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Testing for Collusion in Asymmetric First-Price Auctions

GAURAB ARYAL AND MARIA F. GABRIELLI

ABSTRACT. This paper proposes fully nonparametric tests to detect pos-

sible collusion in first-price procurement (auctions). The aim of the tests

is to detect possible collusion before knowing whether or not bidders are

colluding. Thus we do not rely on data on anti-competitive hearing, and in

that sense is ’ex-ante’. We propose a two steps (model selection) procedure:

First, we use a reduced form test of independence and symmetry to short-

list bidders whose bidding behavior is at-odds with competitive bidding,

and Second, the recovered (latent) cost for these bidders must be higher

under collusion than under competition, because collusion dwarfs compe-

tition, hence detecting collusion boils down to testing if the estimated cost

distribution under collusion first order stochastically dominates that un-

der competition. We propose rank based and Kolmogorov-Smirnov (K-S)

tests. We implement the tests for Highway Procurement data in Califor-

nia and conclude that there is no evidence of collusion even though the

reduced form test supports collusion.

Keywords: Asymmetric Auctions; Collusion; Nonparametric Testing.

JEL: C1, C4, C7, D4, L4.

1. INTRODUCTION

Auction is the most widely used selling mechanism for both private and
public goods. For example, federal government is the biggest auctioneer in
the U.S., it sells the offshore oil leases, timber from national forests and con-
struction/ highway projects through auction. The assets of bankrupt busi-
nesses are usually liquidated by means of an auction. However, auctions
are susceptive to bid rigging where bidders collude to dwarf the competi-
tion, thereby hurting the taxpayers. Bid rigging is pervasive and has been
studied in the literature; some of the examples include public procurement
and construction (Porter and Zona [1993]; Bajari [2001]) and (Bajari and Ye
[2003]) (henceforth, B&Y), right to supply milk to public schools (Porter and
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Zona [1999] and Pesendorfer [2000]) and trading of stamps (Asker [2008]).
Most of these papers study the market where collusion has already been
proven in the civil court (except B&Y) and estimate the effect of collusion on
welfare using reduced form approach (except Asker [2008]).1 However, it is
desirable to have a test that can be used to detect possible collusion without
knowing if bidders are colluding. In this paper, we estimate two structural
models– one with (non-inclusive) collusion and one with competition– and
use rank and K-S tests that to test the null hypothesis that the cost distribu-
tion under competition explains the data better than that under collusion.
For the purpose of the paper, we assume that the bidding ring can control
the members bid and suppress collusion. This is the most favorable con-
dition for collusion and the failure to detect collusion means that it is even
more unlikely to detect in other cases; for more on collusion in first-price
auction see Marshall and Marx [2007]. The aim of this paper is to contribute
to our understanding of collusion. Clearly, as with any test, our procedure
is not full proof and the test cannot replace wiretapping and thorough crim-
inal investigation but can be used as a first step in assessing the likelihood
of bid rigging. In the recent years, criminal enforcement of the antitrust
laws has deterred price–fixing in some market settings, but not bidder col-
lusion ( Marshall and Meurer [2001]) and hence the social value of any test
to detect collusion hasn’t decreased. Since bid rigging either lowers the rev-
enue collected or increases the cost of procurement if the government tries to
raise funds to meet the deficiencies through distortionary taxes, this creates
further inefficiencies. Thus, the increased revenue spent in procurements
because of collusion is not simply a wealth transfer.

This paper considers a procurement auction with independent cost and
exogenous entry under two environments: competitive and collusive. In
view of the data we consider three asymmetric bidders: fringe, regular
bidders who might collude and might not collude.2 Then, assuming that
the bidding ring can control the bids of the member and suppress all ring

1 See also Comanor and Schankerman [1976]; Feinstein, Block, and Nold [1985]; Lang
and Rosenthal [1991] and for a summary of the literature on cartels see Harrington [2008].

2Asymmetry amongst bidders can be attributed to the location, carrying capacity, in-
formational differences and hence any realistic model of procurement auction should allow
asymmetry, ( Bajari [2001] and B&Y).
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competition and common knowledge of the bidding ring, we characterize
the equilibrium bidding strategies for each type, and recover and estimate
two different sets of cost distributions as in Guerre, Perrigne, and Vuong
[2000]. The only difference between the two sets is in cost that corresponds
to the bidders who could collude. For example, if there are five bidders in
a ring and five bidders not in the ring then it is equivalent to having only
six bidders in total with one from the bidding ring. Therefore, the cost that
rationalizes the observed bids must be higher under collusion than under
competition. This implies that if there is collusion, then the estimated cost
distribution with bidding ring would dominate that without one. To test
this stochastic domination we propose a rank based test and a Kolmogorov-
Smirnov test, (Lehmann [2006]). But before implementing the test we must
determine the potential collusive bidders and determine the asymptotic dis-
tribution of the tests because we do not observe the cost but only its esti-
mate, for each bidder, and hence the standard asymptotic distribution of the
tests won’t work. We use the reduced form test from B&Y for independence
and symmetry on each pair of bidders to determine those who fail tests.
These bidders will be considered as the regular bidders who can collude. To
overcome the second problem we bootstrap the asymptotic distribution of
the test statistic.

In this paper we identify two different sets of bidders as potential ring
members in the Highway Procurement data in California but find no evi-
dence of collusion even though the reduced form test and ‘visual method’
on estimated cost distributions supports collusion.3

This paper is organized as follows: Section (2) outlines the theoretical
models of competition and collusion; Section (3) proposes the two tests; Sec-
tion (4) discusses the data from CalTrans and how to determine the set of
colluding bidders; Section (5) contains the results and Section (6) concludes.
Appendix (A-1) explains our estimation procedures; Appendix (A-2) shows
how to extend the tests to allow for unobserved auction specific heterogene-
ity. All tables and figures are collected in Appendix (A-3).

3In visual method, we eyeball the estimated cost densities for the suspected bidders
and see if the densities are sensitive to the number of bidders. The idea there is that under
exogenous entry assumption there should be little or no variation if competition is the true
model, which is not what we find, see Section (3) for more.
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2. MODELS, IDENTIFICATION AND ESTIMATION

2.1. Competitive Model (Model A). A single and indivisible project is pro-
cured to N ≥ 2 risk neutral bidders using sealed bids. We assume that
there are three types (k = 0, 1, 2) of bidders with nk type k bidders such
that

∑
k nk = N and the cost Ci ∼ IID Fk(·) with absolutely continuous and

nowhere vanishing density fk(C) > 0, ∀C ∈ [c, c], for all i ∈ nk.4 We also
assume that the number of bidders is exogenously given for each auction.
Each bidder i ∈ nk submits a bid, bik, to solve

max
b̃ik

{
πik = (b̃ik − cik)Pr

(
b̃ik < min

j 6=i
Bjk

)
Pr
(

b̃ik < min
j=1,...,n1

Bj1,
)

Pr

(
bik < min

j=1,...,n(2−k)
Bj(2−k)

)

= (b̃ik − cik)
(

1− Fk[s−1
k (b̃ik)]

)nk−1(
1− F1[s−1

1 (b̃ik)]
)n1
(

1− F(2−k)[s
−1
(2−k)(b̃ik)]

)n(2−k)

}
,

for k = 0, 2 and

max
b̃i1

{
πi1 = (b̃i1 − ci1)Pr

(
b̃i1 < min

j=1,...,n0
Bj0

)
Pr
(

b̃i1 < min
j 6=i

Bj1

)
Pr
(

b̃i1 < min
j=1,...,n2

Bj2

)

= (b̃i1 − ci1)
(

1− F0[s−1
0 (b̃i1)]

)n0
(

1− F1[s−1
1 (b̃i1)]

)n1−1 (
1− F2[s−1

2 (b̃i1)]
)n2

}

for k = 1 where where sk(·) denotes type k′s equilibrium strategy. As shown
in Lebrun [1996, 1999] and Maskin and Riley [2000a,b, 2003], type specific
bidding strategy sk(·), k = 0, 1, 2 exists and is unique and are characterized
as a solution to the simultaneous differential equations

s′k(ck, bk, n) = (bk − ck)

[
(nk − 1)

fk(ck)

1− Fk(ck)
+ n1

f1(s−1
1 (bk))

1− F1(s−1
1 (bk))

s′0(c0)

s′1(s
−1
1 (bk))

+n(2−k)

f(2−k)(s
−1
(2−k)(bk))

1− F(2−k)(s
−1
(2−k)(bk))

s′k(ck)

s′
(2−k)(s

−1
(2−k)(b0))

]
for k = 0, 2

4We abuse the notation to use nk as both the number and set of type k bidders. We allow
for the asymmetry of this kind to be consistent with the data: type 1 characterizes large
firms that bid simultaneously (on a pairwise basis) more often than others; type 2 bidders
are the remaining large firms and type 0 bidders are the other (small/fringe) bidders. Type
1 bidders are the large bidders who are candidates for collusion; we detail how we chose
the types of each bidder in Section (4).
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and

s′1(c1, b1, n) = (b1 − c1)

[
n0

f0(s−1
0 (b1))

1− F0(s−1
0 (b1))

s′1(c1)

s′0(s
−1
0 (b1))

+ (n1 − 1)
f1(c1)

1− F1(c1)

+n2
f2(s−1

2 (b1))

1− F2(s−1
2 (b1))

s′1(c1)

s′2(s
−1
2 (b1))

]
, (1)

such that : s0(c) = s1(c) = s2(c) = c , and s0(c) = s1(c) = s2(c) = c.

2.2. Collusive Model (Model B). We assume that the bidding ring can con-
trol the bids of the members and can eliminate all ring competition. Then,
both competitive bidders and cartel bidders participate in an auction. As be-
fore, there are 3 types of bidders. We label cartel bidders as type 1 bidders.
Large competitive bidders are named as type 2 bidders and small competi-
tive (fringe bidders) will be type 0 bidders. From the perspective of a type 1
bidder, there is only one such bidder participating (seriously) in an auction.
Hence, n1 = 1 for this group of bidders. This model is the most favorable
for collusion and for our purpose we do not have to spell out the exact rules
of sharing the surplus.5 As before, there are n0 and n2 bidders of type 0
and type 2, respectively. We maintain the assumption that bidders of type k
draw their private costs independently from a distribution Fk(·), k = 0, 1, 2.
Each bidder i of type k with cik choses bik that solves

max
b̃ik

{
πik = (b̃ik − cik)Pr

(
b̃ik < min

j 6=i
Bjk

)
Pr
(

b̃ik < min
j=1,...,n1

Bj1,
)

Pr

(
b̃ik < min

j=1,...,n(2−k)
Bj(2−k)

)

= (b̃ik − cik)
(

1− Fk[s−1
k (b̃ik)]

)nk−1(
1− F1[s−1

1 (b̃ik)]
)n1
(

1− F(2−k)[s
−1
(2−k)(b̃ik)]

)n(2−k)

}
;

max
b̃i1

{
πi1 = (b̃i1 − ci1)Pr

(
b̃i1 < min

k=1,...,n0
Bj0

)
Pr
(

b̃i1 < min
j=1,...,n2

Bk2

)
(2)

= (b̃i1 − ci1)
(

1− F0[s−1
0 (b̃i1)]

)n0
(

1− F2[s−1
2 (b̃i1)]

)n2

}
,

respectively for k = 0, 2 and k = 1.

2.3. Nonparametric Identification. The model primitives are {Fk(·|X`, N`)}
for k = 0, 1, 2, which are type specific conditional cost distributions given
the auction specific characteristics X` and the set of bidders N` (see Assump-
tion (1) below) . The data provides information on the characteristics of the

5Marshall and Marx [2007] show that only in the first-price auction, if the ring can-
not control the bids then the equilibrium entails multiple bids and the model need not be
identified.
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project that is being procured, the number of bidders in each auction and
their bids. Using the previous notation, the set of observables W are

W :=
{

X`, n0`, n1`, n2`, {b0i}n0`
i=1, {b1i}n1`

i=1, {b2i}n2`
i=1

}
, ` = 1, 2, . . . L.

where bki is the bid of type k ∈ {0, 1, 2} bidder i ∈ nk` in the auction `. We
make the following assumptions:

Assumption 1. (A1)

(1) An auction ` has n` ∈ {n, n} risk-neutral bidders with n ≥ 2.
(2) The (d + 3)- dimensional vector (X`, (nk`; k = 0, 1, 2)) ∼ IID Qm(·, ·)

with density qm(·, ·) for all ` = 1, 2, . . . L.6

(3) For each ` and each k ∈ {0, 1, 2} the variables Cki`, i ∈ nk` ∼ IID Fk(·|·, ·)
and density fk(·|·, ·) conditional on (X`, N`).

(4) The observed type k bids bk ∼ IID G(·) with density g(·) for k = 0, 1, 2.
(5) (Exogenous Participation) For each N < n, and all (C1, . . . , CN) :

FN(C1, . . . , CN) = Fn(C1, . . . , CN, ∞, . . . , ∞︸ ︷︷ ︸
n−N

).

All the assumptions are standard in the literature with exogenous entry and
note that this assumption does not require (X`, N`) to be independent but
still be consistent with the exogenous entry assumption. Identification fol-
lows from the two-steps procedure in Guerre, Perrigne, and Vuong [2000]:
(1) Using nk` type-k bids estimate Gk(·|X`, N`) and gk(·|X`, N`) non para-
metrically (we use Kernel density estimator, see the estimation section in
Appendix); (2) then using the first order condition for optimal bids and the
estimates form first step we can recover the cost for each bidder as

ĉki` ≡ ξki(bki, {Ĝk(·|·), ĝk(·|·), nk`; k = 0, 1, 2}). (3)

With competition (Model A), for every ` (suppressing the dependence on
X`) we have

6We abuse the notation to use nk` to represent both the random variable and its realiza-
tion.
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ξki(·) = bki −
1

(nk` − 1) ĝk(bki|·)
1−Ĝk(bki|·)

+ n1`
ĝ1(bki|·)

1−G1(bki|·)
+ n(2−k)`

ĝ(2−k)(bki|·)
1−Ĝ(2−k)(bki|·)

,

ξ1i(·) = b1i −
1

n0`
ĝ0(b1i|·)

1−Ĝ0(b1i|·)
+ (n1` − 1) ĝ1(b1i|·)

1−Ĝ1(b1i|·)
+ n2`

ĝ2(b1i|·)
1−Ĝ2(b1i|·)

, (4)

where the first equation holds for k = 0, 2 and i ∈ nk` and the second equa-
tion holds for k = 1 and i ∈ n1`. Similarly, with collusion (Model B) because
n1` = 1 we have

ξki(·) = bki −
1

(nk` − 1) ĝk(bki|·)
1−Ĝk(bki|·)

+ n1`
ĝ1(bki|·)

1−G1(bki|·)
+ n(2−k)`

ĝ(2−k)(bki|·)
1−Ĝ(2−k)(bki|·)

,

ξ1i(·) = b1i −
1

n0`
ĝ0(b1i|·)

1−Ĝ0(b1i|·)
+ n2`

ĝ2(b1i|·)
1−Ĝ2(b1i|·)

. (5)

3. DETECTING COLLUSION

3.1. Visual Method. In this section, we present a heuristic method that
could be used as a preliminary first step in assessing the possibility of col-
lusion in the data. The criteria to decide whether or not there is collusion is,
for the lack of better name, termed as “intuitive” method. The logic of the
method is very simple and straightforward and relies heavily on the exoge-
nous entry assumption. Suppose the true data generating process (DGP) is
competition (Model A), then the conditional density of the recovered cost
of bidders will be independent of the number of opponents, in other words,
the recovered density should remain the same even when the number of ac-
tual bidders in each category changes. However, the estimated density un-
der the misspecified model of collusion will be very sensitive to the number
of bidders in each auction. This property is a direct consequence of exoge-
nous entry assumption and is also symmetric because if the true DGP was
collusion (Model B) then it would lower the competition faced by bidders
from other type 1 bidders but the recovered cost distribution is still inde-
pendent of the number of other bidders. But, under competition we expect
the density to vary with the number of bidders.
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We show that using this intuitive method a collusive model does rational-
ize the observed bids suggesting that the bidders (in our empirical applica-
tion) might be colluding. We want to emphasize that this method should
only be used as a supplement but not a substitute to any formal method
to detect collusion (see the sections below). The result of this method will
be explained using the recovered conditional densities under various sce-
narios and the conclusion about the true DGP will be reached by way of
“eyeballing” the figures (collected in the Appendix). Although the conclu-
sion of this method is sensitive to the way bidders’ type are determined,
because it affects the effective competition by affecting size of the collusive
ring, the method can be used with all forms of auction data.

3.2. Collusion as Stochastic Dominance. Following up on the intuitive method,
we pose the problem of “collusion” as a problem of testing for indepen-
dence, for which we use the rank test. Then, for each model (competition
and collusion) we can derive the underlying cost associated with each bid
for each bidder, therefore we have two sets of random variables

MA :=
{

X`, n0`, n1`, n2`, {ĉA
0i}

n0`
i=1, {ĉA

1i}
n1`
i=1, {ĉA

2i}
N2`
i=1

}
, ` = 1, 2, . . . L,

MB :=
{

X`, n0`, n1`, n2`, {ĉB
0i}

n0`
i=1, {ĉB

1i}
n1`
i=1, {ĉB

2i}
n2`
i=1

}
, ` = 1, 2, . . . L,

where the only difference between MA (competition) and MB (collusion) is
the recovered cost parameters ĉj

ki for each type k ∈ {0, 1, 2} bidder i ∈ nk`

for each model as given in (4) and (5), respectively. A benefit of estimating a
structural model is the possibility that we could not only have transparent
identification from which we could also infer the exact channel that links
the data to the parameters but also provide conditions on the data that are
necessary to rationalize the model. Choosing between two models would
then be the same as testing which of the two conditions hold in the data.
Although very intuitive, in first price auction, the only testable conditions
(see Theorem 1 in Guerre, Perrigne, and Vuong [2000]) are: (i) the observed
bids are IID conditional on (X`, N`); and (ii) given N` the distribution G(·)
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of observed bids can be rationalized by F(·) only if ξ(·) in (3) is strictly in-
creasing. So, we cannot differentiate the two models based on these condi-
tions because the first condition is the same for both models and the second
condition is redundant because we assume that bidders in both models use
strictly increasing bidding strategies. Therefore, we need to look for other
variations in the data to differentiate the two models and the only testable
difference is the latest cost parameter of the type 1 bidders. Under our as-
sumption of exogenous entry and the assumptions (A1), the recovered costs
parameter for each bidder must be independent across all bidders type for
both models. However, under Model B, the recovered cost parameters for
type 1 must be larger than the cost for the same type under Model A. Under
collusion, a necessary implication would be that the recovered cost density
under MA would be stochastically dominated by the cost density under MB.
To explain the proposed test we simplify the notation and say that the ran-
dom variable cA

1 , cB
1 are the cost parameters under MA and MB, respectively,

with F1A(·) and F1B(·) as corresponding distributions. Therefore, as a nec-
essary condition for collusion we wish to test the hypothesis that F1A = F1B

against the alternative that F1B first order stochastically dominates F1A.

3.2.1. Rank Based Test. To test the dominance, we use rank sum test that
relies on “U” statistic. To define the relative ranking of the random variables
cA = {cA

11, cA
12, . . . , cA

1n`
1
} and cB = {cB

11, cB
12, . . . , cB

1n`
1
} for every auction ` we

begin with a combined sample in ascending order (c1:2n`
1
, c2:2n`

1
, . . . , c2n`

1:2n`
1
)

where the subscript ct:2n`
1

is for the tth small private–cost amongst the total

of 2n`
1 such variables. Then we define R`

i = 1 if the ith observation of the
combined and ordered sample is from MB and zero otherwise. Then the test
statistic is

R =
1

L× 2n`
1

L∑
`=1

2n`
1∑

i=1

R`
i . (6)

Intuitively, we use the entire sample to create a new sample of zeros and
ones, such that 1 is chosen only when the private–cost for a bidder i ∈ n`

1 (to
rationalize the observed bid) is more under collusion than under competi-
tion. Then, averaging across all L× n`

1 observations, we are looking at the
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empirical measure of the probability of private–cost from MB being higher
than MA.7 If Pr(R ≤ r∗) = α under the null hypothesis, the test will be con-
sidered significant at the significance level α if R ≤ r∗ and the hypothesis of
identical distributions of cA

1 and cB
1 is rejected in fair of stochastic dominance

and hence collusion. A subtle but important issue in implementing the test
with our data is that we never observe the private–cost directly but only re-
cover them nonparametrically. This could change the asymptotic variance
if not the asymptotic distribution.

3.2.2. Kolomgorov-Smirnov (KS) Test. We formulate KS test for whether (un-
der the null hypothesis) the type 1 cost distribution is the same for MA and
MB against the alternative that the the distribution for MB stochastically
dominates that for MA:

H0 : ∀c ∈ [c, c] F1A(c) = F1B(c);

H1 : ∃c ∈ [c, c] F1A(c) ≥ F1B(c).

The test statistic is

KSL =

√∑L
`=1 n1`

2
sup

c∈[c,c]

∣∣∣F1A(c)− F2A(c)
∣∣∣,

which can be shown to be consistent. However, because we do not observe
the cost but only the pseudo costs, using the analytical asymptotic distribu-
tion only could be misleading. To circumvent that, we Bootstrap the density
of the test under the null, to compute the critical point t∗α at α% significance
level.

4. APPLICATION TO THE PROCUREMENT DATA

In this section, we describe the California Highway procurement market
where the rights to maintain and construct highways and roads are granted
through sealed low bid auction (procurement) by the California Department

7Observe that this intuition is straightforward once we note that the average of R`
i

across all type 1 bidders in auction ` is 1
2n`

1

∑2n`
1

i=1(R`
i ) = Pr`(c`2i > c`1i).
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of Transportation (Caltrans), between January 2002 and January 2008.8 The
data include important characteristics about the project that was let, the
name of the actual bidders and the set of potential bidders i.e. those who
showed interest in the project, their bids and the identity of the winning
bidder.

This process of selling the rights is conducted in three steps: First, during
the advertising period, which lasts between three to ten weeks depending on
the size of the project, the Caltrans Headquarters Office Engineer announces
a project that is going to be let and solicits bids from bidders/companies.
Potential bidders express their interest by buying the project catalogue. Sec-
ond, sealed bids are revived only from among the potential bidders. Third,
on the letting day, the received bids are ranked and the project is awarded
to the lowest bidder, provided that the bidder fulfills certain responsibil-
ity criteria determined by federal and state law. We ignore any such rules
for this paper and treat the lowest bid as winning bid.9 After each letting,
the information about all bids and their ranking is made public. When a
company submits bid, it is also required to submit detail information about
subcontractors, their fees and obligation(s) of each subcontractor. There is
a significant overlap of subcontractors across bidders of similar sizes and
bidders tend to have different operational sizes, suggesting that bidders are
asymmetric. We divide bidders into two broad types: the main bidders and
the fringe bidders, and further allow some of the main bidders to collude.
Therefore, we assume there to be three asymmetric types of bidders: the
fringe bidders (type 0), the main bidders who can collude (type 1) and fi-
nally the main bidders who do not collude (type 2), each with a different
cost distribution.10

Our data consist of 2,152 contracts that were awarded by Caltrans for a
total of $7,645 millions but only 1,907 projects had at least two bidders, with

8The data is available from Caltrans web site: http://www.dot.ca.gov/hq/esc/oe/

awards/bidsum/.
9For an example of effect of one such “bid preference” policy, see Krasnokutskaya and

Seim [2011].
10The parameter of cost is a reduced form for the real production function. So by allow-

ing each type to have unique distribution function we intend to capture the differences in
the technology of each bidder.

http://www.dot.ca.gov/hq/esc/oe/awards/bidsum/
http://www.dot.ca.gov/hq/esc/oe/awards/bidsum/
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a total of 823 bidders who bid on at least one project. One of the first chal-
lenge for us is to identify the type of each bidder. Determining main and
fringe bidders is relatively easy (see Jofre-Bonet and Pesendorfer [2003]) but
to determine the bidding ring is not straightforward. In the remaining of
this section by way of explaining the data we also explain how we deter-
mine the bidding ring. To identify the ring members, we consider large
projects that are worth between $1 million and $20 million because smaller
project typically do not have margin for profit and hence might not be worth
the risk and within that subsample use the reduced methods that includes
the test in B&Y to determine bidders who could collude.11 There are 724
such projects worth $2,408 millions (31% of the total) with 413 bidders out
of which 202 win at least once. Further, we consider only 25 bidders who
have a nontrivial revenue share (at least 1% revenue share) in the market as
the bidders who participate in many auctions and might find it profitable to
collude. Although we are agnostic about the exact nature of collusion and
how it is sustained, we think having subcontractors facilitates collusion as
main bidders compete for the same subcontractors. And this effect is more
pronounced for the bidders who participate in multiple auctions and have
some non-trivial market share, hence the 1% cutoff. Table A-1 summarizes
the bidding activity of these 25 (type 1 and type 2) bidders. All of the re-
maining bidders will be treated as fringe/small bidders type 0. 12

The first column in Table (A-1) gives the number of bids of each main bid-
der and this represents 34% of all bids in the sample. To access the market
power of each bidder we define “expected win” (see below) and compare
it with the actual numbers of win: bidders with consistently higher actual
win than the expected win will be termed as those who have higher market

11The test checks if the observed bids are dependent or independent. Competition re-
quires the observed bids be uncorrelated and symmetric across bidders, which are testing
using Pearson correlation test and test for exchangeability (see below for the implementa-
tion).

12Hence, we only look at those bidders who are supposed to be colluding according to
B&Y but one can use any other method to choose the bidders and our method would still
work. As mentioned earlier, it is very difficult to sustain collusion in first-price auction
so assuming that the bidding ring can implement any bidding strategy in the auction is
enough for us, see Marshall and Marx [2007].
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power. To define expected win, consider bidder A, who bids on a total of 50
projects against a varying number of bidders, n` for ` = 1, . . . , 50 then his
expected win is defined to be

∑50
`=1 1/n`. By comparing column 2 and 3, we

see that with the exception of five bidders, all bidders win more contracts
than expected. The fourth column reports the average bid of each main bid-
der in the sample and the fifth column the revenue share computed as the
total value of the bidder’s winning bid as a fraction of the total value of win-
ning bids for all contracts. The last column is the participation rate (i.e. the
bid frequency rate), and bidder D is the one that stands out at 44%. Table
(A-2) provides summary statistics with the following conclusions: (i) on an
average there are slightly more than four bidders; (ii) average winning bid
is $3.33 millions, which is less than the average engineers’ estimate of $3.77
millions while the average bid is $3.79 millions;13 (iii) money on the table–
defined as the difference between the highest and the second highest bid– is
on average $300,000 suggesting informational asymmetry among bidders.
We also find that distance between the bidder’s office and the site of project
has no bearing on the bids, which could be because of the subcontracting
and each bidder having mobile units. And in general higher valued projects
(between $1 million and $20 millions) attract relatively smaller bidders, sug-
gesting that it is the main bidders who can gain the most by colluding and
moreover, larger projects are more profitable, ceteris paribus, see Figure (1).

In the remaining part of this section we present a method of finding bid-
ders who could be colluding from the twenty five bidders listed in table A-
1. To determine potential colluders, we look at patterns that might facilitate
collusion or support the presence of collusion. First, from the theoretical lit-
erature on collusion we know that members of a bidding ring participate in
the same auctions. For the twenty five bidders we consider all combinations
of subgroups and select those bidders that have at least fifteen simultaneous
bids, see Table (A-3). The identity of the bidder is in first column while the
number of simultaneous bids is in the second. Comparing the “expected
win” with the actual win for these pairs, we do see that at least one mem-
ber of the pair wins often which is in line with previous findings, see Table

13Even though there bids are highly correlated (corr. coef. 0.95) with the engineer’s
estimate, the estimates are not binding as 30% of winning bids are above the estimates.
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(A-1). When we compare Table (A-1) and Table (A-3) we see:(i) Firm A ex-
clusively bids against firm D; (ii) Firm E bids remarkably frequently with
both firm A and firm D; (iii) the pairs (D,P) and (A,D) have the highest si-
multaneous bids. All of these suggests that the triplet (A,D,E) and the pair
(D,P) could be considered as potential candidates for collusive rings. Now,
we use the procedure in B&Y to test the criteria of competition developed
by those authors. That is (i) conditional on observables, bids are indepen-
dently distributed; and (ii) bid distributions should satisfy exchangeability.
This set of conditions are necessary for competitive bidding but rejection
does not imply that bidding is collusive.

First, we test independence using a regression–based (reduced form)approach
and consider the fifteen pairs of bidders bidding frequently described above.14

The model used is the following

BIDi`
EE`

= β0 + β1LDISTi` + β2CAPi` + β3UTILi` + β4LMDISTi` + ui` (7)

BIDi`
EE`

= α0 + α1LDISTi` + α2CAPi` + α3UTILi` + α4LMDISTi` + ςi`, (8)

where LDISTi` refers to the logarithm of distance and LMDISTi` refers to the
logarithm of the minimum of distances of all bidders on project `, excluding
i and UTILi` is the utilization rate.15 For the bidders listed in Table (A-3) we
use (7) with bidder–varying coefficients and for the rest we use (8) and use
the pooled data to estimate both models with a project fixed effect. Let ρij

be the correlation between the residual to bidder i’s bid function (ûi`) and
bidder j’s bid function (ûj`), then when we use Pearson’s correlation test for
independence and find that for all but one pair, we reject the null hypothesis
of independence at 5% level. To test exchangeability we follow B&Y and
construct two kinds of tests: exchangeability at the market level by pooling
the fifteen bidders in one group and exchangeability on a pairwise basis.
The null hypothesis of the test is: H0 : βik = β jk for all i, j, i 6= j and for all

14The main reason for conducting pairwise tests is basically driven by the amount of
data because there are relatively few observations for the triplet (A,D,E) in the sample.

15We define the rate as Utilit = Backlogit/Capi (if Cap=0, then Util=0 for all t) and as an
explanatory variable because it could be important in explaining bids (see Jofre-Bonet and
Pesendorfer [2003]). Approximately 60% of bids in the data are explained by capacity but
it varies a lot across bidders.
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k = 1, . . . , 4. Let T = 3, 347 be the number of observations, m the number
of regressors and r the number of constraint implied by H0 then under the
null hypothesis we have

F =
(SSRC − SSRU)/r

SSRU/(T −m)
−→d F(r, T −m).

At the market level, the restricted model imposes that the effect of the four
explanatory variables is the same for potential ring members and the re-
maining bidders (i.e this is the exchangeability hypothesis). The null hy-
pothesis of exchangeability is rejected when comparing the group of po-
tential cartel members against the remaining bidders. Next, we conduct
pairwise tests by pooling bidders accordingly and find that the hypothesis
of exchangeability is rejected at conventional levels for 13 out of 15 pairs
including the pair (D,P), (A,D) and (D,E). Based on the previous analysis
all pairs of bidders considered do not pass at least one of the tests for com-
petitive bidding. However, as mentioned above, taking into account the
number of simultaneous bids, bidders D and P bid simultaneously more
than a handful of times. Also, the triplet (A,D,E) is chosen as a potential car-
tel candidate. Therefore for the subsequent analysis we concentrate on two
groups of candidates, namely the pair (D,P) and the triplet (A,D,E) as type
1 bidders. Firms D and P bid, on average, in projects of smaller size than
the remaining thirteen large bidders (i.e type 2 bidders in the model) and
roughly of the same size as the small bidders (type 0 bidders). At least one
of the bidders participates in 325 projects winning 113 out of 724 contracts
with and average winning bid of $3.67 million. On average the engineers’
estimate in these projects is above the winning bid. The average number
of bidders participating in the 325 contracts is 4.65. Generally speaking,
the data suggest that this pair tends to participate more often in small size
projects with less competition. The other main bidders tend to bid on larger
projects and participate in 312 projects. Type 0 bidders participate in almost
all auctions (666 out of 724). Table A-4 below contains summary statistics
per type when type 1 bidders are the pair (D,P).16

16We want to emphasize that this is just one of potentially many ways to “identify”
bidding ring(s) and it depends on the nature of the data. For example, Conley and Decarolis
[2011] uses some special features in Italian procurement data to identify the bidding ring.
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The triplet (A,D,E) also tends to bid in smaller size projects relative to type
2 bidders. At least one of the bidders participate in 329 projects winning 117
times. The average winning bid for this group is $3.70 million which is
below the average of the engineers’ estimate. There are about five bidders
participating in the projects where the triplet bids see Table (A-5) for some
summary statistics. Hence, when we implement the test, we consider two
cases: one when type 1 bidders are A, D and E (the triplet) and second,
when they are D and P (the pair).

5. IMPLEMENTATION OF THE TESTS

5.1. Visual Method. In this section we look at the estimated cost densities,
for both triplet and pair. Equations (4) and (5) summarize the effect of the
collusive ring on the implied cost as under collusion the effective/actual
number of type 1 bidders is reduced to only one and one should expect to
find the greatest differences when both n0 and n2 are small and n1 is large.
To exemplify the process we only present the results for two values of the
(log) engineers’ estimate, namely 6.1 and 6.5 but the result is same for all
other values. The first corresponds to fairly small projects (around $1.3 mil-
lion) while the second one corresponds to the average estimate in the sam-
ple. To begin with, we first start by changing the number of bidders in group
zero and two i.e. n0 and n2 to see the effect of this on the estimated type 0
and type 2 densities. Figure (2) contain the estimated densities of private
values for type 0 bidders in the triplet–case and the pair–case, respectively.
The distribution of private costs for type 0 bidders exhibits some variation
with respect to n0 for both the triplet–case and the pair–case, nevertheless,
type 0 bidders are fringe bidders which hardly ever win a contract. Similar
exercise for type 2 bidders does not show great variation for different values
of n2 as shown in Figs. (3) and (4) for the triplet and the pair cases, respec-
tively. Unlike the case of type 0 bidders, these results are more in line with
what we would expect if bidders are symmetric (within types) and entry is
exogenous, as we assume.

In order to make the pictures as informative as possible, by controlling
other sources of variation, we look at how the distributions for type 1 bid-
ders change as n2 changes for various values of n1. For the triplet–case, Fig.
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(5) shows the effect on the distributions of type 1 bidders in the competitive
model (Model A, see the first row) and in the collusive model (Model B, see
the second row) when n0 = 0. The results for the case n0 > 0 (not reported)
are similar. The distribution of type 1 bidders shows less variation in the
collusive setup. That is, under the exogeneity assumption and the assump-
tion of symmetry within types, this piece of evidence suggests that bidders
(A,D,E) could be engaged in a collusive agreement. Now, for the pair case
(see Fig. (6)), the results are remarkably the same. The distributions of pri-
vate costs in Model B exhibit less variation than in Model A, thus, providing
additional evidence supporting possibility of presence of collusive ring, for
both n0 = 0, 1.17 Overall, the evidence in the sample tends to favor collusive
model over the competitive model.

5.2. Rank Based Test. In this section we present the result of the rank test.
As mentioned above, this is a non-parametric statistical hypothesis test for
assessing whether the distributions of two random variables is the same.
We implement two versions of this test, namely for matched data (sign rank
test) and for unmatched data (rank sum test). We first computed the test
for the samples of pseudo costs obtained from the estimation procedure, i.e.
assuming that the asymptotic distribution of the tests is not affected by the
fact that we use pseudo costs in lieu of true (unobserved) costs. Since is
possible that the asymptotic distributions of these tests get affected we also
report the bootstrapped version of each test in Table (1).18

TABLE 1. Rank–Based Tests

PAIR CASE TRIPLET CASE
TESTS Statistic p-value Bootstrap p-value Statistic p-value Bootstrap p-value

SIGN RANK 1.1310 0.2583 0.2590 1.3010 0.1914 0.2100
RANK SUM 0.2630 0.7926 0.7930 0.5150 0.6067 0.5990

Source: Own calculations. Sign Rank Test is for the matched data and Rank Sum is for
unmatched data.

17Recall that bidder D is a type 1 bidder in both the triplet–case and the pair–case. More-
over, this bidder participates in 44% of the projects in the sample. Thus, the similarity in
the results for the triplet–case and the pair–case could be driven by the fact that bidder D
is a type 1 bidder in both cases.

18All Bootstrapped results are based on 500 replications.
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As can be seen, in all cases the null hypothesis of equal distributions can-
not be rejected at conventional levels. Thus, the result of this testing pro-
cedure does not support evidence of collusion as we concluded from the
visual method. This is not surprising given that the visual method is by no
means a robust method of inference. For the asymptotic density of the test
see Figure (7).

5.3. KS Test. We next show the results from the KS two sample test. As
before we first implement this test directly on the two samples of pseudo
costs recovered nonparametrically and then we computed the bootstrapped
standard error so that we also report the corresponding p-value, see Table
(2) and Figure (8). These results are again supporting the hypothesis that
both distributions are equal, therefore we conclude that this evidence is in
favor of a model of competition for the Caltrans data set used.

TABLE 2. Kolmogorov–Smirnov Test

PAIR CASE TRIPLET CASE
TESTS Statistic p-value Bootstrap p-value Statistic p-value Bootstrap p-value

KS two sample test 0.0229 1.000 0.259 0.0212 1.000 0.281
Source:Own calculations.

6. CONCLUSIONS

In this paper we propose nonparametric tests that can be used to detect
collusion in first-price asymmetric auctions. The methods is based on struc-
tural estimation and does not require any prior knowledge about collusion.
The tests exploit the difference between the inverse bidding behavior in auc-
tion with and without collusion. The only difference between the two mod-
els is that collusion dwarfs competition so the recovered cost from the data
on bids must be higher under collusion than under competition for type 1
bidders. This suggests that detecting collusion is equivalent to choose one
of the two cost distributions as the true DGP. This, in turn, is equivalent to
say that the cost distribution under collusion first order stochastically domi-
nates the cost under competition. We propose a two steps (model selection)
procedure to detect collusion: (1) First, we determine those bidders who
could be colluding, i.e. whose bids fail independence and symmetry (B&Y);
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and (2) For those bidders we apply a rank based test and a Kolmogorov-
Smirnov test to test the null hypothesis of no domination against domina-
tion. We implement the tests on procurement auction data from California
and find no evidence of collusion even though we implemented the tests
only on those who failed the test for competition. We also propose a visual
method where we look at the effect of bidders on the recovered cost den-
sity. Under the assumption of exogenous entry, we find that the estimated
densities do vary, which is consistent with collusion.

Several extensions to this paper are possible. We could allow for bind-
ing reserve price by implementing the tests on the conditional distribution
instead. We can use the truncated bids data to identify the conditional dis-
tribution of cost (Guerre, Perrigne, and Vuong [2000]). As long as the bid-
ding ring can control the bids of its members, the implementation would be
straightforward.19 Another important extension would be to derive the as-
ymptotic distribution of the tests that we use on estimated (latent) data and
compare it with the Bootstrapped results.20 We could also look at adapting
the test to allow for endogenous entry, when the recovered cost will be cor-
related with the number of bidders and the bidding ring could potentially
use entry decision to facilitate collusion. All of which are very important
steps towards understanding the complex nature of collusion.

19It could happen that the reserve price is too low for the bidding ring thereby effectively
screening them out. If the ring never wins a single auction then we would not be able to
detect those rings, which is not that bad because they never win the auction anyway.

20This extension would be important for testing any structural models. In Aryal and
Gabrielli [2011] we study the problem of non–nested model selection with estimated data
i.e. pseudo data.



Testing for Collusion in Asymmetric First-Price Auctions 21

APPENDIX

A-1. ESTIMATION

We first discuss some practical issues. The skewness of the bid distribu-
tion is a typical problem encountered with auction data. In addition, the use
of kernel estimators is subject to the so–called boundary effect so that some
kind of trimming is often used.21 As a consequence it is common practice
among empirical researchers to use a logarithmic transformation in order to
keep a substantial number of observations after trimming (see for example
Li and Perrigne [2003]). For notational simplicity we suppress the depen-
dance of the distributions on (X, N). Later, when presenting the estimators
we include these variables explicitly. Applying the log transformation to
system (4) for MA and MB, respectively gives

ckM = ξk(dk, n) = 10dk − 10dk

(nk − 1) gkd(dk)
1−Gkd(dk)

+ n1
g1d(dk)

1−G1d(dk)
+ n(2−k)

g(2−k)d(dk)

1−G(2−k)d(dk)

;

c1A = ξ1(d1, n) = 10d1 − 10d1

n0
g0d(d1)

1−G0d(d1)
+ (n1 − 1) g1d(d1)

1−G1d(d1)
+ n2

g2d(d1)
1−G2d(d1)

;

c1B = ξ1(d1) = 10d1 − 10d1

n0
g0d(d1)

1−G0d(d1)
+ n2

g2d(d1)
1−G2d(d1)

, (9)

where the first equation is for k = 0, 2, M = A, B and dk = log(bk), Gkd(·), gkd(·)
are the distribution and density of log(bk), k = 0, 1, 2. As noted earlier, some
kind of trimming is often needed due to the bad behavior of kernel esti-
mators close to the boundaries of the support of bids. Following Guerre,
Perrigne, and Vuong [2000] we use

ĉki` =

{
ξk(di`) if dmin + $ max{hg, hG}/2 ≤ di` ≤ dmax − ρ max{hg, hG}/2;

+∞ otherwise.

21To avoid trimming we could have used LPEs instead of kernels in the first step. How-
ever, here it does not matter because we are mainly interested in assessing the center of the
distributions of private costs.



22 GAURAB ARYAL AND MARIA F. GABRIELLI

for k = 0, 1, 2, i = 1, . . . , nk and ` = 1, . . . , L, where dmin and dmax are the
minimum and maximum of log bids respectively, hg, hG are bandwidths
and $ is the length of the support of the kernel.22

Let Sdk
(d|x, n) = Pr(D ≥ d|x, n). Then, the hazard rate functions involved

in the expressions for private costs given by the system of equations in (9)
can be written as

gdk
(d|x, n)

1− Gdk
(d|x, n)

=
gdk

(d|x, n)
Sdk

(d|x, n)
=

gdk
(d, x, n)

Sdk
(d, x, n)

for k = 0, 1, 2. Let Tk denote the total number of observations for bid-
ders of type k. We consider L auctions in which different types of bidders
participate. Thus bidder i, i = 1, . . . , nk of type k participates in auction
` = 1, . . . , L. Relabeling bidders such that j = (i, `), i.e. the ith bidder in
auction `, the sample consists of observation (dj, xj, nj).23,24 Thus, the esti-
mators involved in the first step are

ĝk(d, x, n) =
1

Tkhp+1
g

Tk∑
j=1

Kg

(d− Dj

hg
,

x− Xj

hg
,

n− nj

hgn

)
,

Ŝk(d, x, n) =
1

Tkhp
Gx

Tk∑
j=1

1I(dj ≥ d)KG

(x− Xj

hG
,

n− nj

hGn

)
.

With the sample of pseudo private costs Ĉ in the second step we estimate

the cost densities as f̂k(c|x, n) = f̂k(c,x,n)
q̂m(x,n) , where

f̂k(c, x, n) =
1

Tkhp+1
f

Tk∑
j=1

K f

(
c− Ĉj

h f
,

x− Xj

h f
,

n− nj

h f n

)
,

q̂m(x, n) =
1

Tkhp
q

Tk∑
j=1

Kq

(x− Xj

hq
,

n− nj

hqn

)
.

22Without loss of generality we set dmin = 0.
23To keep the notation simple, we just include nj in the formulas above. However, for

the computation of the estimator we have used n0k, n1k and n2k separately.
24Recall that X characterizes auction heterogeneity, thus it only varies across auctions.

In terms of the notation used this means that Xj = X`. In other words, for each auction
` the value x is the same for all bidders participating in that auction. A similar argument
applies to the number of bidders, N`.
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The functions Kg(·), KG(·), K f and Kq(·) are kernels. The bandwidths for
the continuous variables are denoted hG, hg, hq and h f . The bandwidths for
the discrete variables are hGn, hgn, hqn and h f n. Now, we discuss the choices
of kernels and bandwidths.

A-1.1. Choices of Kernels and Bandwidths. As it is well known in the non-
parametric econometric literature, the choice of kernel is not crucial in prac-
tice. The estimators in this paper are multivariate kernels which are com-
puted as the product of univariate kernels. That is

Km

(
a− Ak

hg
,

b− Bk
hg

,
n− Nk

hgn

)
= Ka

(
a− Ak

hg

)
Kb

(
b− Bk

hg

)
Kn

(
n− Nk

hgn

)
,

where Km(·) refers to the multivariate kernel, Ka(·) and Kb(·) denote the
univariate kernels corresponding to the continuous variables A and B, say,
and Kn(·) is the kernel for the discrete variables. Recall that Kn ≡ Kn0Kn1Kn2 .

The econometric procedure follows closely that of Guerre, Perrigne, and
Vuong [2000]. The kernels for continuous variables are required to be sym-
metric with bounded supports (Assumption A3 in Guerre, Perrigne, and
Vuong [2000]). Thus, we decide to use the tri-weight kernel function de-
fined as K(u) = 35/32(1− u2)31I(|u| ≤ 1) for these variables, namely d, x
and c. The compact support of this function implies that only non–trimmed
private costs are used in the second step to obtain the corresponding latent
densities.

We use Gaussian Kernel, instead of the tri-weight for the discrete vari-
ables because there is relatively small variation in the number of bidders
and it is desirable to give more weight to observations farther from the
point at which estimation takes place. This is best achieved with a kernel
with unbounded support.25 The smoothness of the distribution of private
values is denoted by R, we assume R = 1. The bandwidths’ choice is critical
in nonparametric estimation. To ensure the uniform consistency at the opti-
mal convergence rates of the estimators the bandwidths for the continuous
variables are of the following form: hg = 1.06× 2.978× σ̂ × (T)−1/(2R+4),
hG = 1.06× 2.978× σ̂× (T)−1/(2R+3), h f = 1.06× 2.978× σ̂× (Tτ)−1/(2R+4)

25There are no theoretical restrictions to the kernels applied to discrete variables.



24 GAURAB ARYAL AND MARIA F. GABRIELLI

hq = 1.06× 2.978× σ̂× (Tτ)−1/(2R+3). The constant term comes from the so–
called rule of thumb and the factor 2.978 is the one corresponding to the use
of triweight kernels instead of Gaussian kernels (see Hardle [1991]) and Tτ

denotes the number of observations kept after trimming. There are 47 band-
widths involved in the whole estimation procedure, with 27 being used in
the first step and 20 in the second step. Some bandwidths correspond to the
continuous variables, while others to the discrete variables; see Table (A-6)
and (A-7).

A-2. UNOBSERVED HETEROGENEITY

In this section we show how the tests can be implemented when there is
unobserved heterogeneity. In particular we consider the unobserved hetero-
geneity of multiplicative form as in Krasnokutskaya [2011], where the cost
of a bidder i in an auction ` is given by c̃i` = y`× ci`. Krasnokutskaya [2011]
shows that (suppressing the index for auction and asymmetry in bidders):

(1) The bids with auction heterogeneity y is just y times the bids without
auction heterogeneity;26

(2) Under the assumption of independence between y` and ci` the model
structure [FY(·), FC(·)] can be nonparametrically identified.

So, in every auction, y` is common and affects all bid in the same way (bids
are multiplied by y), the variation in bids must be through the individual
cost, which is independent of y`. Therefore, whether y = 1 or y 6= 1, un-
der collusion (MB) the pseudo–cost recovered must be higher than under
competition (MA) - for type 1 bidders. So, we could estimate the cost distri-
bution using the procedure in section 4 of Krasnokutskaya [2011] and then
implement all the tests. But because the estimation procedure is different
as it requires using sample characteristic function determining the exact as-
ymptotic distributions is even more difficult and is beyond the scope of this
paper and is left for future research.

26 Because ‘no–unobserved heterogeneity’ is a special case of unobserved heterogeneity
when y` = 1, ∀` = 1, . . . , L, if sik(·) is the bidding strategy when y = 1 and βik(·) when
y 6= 1 then βik(c̃ik) = βik(y× cik) = y× sik(cik).



Testing for Collusion in Asymmetric First-Price Auctions 25

A-3. TABLES AND FIGURES

TABLE A-1. Revenue Shares and Participation of Main Firms

Firm Number of Number of Exp. Number Average bid Revenue Participation
ID Bids wins of wins (Mill. $) Share rate

A 50 9 10.34 4.83 0.020 0.07
B 34 13 10.51 3.21 0.012 0.05
C 43 9 10.46 5.32 0.013 0.06
D 319 97 87.32 3.61 0.145 0.44
E 46 11 10.15 4.49 0.015 0.06
F 42 15 10.70 3.63 0.016 0.06
G 25 12 5.84 4.09 0.027 0.03
H 26 6 5.16 5.03 0.011 0.04
I 21 7 4.27 4.54 0.012 0.03
J 20 9 4.69 3.84 0.015 0.03
K 34 4 6.90 8.44 0.019 0.05
L 35 16 7.95 4.32 0.020 0.05
M 29 13 6.94 3.69 0.016 0.04
N 9 3 1.55 6.33 0.012 0.01
O 31 5 6.82 6.37 0.011 0.04
P 50 16 12.95 4.03 0.027 0.07
Q 33 9 6.31 3.35 0.017 0.05
R 28 10 8.10 3.48 0.012 0.04
S 47 12 8.82 4.37 0.021 0.06
T 25 13 5.99 3.75 0.021 0.03
U 68 16 15.22 4.77 0.026 0.09
V 26 7 4.78 5.75 0.025 0.04
W 41 11 7.18 2.92 0.019 0.06
X 41 7 10.27 4.50 0.021 0.06
Y 11 4 1.89 6.04 0.012 0.02
Total 1148 351 282 0.57

Only bidders with revenue shares ≥ 1% are reported.

TABLE A-2. Summary Statistics

No. observations Mean SD

No. Bidders 724 4.62 2.37
Winning bid 724 3.33 3.11
Money on the table 724 0.30 0.46
Engineers’ Estimate 724 3.77 3.49
All Bids 3347 3.79 3.51
Backlog 3347 4.30 9.76
Distance (miles) 3347 123.98 162.93
Capacity (across bidders) 413 2.30 5.69
Utilization rate 3347 0.20 0.32

All dollar figures are expressed in millions. Utilization rate is the ratio of backlog to
capacity.
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TABLE A-3. Simultaneous Bids

Firm Simultaneous Expected First Bidder Second Bidder
Pair Bids Wins Wins Wins

(A,D) 44 9.03 9 5
(A,E) 20 4.05 3 6
(B,D) 29 9.51 12 10
(C,D) 17 5.65 5 9
(D,E) 41 8.67 8 9
(D,F) 26 7.46 5 9
(D,H) 19 3.92 7 3
(D,I) 18 3.68 1 7
(D,O) 25 5.16 7 5
(D,P) 44 11.08 13 14
(D,R) 27 7.96 10 10
(D,V) 22 4.20 5 6
(D,W) 19 2.97 2 3
(M,X) 22 4.91 11 2
(W,X) 15 2.81 5 2

TABLE A-4. Summary Statistics per Type

Type 0 Type 1=(D,P) Type 2
Number of Mean Number of Mean Number of Mean

observations (S.E) observations (S.E) observations (S.E)

No. Bidders 666 4.81 325 4.65 312 5.17
(2.36) (2.46) (2.77)

Winning bid 488 3.07 113 3.67 123 4.01
(2.93) (3.08) (3.65)

Money on the table 488 0.28 113 0.29 123 0.36
(0.46) (0.34) (0.53)

Engineers’ Estimate 666 3.64 325 3.74 312 4.32
(3.38) (3.27) (3.72)

All Bids 2520 3.69 369 3.66 458 4.41
(3.49) (3.18) (3.81)

Backlog 2520 1.37 369 24.60 458 4.05
(3.40) (16.44) (6.00)

Distance (miles) 2520 116.98 369 194.29 458 105.85
(168.91) (98.51) (157.12)

Capacity (across bidders) 398 1.67 2 39.12 13 15.73
(4.09) (32.07) (6.09)

Utilization rate 2520 0.16 369 0.42 458 0.25
(0.32) (0.26) (0.32)

All dollar figures are expressed in millions.
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TABLE A-5. Summary Statistics per Type

Type 0 Type 1=(A,D,E) Type 2
Number of Mean Number of Mean Number of Mean

observations SD observations SD observations SD

No. Bidders 666 4.81 329 4.66 306 5.08
2.36 2.45 2.76

Winning bid 488 3.07 117 3.70 119 3.99
2.93 3.12 3.63

Money on the table 488 0.28 117 0.30 119 0.36
0.46 0.34 0.54

Engineers’ Estimate 666 3.64 329 3.76 306 4.35
3.38 3.34 3.77

All Bids 2520 3.69 415 3.85 412 4.30
3.49 3.34 3.75

Backlog 2520 1.37 415 22.75 412 3.62
3.40 16.64 5.39

Distance (miles) 2520 116.98 415 146.87 412 143.74
168.91 100.69 172.66

Capacity (across bidders) 398 1.67 3 31.72 12 15.63
4.09 26.84 5.72

Utilization rate 2520 0.16 415 0.42 412 0.23
0.32 0.28 0.30

All dollar figures are expressed in millions.

TABLE A-6. Bandwidths used in the triplet–case

First Step
Continuous Variables Discrete Variables
hgd0 0.276 hg0n0 0.624 hG0n0 0.481
hgx0 0.272 hg0n1 0.417 hG0n1 0.321
hGx0 0.209 hg0n2 0.624 hG0n2 0.481
hgd1 0.372 hg1n0 0.826 hG1n0 0.676
hgx1 0.382 hg1n1 0.735 hG1n1 0.601
hGx1 0.313 hg1n2 0.826 hG1n2 0.676
hgd2 0.400 hg2n0 0.894 hG2n0 0.732
hgx2 0.394 hg2n1 0.734 hG2n1 0.600
hGx2 0.323 hg2n2 0.894 hG2n2 0.732

Second Step
Continuous Variables Discrete Variables
h f0c 0.246 h f0n0 0.628
h f0x 0.224 h f0n1 0.426
h f1Ac 0.334 h f0n2 0.628
h f1Ax 0.326 h f1An0 0.852
h f1Bc 0.334 h f1An1 0.979
h f1Bx 0.316 h f1An2 0.852
h f2c 0.360 h f1Bn0 0.854
h f2x 0.339 h f1Bn1 0.726

h f1Bn2 0.854
h f2n0 0.932
h f2n1 0.730
h f2n2 0.932
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TABLE A-7. Bandwidths used in the pair–case

First Step
Continuous Variables Discrete Variables
hgd0 0.276 hg0n0 0.624 hG0n0 0.481
hgx0 0.272 hg0n1 0.417 hG0n1 0.321
hGx0 0.209 hg0n2 0.624 hG0n2 0.481
hgd1 0.369 hg1n0 0.963 hG1n0 0.791
hgx1 0.379 hg1n1 0.441 hG1n1 0.362
hGx1 0.311 hg1n2 0.963 hG1n2 0.791
hgd2 0.396 hg2n0 1.049 hG2n0 0.856
hgx2 0.392 hg2n1 0.539 hG2n1 0.439
hGx2 0.319 hg2n2 1.049 hG2n2 0.856

Second Step
Continuous Variables Discrete Variables
h f0c 0.246 h f0n0 0.628
h f0x 0.225 h f0n1 0.426
h f1Ac 0.332 h f0n2 0.628
h f1Ax 0.324 h f1An0 0.973
h f1Bc 0.342 h f1An1 0.597
h f1Bx 0.316 h f1An2 0.973
h f2c 0.353 h f1Bn0 0.978
h f2x 0.336 h f1Bn1 0.449

h f1Bn2 0.978
h f2n0 1.086
h f2n1 0.548
h f2n2 1.086

FIGURE 1. Bidder Concentration
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FIGURE 2. f̂0(·) with various values of n0
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FIGURE 3. f̂2(·) with varying n2- triplet–case
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FIGURE 4. f̂2(·) with varying n2 - pair–case
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FIGURE 5. f̂1(·) with varying n2 - triplet–case
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FIGURE 6. f̂1(·) with varying n2- pair–case
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FIGURE 7. Bootstrapped density for MWW test
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