not exceed the highest value. Al-
though each of these priors conveys different information about bidding
behavior, if the seller regards them as equally reasonable, then he should
maximize the lower envelop of posterior expectations of revenues.

This paper shows that the lower envelop is achieved by the prior equat-
ing the densities of the transaction price and the highest value. This follows
from observing that the transaction price distribution is first order stochas-
tically dominated by every highest valuation distribution that is supported
by at least one of the reasonable priors. The former then gives the greatest
lower bound for the stochastic dominance relation of the marginal distribu-
tions of independent value, providing the smallest revenue at every reserve
price. Therefore, the method interprets the transaction price as the highest
value and implements the classic expected utility framework. Furthermore,
the method remains optimal for correlated values under the assumption of
[Aradillas-Lopez, Gandhi, and Quint, 2011] that the sample of transaction
price identifies the distribution of the second highest values.

The next section describes the seller’s problem and section 3 develops
an optimal decision rule. Section 4 illustrates typical revenue gains over
average revenues of the HT interval via Monte Carlo experiments. Section

5 concludes and an appendix collects all computational details.

2. AUCTION MODELS

A single indivisible object is auctioned among m > 2 risk neutral bid-
ders in an English auction. Each bidder i observes only his values v; > 0.
Assume vy, ...,vy are drawn independently from an identical, absolutely
continuous distribution P, with density p,.> The auction starts at zero price
and at each time bidders raise the standing price 7 by at least A, the mini-

mum bid increment. Bidding more than 7 + A is known as jump bidding.

5Throughout the paper, the upper (lower) case letter denotes the cdf (pdf).
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When no bidder is willing to raise i further, the auction allocates the ob-
ject to the bidder who offers the final bid at the transaction price y := 7.

Following HT, this paper makes the assumption:
Assumption 1. (A-HT) The transaction price y < x := max{vy, ..., 0m}.

This assumption is weaker than the assumptions in HT, which also requires
that the bidders do not let their opponents win at a price they can over-
bid. The data zr available to the seller consists of i.i.d transaction prices
(y1,-..,yr) from past T auctions, each with m bidders.

Now, consider a seller with data zr who wishes to choose a reserve price
to maximize his revenue in a future auction. The future auction can take
any of the ‘standard” auctions where a bidder with zero value expects to
pay zero.® The valuation distribution remains unchanged and the seller’s
values for the object is zero. [Myerson, 1981; Riley and Samuelson, 1981]
show that the reserve price p that maximizes the revenue

u(Pyp) = [ max{o,e}aPI(€) o2 (p), )
solves the following first order necessary condition
1—Py(p)
= — @
b po(p)

Since the seller does not know P, he cannot use (2) to determine p. For this
problem, [Paarsch, 1997] proposes to estimate P, by treating the observed
bids as losers values in the button auction model, and use the point esti-
mates in (2) instead of P, (a.k.a. ‘plug-in’ method).” When A > 0 or there
is jump bidding, however, the assumption that bids equal values can be un-
reasonable. HT shows that this assumption can cause a significant bias in
the estimation of P, even for a correctly specified parametric model.

For this reason, HT only assumes that bidders do not overbid their value
and do not let the auction terminate at a price that they can profitably over-

bid. Then, HT partially identifies P, and constructs a set estimator for the

6 A standard auction is an auction where the highest bidder gets the object.

"When only transaction prices are observed, the button auction model identifies the
distribution of the second highest value, which is sufficient for identifying the valuation
distribution when values are i.i.d.
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RMRP. These set estimates are robust to any misspecification on bidding
behavior with jump bidding and A > 0.

The HT interval itself, however, does not completely solve the seller’s
problem. Moreover, the HT interval includes many reserve prices with rev-
enue lower than with zero reserve price. Table 1 shows that such reserve
prices are about 34% to 52% of the HT intervals, each of which is obtained
from bid samples of 200 auctions generated from a fixed data generating
processes (DGP), i.e., a combination of a valuation distribution in Figures 1
and 2 and m € {3,5} bidders.® In most cases, zero reserve price produces
substantially higher revenues than average revenues of the HT intervals,
see Table 2. This stems from the asymmetric shape of the revenue function.
The revenue gradually increases up to the RMRP, marked in the figures, but
it drops sharply thereafter, while the upper limit of the HT interval is much
higher than the RMRP.

What should then be the criteria to choose a single reserve price? The next

section proposes a solution.

3. I' MAXMIN SOLUTION

This section develops an optimal point decision rule for the seller. The
optimality is associated with the seller’s preference ordering. The paper

assumes that
Assumption 2. (A-GS) The seller satisfies the axioms (A.1-A.6) in GS.

(A-GS) coincides with assumptions in the classic expected utility theory, ex-
cept it allows the seller to weakly prefers any convex combination of indif-
ferent lotteries to each individual one instead of restricting the combination
to be indifferent— uncertainty aversion.”

This section develops the decision rule for auctions with the IPV and fur-
ther argues that the rule remains optimal even when values are correlated if

the distribution of the second highest value is identified.

8 Section 4 explains each DGP’s in detail.

9 One interpretation of this is that the decision maker prefers to secure himself against a
potential loss from a particular risky asset by spreading the risk over the indifferent assets
(as in a portfolio management).
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3.1. Independent Private Values: Let € © index the distribution of the
transaction price y, and h € ‘H capture any discrepancy between the distri-
butions of x and y. Since Py(x|6,h) = PJ'(x|6, h), the paper specifies the cdf
of y as

Py(yl0) := P (y16,0), )

to make them comparable.

The seller has only three sources of information: the data zr, (A-HT) and
his subjective beliefs about 0 represented by the prior py over ®. Consider,
however, a hypothetical situation in which he also has a conditional prior
pn(-|0) over H for each 6 € ®. In such a situation, [Kim, 2012] posits choos-
ing a reserve price as the seller’s decision problem under parameter uncer-
tainty.'® The paper shows that if the seller behaves rationally in the sense
of [Savage, 1954; Anscombe and Aumann, 1963], he would maximize the

expected revenue given by

Ew(O,hp)zripi) == [ [ u,hp)pon(0,hzripi)ands, (@

where the posterior density can be obtained via Bayes theorem

pe(0)pn(h|0) HtT 1Py (yt]0)
[J pe(0)p(h|0) TT{— py(y:|0)dhdo

[Kim, 2012] discusses the optimality of this Bayesian approach from the fre-

pou (0, hlzr; pp) = (5)

quentist perspective, and shows that it can produce substantially higher rev-
enues than the plug-in rule.
When £ is not identified, however, this approach can be sensitive to the

choice of the conditional prior py,(+|6)- since (5) can be written as

po(0) [T—1 py(v:10)
S po(0) 1=, py(y:6)do
= pu(h|0)pe(0lzT),

pon(0,hlzr;pn) = pu(h|0)

10 The plug-in approach does not consider the parameter uncertainty because it regards
the point estimate of the valuation distribution as the true distribution. Then, under this
hypothesis, the plug-in approach ‘certainly’ maximizes the seller’s revenue.
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the impact of pj,(-|0) on the solution to maximize (4) does not disappear
even when T is large. Prior to HT, the literature had employed the but-
ton auction model, which can be viewed as a strong prior that equates the
distributions of x and y. As HT shows, such an assumption can lead to a
misleading inference, when there is jump bidding or A > 0. Even though
an econometrician can employ a less informative prior in a hope of using
weaker assumptions, it would still bear some information about unverifi-
able bidding behavior.

This paper instead considers a convex set I' of reasonable conditional pri-
ors on h given § and assumes that the seller regards all the elements in I as
equally reasonable. A conditional prior py(-|6) is said to be reasonable if it
conforms to (A-HT) for every 6 € ©. Formally, T is a set of all pj(+|-) such
that, for all (6,h) € © x H

po(0)pu(h|0) > 0 < Py(w|6,h) < Py(w|6). 6)
GS shows that it is optimal for the seller to solve

in E\u(8,h, s 07 7
maxmin E[u(0, 1, p)|zr; i (7)

That is, a seller should choose a reserve price that maximizes the revenue in

(4) with respect to the most pessimistic prior in I'.

Definition 1. A decision rule that solves (7) for every realization of zt is called the
I' maxmin rule.

This framework is particularly useful for the partially identified auction
model because its policy recommendation is robust to the choice of priors
over the unidentified parameter /. Solving (7) is, however, computation-
ally expensive because the ‘min’ part solves an optimization problem over
a space of high dimensional functions for every p considered for the maxi-
mization problem. !

The central result of this paper is that this issue does not arise for the

seller’s problem. The following proposition establishes that a probability

11’ [Chamberlain, 2000] proposes a computation algorithm for a similar problem, but
with a simple utility function.
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mass function degenerated at i = 0, denoted by Jy, solves the minimization

problem.

Proposition 1. Under (A-HT) and (A-GS),

maxmin E[u(60,h,p)|zr; pi] = max E[u(6,h, p)|zT; do) 8)
p€A pyel pEA

Proof. Consider any (0, h) € © x H for which there is some p;, € I such that
po(8)pn(h|0) > 0. Then, (6) implies Px(w|0,h) < Py(w|f) < PJ(w|0,h) <
P"(w|6,0) for all w € Ry and m > 2. Thus, pP'(p|6,h) < pP)(p|6,0), for
any p € A C ;. Moreover, since P"~1(&|6,h) < P"~1(¢|6,0), we have

| maxte,ehp 1 (¢10,00d < [ max{p, e}p 1 (El6,h)de.
These inequalities then imply u(6,h,p) > u(6,0,p) (see (1)) and hence

E[u(8,h,p) 21, pu] = E[u(8,0,p)|zr, pi) = E[u(6,h, p) |7, bo).
Finally, §p € I because it implies x < y with equality. U

This result implies that choosing the worst prior amounts to treating the

transaction price as the highest values.

3.2. Correlated Private Values: [Aradillas-Lopez, Gandhi, and Quint, 2011]
considers a more general auction model with correlated value for the same

type of data set as in this paper but under a stronger assumption that

Assumption 3. (A-AGQ) The transaction price is equal to the second highest

values.

Let the bidders private values (vy, ..., v, ) be distributed as Py(-,...,-|0,h).
Now, the distributions of the highest and second-highest values are not nec-
essarily linked through the identical marginal valuation distribution, in par-

ticular P, # PJ'. The revenue function is

u(e,h,p) = [ max{p,E}aP, (E16) - oPu(ol, 1), ©)

which is more general than (1). Under (A-AGQ), zr point identifies P, (-(6),
but not Py (|0, h). Hence, (9) can only be partially identified; see [Aradillas-
Lopez, Gandhi, and Quint, 2011]. In particular, it is bounded below by
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u(0,0,p). Now, consider the I' with property (6). Then, it is straightfor-
ward to show that the seller would also solve (8) with the revenue (9) as

formalized below.

Proposition 2. When the value are correlated, under (A-GS) and (A-AGQ), (8)
holds true for the revenue defined in (9).

4. COMPARISONS BETWEEN I'-MAXMIN & HAILE AND TAMER

This section compares performances of the I'-maxmin rule with the av-
erage revenues associated with the HT interval for four valuation densities
in Figures 1 and 2, which also show the associated revenue functions for
for bidders m = 3,4,5. Figure 1 is associated with the density similar to
an exponential distribution as well as the long-tailed density.!* Similarly,
Figure 2 is associated with lognormal densities with alternative parame-
ters.”® Then, for each of these valuation densities, the experiments consider
T € {100,200} sample sizes and m € {3,5} bidders, leading to a total of
16 experiments. Each experiment, i.e., each triplet of (values density, T, m),
conducts 1,000 Monte Carlo replications.

For each experiment, the seller selects a bidder randomly and uses Ay :=
0.05 x ¥ as the minimum bid increment rule. The chosen bidder bids ex-
actly 7 + Ay, as long as it is less than his value. Each replication uses only
transaction prices to implement the I' maxmin approach, but uses all bids to
implement the HT approach for a comparison with the tightest HT interval.
Then the corresponding revenues are computed, where the revenue under
HT is defined to be the average revenue across the interval. Note that HT
does not propose any particular method to choose the reserve price from

the interval.

12 These densities have the form of (10) with k = 15. For the exponential-like den-
sity, the parameter values are 6 :=(0.3548, 0.2350, 0.1486, 0.0946, 0.0466, 0.0440, 0.0217,
0.0119, 0.0089, 0.0080, 0.0084, 0.0081, 0.0049, 0.0028, 0.0017) and for the long-tailed den-
sity, 0 :=(0.0748, 0.1403, 0.1871, 0.5145, 0.0009, 0.0009, 0.0009, 0.0009, 0.0009, 0.0009, 0.0009,
0.0750, 0.0009, 0.0009, 0.0002).

13 The lognormal distributions with (i, 0) = (3,1) and (4,1/2) are truncated at the 99-
th percentile and rescaled so that their supports are the unit interval. HT employs the
lognormal densities that appear in Figure 2 for Monte Carlo studies.
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The section reports the average percentage gain of the I'maxmin rule
over the HT interval. The experiments specify the distribution of the trans-
action price using the Bernstein cdf:

m

k
Py(y|6) = | )_6Beta(yljk—j+1)| , (10)
=1

J
where 6 € Ag_1, the k — 1 dimensional unit simplex, i.e., 6 > 0 for all
j=1,...,k—1and E}:ll 0; <1,and Beta(-|a, b) denotes the beta cdf with
parameters a and b; see [Petrone, 1999a,b] for a nonparametric Bayesian
method that uses (10). This paper employs the model with k = 15 with the
uniform prior over Aqy.

Table 3 summarizes the main results. Each column stands for the val-
uation densities and each row for the number of bidders m with different
sample sizes T, so that each cell of the table shows the percentage revenue
gain. For example, the first row and the first column is associated with
(P, T,m) = (Exponential-like, 100,3) and that the revenue gain of the T-
maxmin approach over the HT interval is around 20.16%. With five bidders,
this gain is around 3.71% (second row). The third and fourth rows collects
the results when T = 200.

Figure 3 explains these revenue gains. Each panel depicts the distribu-
tions of the reserve prices chosen by I' minimax approach (heavy solid) and
the lower and upper bounds for the HT interval (light solid) along with the
revenue function. Upper (lower) panels are with T = 100 (T = 200), and the
left (the right) are with m = 3 (m = 5). The left-upper panel shows that the
upper bound of the HT interval is distributed around 0.5, while the revenue
function indicates that all the reserve prices larger than approximately 0.3
produces lower revenues than zero reserve price. This implies that a signif-
icant portion (33.95%; Table 1) of the HT interval is less profitable than zero
reserve price. On the other hand, the I' maxmin rule is distributed over the
area in which the revenue is increasing, selecting higher reserve prices than
the lower bound of the HT interval. As a result, the I' maxmin rule produces
larger revenues than the average revenue of the HT interval.

This pattern is commonly observed from all the experiments; see Figures

3 - 6. The rest of the table shows significant revenue gains of the I' maxmin
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rule, suggesting that I' maxmin approach can provide a practical policy rec-

ommendation.

5. CONCLUSION

The literature, since [Paarsch, 1997], has proposed various procedures
to determine a reserve price for the revenue maximizing seller of an auc-
tion. In particular, for the English auction, the exact procedure depends on
the type of data (all bids vs only transaction prices) and on the behavioral
assumptions (button auction model vs. incomplete models). All of these
procedures except Kim [2012], however, view the seller’s decision problem
as essentially an estimation problem: estimate the valuation distribution,
use these estimates to obtain the RMRP, and study asymptotic properties of
the estimates (either a point or a set). Extending the formal Bayesian deci-
sion method of Kim [2012], and using GS this paper proposes a solution to
choose a single reserve price for an English auction with partially identified
valuation distribution. This paper shows that it is optimal to employ the

Bayesian method interpreting the transaction prices as the highest values.

APPENDIX A. COMPUTATION

Each Monte Carlo experiment obtains a sample 6',...,6° from posterior
distribution using the Metropolis-Hastings algorithm. For this initial step,
a flat prior over A;_; and a sample z} is employed for constructing the pos-
terior. Each replication conducts all the inference applying the importance
sampling method to (0%, ...,0%), the prior for the experiment, and a new
sample 7/, from the given DGP. This section illustrates computational de-
tails.

A.1. Sampling from the Posterior with a flat prior. For each pair of (P,, m)
and for the first Monte Carlo replication, The Metropolis Hastings algorithm
draws random parameters from the posterior with the sample z} and the
prior given by p(0) = ]_[;":1 pi(6;) with p;j(8) o« 1forj =1,...,k Let6°
denote the s-th sample from the Metropolis-Hastings algorithm.

For the experiments with the exponential-like and the long-tailed densi-
ties, The true parameter value is used as the initial value for the algorithm,

and for the log-normal like densities, a vector of 1/k is used for the initial
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value. Then, at the s-th Metropolis Hastings step, the algorithm updates 6°
component by component from j = 1tok. Let gl = (63,.. 9]5 1,0571, .. .,62’1).
Then, the algorithm draws a candidtate §; ~ g;(:|6/*), the proposal density

for the j-th component of 6. Let is = (67,.. 015 1,6],9;“1,. . .,9;71), and

set 6]5- = éj with probability

min po(y;107°) %(Qilléf’s)] }
{Lﬂe ]hlm%Wﬂ][MQMﬂ 1 (11)

and 9]5- = 97 ~1 otherwise. For each k, we iterate the algorithm 200, 000 times

recording every 200-th iteration. Among these 2,000 draws, we employ the
last 1,000 for the implementation of the decision rules (S = 1, 000).

A.2. Proposal density. For the proposal density g;, we employ a Gaussian
density with mean 9]5._1 and variance (7].2 that is truncated so that 8/ belongs

to Ax_1. Then, 6; € [0,0;] where the upper for 6; is given by

ng+2951

a=j+1

and also let 5(9]5.) = & ((éj - 0]5._1)/(7]-), and &(6%) = @ (—9]5._1/(7]-).
Then, g; has the form of

- (0671 /05 o
%@Wﬂ{¢<] : J}N%EN%D (12)

The inverse CDF method draws 9]' from (12). Moreover, since p;(-) o« 1 for

allj=1,...,k—1and ¢(-) is symmetric about zero, (11) simplifies

H polyl87) | [2(6) —2()]
1 Po(yp107%) | | 2(0) —2(6)) |
The algorithm uses o= 1.54 fors < 20 and o= 1.54 x stdev <9]1, 9]1, el 9]5*>
for s > 20 with s* := min(s,0.4 x S). This adaptive method is similar to

Haario, Saksman, and Tamminen [2005].

A.3. Replication 2 to 1,000: Importance Sampling. This paper approxi-

mates the posterior mean of the revenue (15) or (17) using the importance
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sampling. Each [-th Monte Carlo replication constructs the importance weight

In(2(0)
l n\=T
wg(0) := (13)
approximates the Bayes action by
S I (ps
AL (] . — C")B(Q ) 5 .
pp(z7; m) := arg max —————— > u(6°,p;,m) (14)
s peA 3 {Zts—l wh(6")

where 01,...,0% ~ p(0|z]) « I7(z1]0).

A.4. Revenue Approximation. The seller’s revenue in (1) can be written as

u(Po,p;m) i= mp(1 = Po(p))Po(p)"" (15)
tm(m — 1) /p Cy(1 = Po(y))Paly)™ 2 paly)dy

The trapezoid rule approximates all the integrals of (15) using the | = 1,001
equidistant reference points on the unit interval, xq, x1, ..., x1001 With x; =

. 1,000
j/1000. Let A := {xj}].:O

abuse of notation, f and F denotes | dimensional vector of the pdf and cdf of

, the set of all feasible reserve price. With a slight

the values density evaluated at each x; € A, respectively. For this purpose,
many statistical softwares (e.g., Matlab) evaluate the pdf and the cdf for the
beta distribution and the (log)normal distribution. Let A := (ay,...,d)’
with 4; := 0if j = 1, and otherwise
F—F

2(36] — x]-,l)

j j
~ G+ [ Flalo)da ~ / F(«|0)da

i 0

1

aj == dj1+

x]_
Let A:= (ay,...,a7) :==djy — A. Then, for each j
1
a; = / F(w|0)da (16)
Xj

Define element-wise operators, C x D := (c1d1, ..., cjdj) and C$ := (cf, .. .,c‘}g)’
for any dimension conformable vectors C = (cy,...,cj) and D = (d; ..., d;)".

Then, the j-the element of

= (m- 1) x (x x (1—F) x Fm=1) 4 A) (17)
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approximates the revenue (15) at each x; € A under the values density f.
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TABLE 1. Proportion (%) of p in HT with u(0,-) > u(p, -)

Bidders | Exponential Longtail LogNormal LogNormal
m -like density density (3,1) 4,1/2)
3 33.9450 41.0042  44.2857 46.3710
5 50.5227 46.7213 51.7094 45.8763
TABLE 2. Percentage Gain in Revenue p = 0
Bidders | Exponential Longtail LogNormal LogNormal
m -like density density (3,1) 4,1/2)
3 -0.8729 2.4371 2.2681 2.0731
5 3.4608 1.9613 2.5633 0.3006

TABLE 3. Percentage Revenue Gain of the I' maxmin rule

Bidders | Exponential Longtail LogNormal LogNormal
m -like density density (3,1) (4,1/2)
T =100
3 20.1632 2.5702 8.4945 2.5867
5 3.7097 0.8163 3.7629 0.2331
T =200
3 59121 5.0051 7.3387 2.5821
5 5.0957 2.1929 3.8419 0.3489
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FIGURE 1. Valuation Densities and Revenue Functions
(a) Exponential-like density (b) Longtail density
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Panels (a) and (c) plot the exponential like density function and associated
revenue functions for alternative number of bidders m. Panels (b) and
(d) similarly for the longtail values density. On panels (c) and (d), pr(fo)
indicates the revenue maximizing reserve price.
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FIGURE 2. Valuation Densities and Revenue Functions

(a) LogNormal with (u,0)=(3,1) (b) LogNormal with (u,0)=(4,1/2)
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Panels (a) and (c) plot the lognormal density with (y,0) = (3,1) and as-
sociated revenue functions for alternative number of bidders m. Panels
(b) and (d) similarly for (,0) = (4,1/2). On panels (c) and (d), pr(fo)

indicates the revenue maximizing reserve price.
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FIGURE 3. Exponential-like Distribution

(T,m) = (100,3) (T,m) = (100,5)
T T 03 T T
0.2}
— HT set - 0.251 Kk HT set—
[ [
015 | o 02 |
| | g
. 2 0.15} |
01 [ [ 3 [ [
o
| | 0.1 | |
0.05} |' ‘ : ‘ ‘
! ! 0.05f | !
[ [ [ [
0 | e | . . 0 | . L . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Reserve Price Reserve Price
(T,m) = (200,3) (T,m) = (200,5)
T T 03 T T
0.2}
K HT set — 0.25 k— HT set —
| [ [
0.15( | o 02f ! |
| [ g
| | | ® 0.15 | |
01 [ [ 3 [ [
o
| | 0.1 | |
0.05} | ‘ ‘ ‘
! ! 005 | !
[ [ [ [
0 . L . . 0 | . N . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Reserve Price Reserve Price

The revenue function is plotted along with the distributions of the lower
and the upper bounds for the HT set (light lines) and the reserve prices
chosen by the I'-minmax (heavy).
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FIGURE 4. Longtail Distribution
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The revenue function is plotted along with the distributions of the lower
and the upper bounds for the HT set (light lines) and the reserve prices

chosen by the I'-minmax (heavy).
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FIGURE 5. Lognormal (3,1)
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The revenue function is plotted along with the distributions of the lower
and the upper bounds for the HT set (light lines) and the reserve prices
chosen by the I'-minmax (heavy).
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FIGURE 6. Lognormal (4,1/2)
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