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PARAMETRIC CONDITIONAL MONTE CARLO
DENSITY ESTIMATION

YIN LIAO AND JOHN STACHURSKI

ABSTRACT. In applied density estimation problems, one often has data not
only on the target variable, but also on a collection of covariates. In this pa-
per, we study a density estimator that incorporates this additional informa-
tion by combining parametric estimation and conditional Monte Carlo. We
prove an approximate functional asymptotic normality result that illustrates
convergence rates and the asymptotic variance of the estimator. Through sim-
ulation, we illustrate the strength of its finite sample properties in a number
of standard econometric and financial applications.

1. INTRODUCTION

The classical problem of estimating the density f of a random vector Yt is most
often studied and carried out using observations of Yt alone. However, in
many practical settings, we have at hand observations of other random vari-
ables that are correlated with or otherwise related to Yt. If we possess a model
that gives some identification of the relationship between Yt and these covari-
ates, then a natural idea is to try to use observations of these covariates as
additional data, in order to improve our estimate of the density of Yt.

The particular setting we consider here is the following: In addition to the orig-
inal data Y1, . . . , Yn, we also observe a vector of covariates X1, . . . , Xn where
{Xt} is a stationary and ergodic stochastic process taking values in setX. Sup-
pose further that Yt is related to Xt via

Yt = G(Xt, ξt, θ) for some θ ∈ Θ (1)

The function G is assumed known up to the vector of parameters θ, while
{ξt} is IID and unobservable. For now {Xt} is taken to be fully observable, al-
though more general cases are considered later on. We also assume parametric
knowledge about the process generating {Xt}. In particular, we suppose that

Xt+1 = H(Xt, ηt+1, θ) with {ηt}t≥1
IID∼ υ (2)
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As stated above, the process (2) is taken to be stationary and ergodic.

Given that {Xt} and {ξt} are both stationary, the target process {Yt} is likewise
stationary. We let

• f = f (·, θ) denote the common stationary (i.e., marginal) density of Yt

• φ = φ(·, θ) denote the common stationary distribution of Xt

The relationship between f and φ can be expressed in terms of the condi-
tional density implied by the relationship (1). Letting p(· | x, θ) be the density
of the random variable G(x, ξt, θ),1 the conditional density of Yt given Xt is
p(· |Xt, θ), and integrating over Xt recovers the marginal density of Yt. That
is,

f (y, θ) =
∫

p(y | x, θ)φ(dx, θ) (y ∈ Y) (3)

The problem considered here is estimation of the density f (·, θ) given the ob-
served data {(Xt, Yt)}n

t=1. In addition to the data, we make use of the informa-
tion provided by the parametric relationships (1) and (2).

Some preliminary comments about the formulation of the problem are in or-
der. First, the assumption that {Xt} satisfies (2) is far less restrictive than it
appears. Most models with extra lagged state variables and correlated shock
processes can be expressed in the form of (2) by redefining the state vector. In
fact it is well-known that any time homogeneous Markov process on a separa-
ble and completely metrizable space can be be expressed in the form of (2) for
suitable choice of H and {ηt}t≥1.2 Similarly, the specification (1) can accom-
modate correlated shocks by redefining Xt to include any non-IID variables.

A second remark is that although the law of motion H in (2) and the function G
in (1) share the same parameter vector θ, this is just for notational convenience.
In many applications, H will depend on some vector of parameters γ and G
will depend on a second and unrelated parameter vector β. However, in this
case we take θ := (β, γ) and adjust the definitions of G and H accordingly.
Thus, θ should simply be regarded as a vector that contains all of the unknown
parameters in our setting.

A third remark is that although the stationary distribution φ is formally de-
fined by the model (2) for each θ, outside of the linear Gaussian case it is typ-
ically intractable. When φ is intractable, or even when it is not, the integral
in (3) will usually be intractable, and in most cases there will be no analytical

1Existence requires that the distribution of G(x, ξt, b) is absolutely continuous for all x, b.
2For a proof see Bhattacharya and Majumdar (2007, proposition C1.1).
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expression available for f . The estimation technique we consider in this paper
accommodates this lack of analytical tractability via simulation.

In particular, to estimate f , the procedure we consider is:

(1) Use some estimator θ̂n to estimate the parameter vector θ.
(2) Generate m IID draws {ηt}m

t=1 from their distribution υ in (2), and com-
pute the simulated process {Xs

t}m
t=1 via

Xs
t+1 = H(Xs

t , ηt+1, θ̂n), Xs
0 = x ∈ X (4)

(3) Return the estimate

f̂m(y, θ̂n) :=
1
m

m

∑
t=1

p(y |Xs
t , θ̂n) (5)

Here and below, the superscript “s” is a mnemonic for simulation. In what
follows, we refer to the estimator (5) as the parametric conditional Monte Carlo
(PCMC) density estimator.3

The intuition behind convergence of the PCMC density estimator is as follows:
The stationary distribution of (4) is φ(dx, θ̂n) and, since the law of motion (2)
is assumed to be ergodic, we have

1
m

m

∑
t=1

p(y |Xs
t , θ̂n) ≈

∫
p(y | x, θ̂n)φ(dx, θ̂n) for large m

If θ̂n is consistent for the true parameter θ0 and m is large, then, assuming some
degree of continuity, the right-hand size is approximately

∫
p(y | x, θ0)φ(dx, θ0).

In view of (3) this integral is equal to f (y, θ0), the true density of Yt.

Details of the asymptotic properties of the PCMC density estimator are pro-
vided in section 2. We show that when θ̂n is

√
n-consistent for the true pa-

rameter θ0, the PCMC density estimator is
√

n-consistent for the true density
f (·, θ0) in the sense of L2 deviation, modulo the error caused by simulation.
The simulation error is itself of order O(m−1/2). These result is established via
an approximate functional central limit theorem.

In addition to situations where the density itself is of primary interest (e.g.,
density forecasting), the PCMC density estimator may be applied to a wide

3The choice of x in (4) is arbitrary, and our asymptotic results are valid for any selection.
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range of statistical problems where density estimates are an input, such as dis-
criminant (Fix and Hodges, 1951) and cluster (Gordon, 1981) analysis.4 Den-
sity estimators can also be used to address specification testing or model val-
idation problems (e.g., Aı̈t-Sahalia et al., 2009, 2010). Finally, many statistical
problems require estimates of functionals of the density, such as quantiles and
hazard rates, and these functionals can be evaluated once the density is esti-
mated.

A natural way to place the PCMC density estimator in the literature is to com-
pare it to the density estimator proposed by Zhao (2009). Zhao assumes the
same parametric knowledge contained in (1), but makes no parametric as-
sumptions regarding the process {Xt}. He assumes only that this process is
suitably stationary and ergodic. His procedure is to estimate the unknown
parameters in (1) using some estimator θ̂n, and then estimate f via

ẑn(y, θ̂n) :=
1
n

n

∑
t=1

p(y |Xt, θ̂n) (6)

Zhao shows consistency and asymptotic normality of ẑn under rather general
conditions (Zhao, 2009, theorem 1). The difference between ẑn and our esti-
mator f̂m is that f̂m uses a parametric assumption about the {Xt} process to
produce simulated X-data, while Zhao’s estimator uses observed X-data. For
f̂m, the simulated data size m will typically be much larger than n (the size of
the observed data set).

It goes without saying that the PCMC density estimator and ẑn are not di-
rectly comparable. Zhao’s estimator makes no parametric assumptions about
the process {Xt}, and is therefore more robust to misspecification. On the
other hand, the PCMC density estimator has the usual finite sample advan-
tages parametric methods enjoy over nonparametric methods when the para-
metric specification is correct. However, what can be said here is that if we do
assume that the parametric specification is correct, then several features of the
current setting imply that the PCMC density estimator has several important
advantages over and above these usual finite sample advantages. These points are
addressed in detail in section 3.

4The basic problem behind discriminant analysis is: Given a sample known to come from
a population A, a sample known to come from population B, and a new observation Z, does
Z come from population A or B? Density estimates for population A and population B can
be used to classify Z. Cluster analysis is used to divide a given population into a number of
classes. Density estimation can be used to define a hierarchical structure on a set of samples
in order to discover classes.
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While the PCMC density estimator introduced in this paper is most closely
related to the estimator of Zhao (2010) described above, the idea of using ob-
servations of covariates to improve density estimates can be found in a number
of other papers. Other parametric density estimates using this idea were pro-
posed by Saaverdra and Cao (2000), Schick and Wefelmeyer (2004, 2007) for
linear processes, by Frees (1994) and Gine and Mason (2007) for functions of
independent variables, and by Kim and Wu (2007) for nonlinear autoregres-
sive models of order one with constant variance.

The structure of our paper is as follows:

2. CONSISTENCY AND ASYMPTOTIC NORMALITY

In this section we discuss theoretical properties of the PCMC density estimator.
To simplify the arguments, we assume throughout this section that the station-
ary distribution φ(dx, θ) of Xt can be expressed as a density (with respect to
Lebesgue measure) for all θ ∈ Θ. This density will be written as φ(x, θ)dx. In
addition, when our parametric assumptions in (1) and (2) are taken as valid,
we let θ0 represent the true value of the parameter vector θ. It follows that the
true density of Yt is given by

f (y, θ0) :=
∫

p(y | x, θ0)φ(x, θ0)dx

The set Θ is taken to be a subset of RM. To simplify notation, in the sequel we
let

d(x, y, θ) := φ(x, θ)


∂

∂θ1
p(y | x, θ)

...
∂

∂θM
p(y | x, θ)

+ p(y | x, θ)


∂

∂θ1
φ(x, θ)

...
∂

∂θM
φ(x, θ)


whenever the derivatives exist. In particular, d(x, y, θ) is the M-vector of par-
tial derivatives obtained by differentiating the product p(y | x, θ)φ(x, θ) with
respect to θ, holding x and y constant.

Below we present an approximate L2 central limit theorem for the deviation
between the PCMC density estimator f̂m(·, θ̂n) and the true density f (·, θ0). In
what follows, we take Y to be a Borel subset of Rd, and the symbol L2(Y)

represents the set of (equivalence classes of) Borel measurable functions that
are square integrable with respect to Lebesgue measure. As usual, the inner
product of two elements g and h of L2(Y) is defined as 〈g, h〉 :=

∫
g(y)h(y)dy

and the norm is ‖g‖ :=
√
〈g, g〉.
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Recall that a random element W of L2(Y) is called centered Gaussian if 〈h, W〉
is zero-mean Gaussian on R for all h ∈ L2(Y). Alternatively, W is centered
Gaussian if its characteristic function has the form

ψW(h) := E exp{i〈h, W〉} = exp
{
−〈h, Ch〉

2

}
(h ∈ L2(Y))

for some positive self-adjoint linear self-mapping C on L2(Y). C is called
the covariance operator of W. It also satisfies (and is uniquely defined by)
〈g, Ch〉 := E〈g, W〉 〈h, W〉 for all g, h ∈ L2(Y).5

To prove the main result of this section, we require some differentiability and
ergodicity assumptions. Our differentiability assumption is as follows:

Assumption 2.1. There exists an open neighborhood V of the true parameter
θ0 and a function g : X×Y → R such that

(1) The function g satisfies
∫ {∫

g(x, y)dx
}2 dy < ∞.

(2) The maps θ 7→ p(y | x, θ) and θ 7→ φ(x, θ) are continuously differen-
tiable over the neighborhood V for all fixed (x, y) ∈ X×Y.

(3) The vector d(x, y, θ) of partial derivatives satisfies

sup
θ∈V
‖d(x, y, θ)‖E ≤ g(x, y) for all (x, y) ∈ X×Y

In assumption 2.1, the symbol ‖ · ‖E is the euclidean norm on RM. (The sub-
script E is used to differentiate the euclidean norm from the L2 norm ‖ · ‖.)

Assumption 2.2. The process {Xt} is V-uniformly ergodic, with unique sta-
tionary density φ(·, θ) on X.

The V-uniform ergodicity condition is quite standard, and a precise definition
can be found in Meyn and Tweedie (2009, chapter 16). The condition is at-
tractive because it combines widespread applicability with relatively strong
implications (in terms of laws of large numbers and central limit theorems).
Kristensen (2008) gives detailed condition for V-uniform ergodicity of many
common time series models, including linear and nonlinear state space mod-
els, VARMA models, nonlinear ARMA models, random coefficient models,
bilinear models, and a variety of univariate and multivariate GARCH mod-
els. Nishimura and Stachurski (2005) establish V-uniform ergodicity for the
stochastic optimal growth model under weak Inada-type conditions.

Assumption 2.3. The sequence {θ̂n} is asymptotically normal, in the sense that
√

n(θ̂n − θ0)
d→ N(0, Σ) for some symmetric positive definite matrix Σ = (σij).

5Further details on Hilbert space valued random variables can be found in Bosq (2000).
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Next we present a functional central limit theorem for the error. The theorem
states that the distribution of the error is well approximated by a centered
Gaussian on L2(Y) when the simulation and sample sizes are both large.

Theorem 2.1. Let αm(y) :=
∫

dm(x, y, θ0)dx for m = 1, . . . , M. If assumptions 2.1–
2.3 are valid, then

√
n{ f̂m(·, θ̂n)− f (·, θ0)} =

1√
m

OP(1) + Wn (7)

where Wn converges in distribution to a centered Gaussian in L2(Y) with covariance
operator C defined by

〈g, Ch〉 =
M

∑
i=1

M

∑
j=1

σij 〈αi, g〉 〈αj, h〉 (h, g ∈ L2(Y))

In the theorem,
√

n{ f̂m(·, θ̂n) − f (·, θ0)} is treated as a random element of
L2(Y). The expression m−1/2OP(1) + Wn on the right-hand side of (7) should
be interpreted to mean m−1/2Um,n + Wn where {Um,n} is a collection of ran-
dom elements in L2(Y) such that ‖Um,n‖ is bounded in probability over m for
every fixed n. Since m is the simulation size and can be made arbitrarily large
relative to n, the effect of the term m−1/2OP(1) will typically be negligible.

The functions αm in the definition of the covariance operator C are defined
by αm(y) :=

∫
dm(x, y, θ0)dx, which is the integral of the partial derivative of

p(y | x, θ)φ(x, θ) with respect to θ. As shown in section 6, under the conditions
of the theorem, the order of the derivative and integral can be reversed, so

αm(y) =
∂

∂θm

∫
p(y | x, θ0)φ(x, θ0)dx =

∂

∂θm
f (y, θ0)

Using this fact, we can express C as the integral operator with kernel

k(y, y′) := Dθ f (y, θ0)
>ΣDθ f (y′, θ0)

In particular, C is defined from k via

〈g, Ch〉 :=
∫ ∫

k(y, y′)g(y)h(y′)dydy′

(In the definition of k, Dθ f represents the vector of partial derivates of f with
respect to θ.) Thus, the asymptotic variance in the density estimator reflects
the variance in the parameter estimate θ̂n transferred via the slope of the den-
sity estimate with respect to the parameters in the neighborhood of the true
parameter.
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3. SEMIPARAMETRIC VS PARAMETRIC ESTIMATION

In this paper, the aim is to estimate f efficiently by exploiting the existence of
data on correlated variables via the relationship (3). In order to exploit (3), one
must estimate both p and φ. The PCMC density estimator estimates p para-
metrically, and φ by a combination of parametric estimation and simulation.
For comparison, recall that Zhao’s estimator is given by (6). Letting φn be the
empirical distribution of the sample X1, . . . , Xn, this can also be written as

ẑn(y, θ̂n) =
∫

p(y | x, θ̂n)φn(dx) (8)

While p is estimated parametrically, the distribution φ is unrestricted, and esti-
mated by the nonparametric empirical distribution φn. Thus, Zhao’s estimator
is a semiparametric estimator, differing from the PCMC density estimator only
in the way that φ is estimated.

As discussed in the introduction, the PCMC density estimator and Zhao’s es-
timator are not directly comparable. Zhao’s estimator requires no parametric
specification of the dynamics of {Xt}, and hence is more robust to misspec-
ification. At the same time, since the empirical distribution is globally

√
n-

consistent, Zhao’s semiparametric estimator retains the
√

n-consistency of the
parametric scheme.

On the other hand, if the parametric specification of the {Xt} process in the
PCMC density estimator is correct, then the additional information embedded
in the parametric model can improve finite sample properties. In the current
setting, however, there are further advantages of the parametric approach that
are deeper, and less immediately apparent. Provided that the estimation pro-
cedure is structured to exploit these additional advantages, the gains from the
parametric alternative can be large. These ideas are described in the remainder
of this section.

3.1. Preservation of Dependence Structure. For the PCMC density estimator,
using the parametric model (2) to estimate the data generating process for {Xt}
provides, in addition to the extra structure from the parametric model, the abil-
ity to preserve and exploit the dependence structure in the data X1, . . . , Xn.
This dependence structure is discarded in Zhao’s estimator, because the esti-
mator is invariant to the order of the sample. Indeed, the difference between
the PCMC density estimator and Zhao’s estimator is that the latter estimates φ

using the empirical distribution, and the empirical distribution is invariant to
any reordering of X1, . . . , Xn.
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Of course this is an unfair comparison, since Zhao’s estimate of φ is nonpara-
metric and hence robust to parametric misspecification. To make a more nat-
ural comparison, consider the following estimation technique, which is a di-
rect parametric alternative to Zhao’s estimator, and conceptually lies between
Zhao’s estimator and the PCMC density estimator:

(1) Specify a parametric form φ(x, γ) for the stationary density of Xt.
(2) Estimate the parameters θ in the function (1) and γ in the density φ(x, γ)

via some estimators θ̂n and γ̂n.
(3) Return the estimate

ẑP
n(y) :=

∫
p(y | x, θ̂n)φ(x, γ̂n) (9)

The difference between Zhao’s estimator ẑn and ẑP
n is that ẑP estimates φ para-

metrically. The difference between ẑP and the PCMC density estimator is that,
in the case of ẑP, parametric specification is placed directly on the station-
ary density φ of Xt, rather than specifying a data generating process for {Xt}
such as (2). (Note also that ẑP also uses an exact integral in (9), rather than a
simulation-based approximation like the PCMC density estimator. In applica-
tions this integral will rarely be tractable, and hence ẑP is not a practical alter-
native. We are interested in ẑP only to the extent that it is useful to illustrate
the value of preserving dependence structure in {Xt}.)

Like Zhao’s estimator, the estimator ẑP
n will typically discard information on

the dependence structure of {Xt}, in the sense that it will be invariant to the
order of X1, . . . , Xn. For example, suppose we believe that the process for {Xt}
is a linear process Xt+1 = AXt + BWt+1 with {Wt} a vector zero mean Gauss-
ian. To implement the estimator ẑP

n , we observe that the stationary distribution
φ corresponding to this law of motion is of the form φ(·, γ) = N(0, γ) for some
covariance matrix γ. The maximum likelihood estimator of γ is

γ̂n :=
1
n

N

∑
t=1

(Xt − X̄)(Xt − X̄)>

This estimator is invariant to any permutation of the sample X1, . . . , Xn, and
hence the dependence information in this sample is not used to estimate γ, or
anywhere else in the estimator ẑP

n .

On the other hand, the PCMC density estimator would start by estimating the
unknown parameters in the process Xt+1 = AXt + BWt+1 directly. A standard
estimator such as least squares would not be invariant to a permutation of
X1, . . . , Xn. Thus, the information in the order of the X sample is not discarded.
In this sense, the PCMC density estimator uses parametric assumptions to not
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only provide additional structure, but also to allow the information in the or-
der of X1, . . . , Xn to be exploited. The gains from exploiting this information
are discussed in sections 4.1 and 4.2.

3.2. Latent Variables. Another advantage of the parametric approach to our
density estimation problem is that it allows us to treat latent variables. A large
number of modern time series estimation techniques include some kind of la-
tent variables. Examples include latent state space, latent factor and hidden
Markov models, regime switching models, GARCH models and stochastic
volatility models. In all these models, the process {Xt} is not fully observ-
able, and the empirical distribution of {Xt}n

t=1 cannot be computed. Thus, the
semiparametric estimator zn in (6) cannot be directly implemented.

On the other hand, the PCMC density estimator can be applied to all of the
above examples. For example, if the vector Xt contains a latent volatility term,
we can estimate the dynamics of the process using a GARCH or stochastic
volatility model. Once the dynamics of the process {Xt} are estimated, the
process can be simulated and the PCMC density estimator can be constructed.
Applications along these lines are presented in sections 4.4 and 4.5.

3.3. Autoregressive Models. As discussed above, the PCMC density estima-
tor obtains some important benefits from using a parametric specification for
the DGP of {Xt}. Estimating the parametric specification Xt+1 = H(Xt, ηt+1, θ)

allows us to exploit the information contained in the order of the sample {Xt}n
t=1,

and also to work with latent variables. Moreover, if the parametric specifica-
tion is correct, then the parametric structure will aid estimation of the station-
ary distribution φ in finite samples, particularly helps for the processes which
exhibit a strong persistence.

Obviously, there is a cost to using a parametric specification for the DGP of
{Xt}: the risk of misspecification. Misspecification typically lead to a poor
estimate of φ relative to the empirical distribution used in Zhao’s estimator
ẑn. However, there is an important special case where this risk is ameliorated:
When Xt consists only of lagged valued of Yt. The reason is that, for either
the PCMC density estimator or Zhao’s estimator, the first step is to specify and
estimate the relationship Yt = G(Xt, ξt, θ) in (1). Let’s assume the specifica-
tion is correct—a necessary condition for consistency of both estimators. If Xt

consists only of lagged valued of Yt, then estimating this relationship is equiv-
alent to estimating the DGP of {Yt}. Moreover, since Xt is lagged valued of Yt,
knowing the DGP of {Yt}means knowing the DGP of {Xt}. Thus, we have no
extra risk of misspecifying the DGP of {Xt}.
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Examples are presented in the applications given below.

4. APPLICATIONS

In this section, we apply the PCMC density estimator to a number of common
models. Using simulation, we examine the finite sample performance of the
PCMC estimator relative to other density estimators. In all cases, performance
is measured in terms of mean integrated squared error (MISE). The MISE of
an estimator ĝ of an arbitrary density g has the standard definition E‖ĝ− g‖2

where, as above, ‖ · ‖ is the L2 norm. In all the following simulations, the MISE
is approximated by averaging 103 realizations of ‖ĝ− g‖2.6

4.1. Dynamic factor model. As a relatively simple illustration, consider first
a linear dynamic factor model

Yt = β>Xt + ξt

with

Xt+1 =

 γ1 0 0
0 γ2 0
0 0 γ3

Xt + ηt+1 and θ :=

(
β

γ

)
(10)

Here Yt ∈ R, Xt ∈ R3, and all shocks are independent and standard normal.
The PCMC density estimator is given by (5), where, in the present case,

p(y |Xs
t , θ̂n) =

1√
2π

exp
{
−1

2
(y− β̂>n Xs

t )
2
}

The sequence Xs
1, . . . , Xs

m is produced by estimating the parameters in (10) and
then simulating from some arbitrary initial condition x.

In order to study the finite sample properties of the PCMC density estimator
we run a simulation that computes the MISE of the estimate when n = 200,
and compares it with several other estimators.7 Following the asset pricing
analysis of He et al. (2010), parameters are set to β1 = 6.26, β2 = 1.32, β3 =

6If the true density g has no closed form solution, then we compute it by simulation. In the
simulation studies below, g corresponds to the true density f = f (·, θ0) where θ0 is the set of
parameters chosen for the simulation. We compute f by using the PCMC density estimator,
but without the parameter estimation step. In other words, we simulate {Xs

t} from Xs
t+1 =

H(Xs
t , ηt+1, θ0) and compute f as m−1 ∑m

t=1 p(y |Xs
t , θ0). In all cases we set m = 105.

7For the PCMC density estimator, all parameter estimates use least squares.
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PCMC ẑP
n ẑn OPE NPKDE

1.000 1.965 2.256 2.531 3.014

TABLE 1. MISE for dynamic factor model

−1.09, γ1 = 0.18, γ2 = −0.14, and γ3 = 0.21. Estimates are compared against
the true stationary density for Yt, which in this case is equal to

f = N(0, σ2) for σ2 :=
β2

1
1− γ2

1
+

β2
2

1− γ2
2
+

β2
3

1− γ2
3
+ 1 (11)

For comparison, we also compute the MISE of four alternatives to the PCMC
density estimator. One is Zhao’s estimator ẑn. (So ẑn can be implemented, we
assume that data on the process {Xt} is observable.) The second is the direct
parametric alternative ẑP

n defined in (9), which estimates φ parametrically but
without exploiting the dependence structure of {Xt}. The last two are direct
estimates of f that use only observations of {Yt}. One is an ordinary paramet-
ric estimate (OPE), and the second is a nonparametric kernel density estimate
(NPKDE). The OPE uses the dynamic factor model to infer that the stationary
distribution of Yt has the form N(0, σ2) obtained in (11), and estimates f as
N(0, σ̂2

n) where σ̂ is the sample standard deviation of {Yt}. The NPKDE uses
Y1, . . . , Yn as the sample, a standard Gaussian kernel, and Silverman’s rule for
the bandwidth.

The results of the simulation are shown in Table 1. The MISE value for the
PCMC density estimator was 4.606× 10−4. In the table, all estimators are ex-
pressed relative to this base (i.e., as multiples of this value). The reduction in
MISE from the NPKDE to the OPE represents the benefit of imposing paramet-
ric structure on the data set {Yt}, at least when that parametric specification is
correct. The reduction in MISE from the OPE to Zhao’s estimator represents
the benefit of exploiting the relationship (3) and the second data set {Xt}. The
reduction in MISE from Zhao’s estimator to ẑP

n represents the gains from es-
timating φ parametrically (when the parametric specification is correct). The
final reduction in MISE from ẑP

n to the PCMC represents the gain from exploit-
ing the information contained in the order of the sample {Xt}.

4.2. Linear AR(1). In this section we study another very simple example in
order to illustrate conceptual issues: the scalar, linear Gaussian AR(1) model

Yt = θYt−1 + ξt, {ξt}
IID∼ N(0, 1), |θ| < 1 (12)

To estimate the stationary density f of Yt via the PCMC density estimator,
we take Xt := Yt−1. In this case (12) implies that p(y | x, θ̂n) = N(θ̂nx, 1),
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FIGURE 1. Dynamic factor model, ẑn (top) and PCMC (bottom)

where θ̂n is the least squares estimate of θ. Since Xt = Yt−1, we can produce
the simulated Xt data using (12) as well, by iterating on Xs

t = θ̂nXs
t−1 + ξt.

Combining this data with p(y | x, θ̂n) yields the PCMC density estimator in (5).

To study the MISE of the estimator in finite samples, we compute the MISE of
the PCMC density estimator when n = 200 and θ = 0.9. For comparison we
also compute the MISE of Zhao’s estimator ẑn, the direct parametric alterna-
tive ẑP

n , and the NPKDE. (The ordinary parametric estimate (OPE) is omitted
because in the present setting Xt is lagged Yt, so f and φ are equal, and hence
the OPE amounts to the same estimator as ẑP

n .) The methods for NPKDE is
identical to that used in section 4.1.

The results are reported in table 2. As in table 1, all estimators are expressed as
multiples of the MISE for the PCMC density estimator.8 The ranking of MISE
values is similar to that obtained for the dynamic factor model in section 4.1.

8The MISE value for the PCMC density estimator was 2.100× 10−3.
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PCMC ẑP
n ẑn NPKDE

1.000 1.429 3.714 3.827

TABLE 2. MISE for AR(1) model when θ = 0.9

θ 0.1 0.3 0.5 0.7 0.9
PCMC 0.023 0.104 0.309 0.717 2.100
ẑn 0.027 0.194 0.710 2.100 7.800

TABLE 3. MISE for AR(1) model (base 1× 10−3)

Table 3 is used to illustrate the point made in section 3.1: The PCMC density
estimator’s use of a parametric model for the DGP {Xt} provides the ancil-
lary benefit of exploiting the information contained in the order of the sample
X1, . . . , Xn. The table compares the MISE for the PCMC density estimator to
that of Zhao’s estimator as θ varies from 0.1 to 0.9. The results are given in
table 3. While the MISE for the PCMC density estimator is lower than Zhao’s
estimator for all values of θ, the difference becomes more pronounced as θ in-
creases (from a factor of 1.2 at θ = 0.1 to a factor of 3.7 at θ = 0.9). Intuitively,
when θ = 0.1 the data is almost IID, and preserving the order information in
an estimate of φ has little value. On the other hand, when θ = 0.9, the data is
very persistent, and the value of preserving this order information is higher.

4.3. Threshold autoregressive model. As our next application, we replace the
linear AR(1) model with the TAR model

Yt = θ|Yt−1|+
√

1− θ2ξt, {ξt}
IID∼ N(0, 1), |θ| < 1

The stationary density of Yt in this model has the skew-normal form f (y) =

2ψ(y)Ψ(δy), where δ := θ/
√

1− θ2, and ψ and Ψ are the standard normal
density and cumulative distribution respectively (see Andel et al. (1984)). The
parameter θ can be estimated by maximum likelihood.

In the simulation we set θ = 0.5 and n = 200. The results are reported in
table 4. As before, all estimators are expressed as multiples of the MISE for
the PCMC density estimator.9 Because the TAR model is nonlinear, the target
density is more complex, and the finite sample advantages of using correct
parametric structure are correspondingly larger. This fact is reflected in the

9The MISE value for the PCMC density estimator was 9.345× 10−7. The parametric alter-
native ẑP

n and ordinary parametric estimate are not available for comparison in this model.
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PCMC ẑP
n ẑn NPKDE

1.000 1.572 807.325 2078.429

TABLE 4. MISE for TAR model when θ = 0.5

relative magnitudes of the MISE, which exhibit a much larger gain from us-
ing the PCMC density estimator than was the case with the AR(1) model in
section 4.2 (compare table 2 and table 4).

4.4. Markov regime switching model. Next we consider a Markov regime
switching model in order to illustrate how the PCMC estimator is implemented
to estimate the density of Yt in latent variable models. Regime switching mod-
els have been used widely in economic and financial applications. The model
we consider here is given by

Yt = µ(Xt) + σ(Xt)ξt = µXt + σXt ξt

where {Xt} is a two-state ergodic Markov chain with transition matrix P, and
ξt is IID normal with zero mean and unit variance. The stationary density of
Yt has a closed form

f = N(µ1, σ2
1 )× π1 + N(µ2, σ2

2 )× π2

where π is the stationary distribution of P.

The regime switching model can be estimated using maximum likelihood (see,
e.g., Hamilton 1994). Once the model is estimated, the PCMC density estima-
tor can be implemented to obtain an estimate of f . In this case, the conditional
density p in (5) is p(y |Xs

t , θ̂n) = N(µ̂Xs
t
, σ̂2

Xs
t
). The values {Xs

t} are simulated

from an estimate P̂ of the matrix P.

We investigated the finite sample performance of the PCMC estimator by com-
paring the MISE with that of the NPKDE. (Zhao’s estimator is not available for
comparison in this model, because the state Xt is latent.) In the simulation, we
took n = 500. The parameters were set according to Smith and Layton’s (2007)
business cycle analysis, where µ1 = 0.34, µ2 = −0.13, σ1 = 0.38, σ2 = 0.82,
and

P =

(
0.97 0.03
0.08 0.92

)
From the simulation, the MISE of the PCMC estimator was found to be 9.418×
10−3, while that of the NPKDE was 0.015. In other words, the MISE of the
NPKDE was roughly 1.6 times larger.
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4.5. Stochastic volatility in mean model. As another application of the PCMC
density estimator in a latent variable setting, we consider the stochastic volatil-
ity in mean model

Yt = cσ2 exp(ht) + σ exp(ht/2)ξt (13)

ht = κht−1 + σηηt (14)

Typically, Yt denotes return on a given asset, and the latent variable ht denotes
underlying volatility. The pair (ξt, ηt) is standard normal in R2 and IID. Pa-
rameters in the model can be estimated by simulated MLE (see, e.g., Koopman
and Uspensky, 2002). We take ht as the covariate Xt in the definition of the
PCMC density estimator, which then has the form

f̂m(y) =
1
m

m

∑
t=1

p(y | hs
t , θ̂n)

where, in view of (13),

p(y | h, θ̂n) := N(ĉnσ̂2
n exp(h), σ̂2

n exp(h))

and {hs
t} is generated by iterating on the estimated version of (14).

As with the Markov switching model, we investigated the finite sample perfor-
mance of the PCMC estimator by comparing its MISE with that of the NPKDE.
(Again, Zhao’s estimator is not available for comparison here, because the co-
variate is latent.) In the simulation we took n = 500. We adopted the esti-
mated parameter values in Koopman and Uspensky (2002), where κ = 0.97,
ση = 0.135, σ2 = 0.549, and c = 1.

For these parameters, we calculated the MISE of the PCMC estimator to be
1.524× 10−4, while that of the NPKDE was 3.048× 10−4. Thus, the MISE of the
NPKDE was roughly 2.265 times larger. Typical realizations of the estimators
are presented in figure 2.

5. ROBUSTNESS

Regarding the PCMC density estimator, one concern is that its advantages
stem from parametric specification of the DGP of {Xt}, and this specification
may be inaccurate. In this section we take two models and investigate the
performance of the PCMC estimator when the DGP is misspecified. The first
model is a scalar version of the dynamic factor model in section 4.1, with

Yt = βXt + ξt and Xt+1 = γXt + ηt+1 with |γ| < 1 (15)
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FIGURE 2. Stochastic volatility model, NPKDE (top) and PCMC (bottom)

PCMC (well specified) PCMC (misspecified) ẑn NPKDE
0.0024 0.0067 0.0123 0.0139

TABLE 5. MISE comparison, scalar factor model

where β = 1, γ = 0.95, and (ξt, ηt) is IID and standard normal in R2. The
second model specifies the DGP of {Xt} as the ARMA (1,1) process

Xt+1 = γXt + θηt + ηt+1 (16)

In table 5, the well specified PCMC reports the MISE of the PCMC density es-
timator calculated in the usual way, while the misspecified PCMC is the MISE
of the PCMC density estimator when the true process is (15) but the DGP of
{Xt} is misspecified as (16). While the misspecification of true DGP of X af-
fects the performance of our PCMC estimator, in this example the effect of
misspecification is relatively small.
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PCMC (well specified) PCMC (misspecified) NPKDE
0.2614 0.4512 3.5888

TABLE 6. MISE comparison, Gaussian latent state space model

Next we check robustness in a latent variable model. Consider the Gaussian
latent state space model

Yt = g(Xt) + ξt, Xt+1 = α0 + α1Xt + ηt+1

where Xt is latent, Yt is observed, (ξt, ηt) is IID standard normal inR2, α0 = 0.5,
α1 = 0.8, and g(x) = 0.25x. We consider the case where the DGP of {Xt} is
misspecified as the vector AR(1) process(

X1t
X2t

)
=

(
β10

β20

)
+

(
β11 0
0 β22

)(
X1t−1

X2t−1

)
+

(
η1t
η2t

)
(17)

where (η1t, η2t) is IID and standard normal in R2. Table 6 reports some results
for this robustness check. As in the previous example, misspecification of the
DGP increases MISE, but the increase is relatively small.

6. PROOFS

This section contains the proof of theorem 2.1. To simplify notation, let F(θ)
represent the function f (·, θ). Thus, F is a mapping from Θ into L2(X) defined
by

F(θ) =
∫

p(· | x, θ)φ(x, θ)dx (θ ∈ Θ) (18)

Also, let

f̂m(y, θ) :=
1
m

M

∑
t=1

p(y |Xθ
t , θ)

where {Xθ
t } is the simulated process defined recursively by

Xθ
t+1 = H(Xθ

t , ηt+1, θ) and Xθ
0 = x ∈ X (19)

Here the process η := {ηt}t≥1 is a simulated copy of the process η in (2). The
joint law of η is the infinite product of the common marginal law of ηt, defined
on the sequence space D∞. The joint law will be denoted by υ∞.

Lemma 6.1. If assumption 2.1 holds, then F is Hadamard differentiable at θ0, with
Hadamard derivative F′θ0

given by

F′θ0
(θ) =

∫
〈d(x, ·, θ0), θ〉dx ∈ L2(X) (θ ∈ RM) (20)
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Proof. To verify that F′θ0
is the Hadamard derivative of F at θ0, we must show

that F′θ0
defined in (20) is a bounded linear operator from R

M to L2(X) such
that ∥∥∥∥F(θ0 + tnθn)− F(θ0)

tn
− F′θ0

(θ)

∥∥∥∥→ 0 (21)

for any θ ∈ Θ, tn ↓ 0 and θn → θ ∈ Θ (cf., e.g., van der Vaart, 1998, p. 296).
Evidently F′θ0

is linear. To see that F′θ0
is a bounded operator, observe that, by

the Cauchy-Schwartz inequality and assumption 2.1,∣∣∣∣∫ 〈d(x, y, θ0), θ〉dx
∣∣∣∣ ≤ ∫ |〈d(x, y, θ0), θ〉|dx

≤ ‖θ‖E

∫
‖d(x, y, θ0)‖Edx

≤ ‖θ‖E

∫
g(x, y)dx

∴ ‖F′θ0
(θ)‖ ≤ ‖θ‖E

{∫ {∫
g(x, y)dx

}2

dy

}1/2

The finiteness of the integral expression is guaranteed by assumption 2.1.

We now turn to the verification of (21). Fix tn ↓ 0 and θn → θ ∈ Θ. Let

κ(x, y, θ) := p(y | x, θ)φ(x, θ) (y ∈ Y, x ∈ X, θ ∈ Θ)

and

gn(x, y) :=
κ(x, y, θ0 + tnθn)− κ(x, y, θ0)

tn
− 〈d(x, y, θ0), θ〉 (22)

Since∫
gn(x, y)dx =

∫ [
κ(x, y, θ0 + tnθn)− κ(x, y, θ0)

tn

]
dx−

∫
〈d(x, y, θ0), θ〉dx

=

∫
κ(x, y, θ0 + tnθn)dx−

∫
κ(x, y, θ0)dx

tn
−
∫
〈d(x, y, θ0), θ〉dx

we have ∫
gn(x, ·)dx =

F(θ0 + tnθn)− F(θ0)

tn
− F′θ0

(θ)

and hence∥∥∥∥F(θ0 + tnθn)− F(θ0)

tn
− F′θ0

(θ)

∥∥∥∥2

=
∫ {∫

gn(x, y)dx
}2

dy

Thus (21) will be established if we can show that∫ {∫
gn(x, y)dx

}2

dy→ 0 (n→ ∞) (23)

As a first step, note that gn → 0 pointwise onX×Y. This first result is almost
immediate from the definition of gn in (22), since, for given x and y, the vector
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d(x, y, θ0) is the vector of partial derivatives of the function θ 7→ κ(x, y, θ). As
θ 7→ p(y | x, θ) and θ 7→ φ(x, θ) are assumed to be continuously differentiable
on V, the map θ 7→ κ(x, y, θ0) is differentiable at θ0, and the Frechet derivative
at θ0 is the mapping θ 7→ 〈d(x, y, θ0), θ〉. In RM the Frechet derivative and the
Hadamard derivative coincide, and hence |gn(x, y)| → 0 by the definition of
Hadamard differentiability.

In order to pass the limit through the integrals in (23), we next show that
a scalar multiple of the function g defined in assumption 2.1 dominates gn

pointwise on X×Y for all sufficiently large n. To see that this is the case, fix
(x, y) ∈ X×Y and N ∈ N such that θ0 + tnθn ∈ V for all n ≥ N. Without loss
of generality we can choose the neigborhood V to be convex. With convex V,
the mean value theorem inRM implies existence of a vector θ∗n ∈ V on the line
segment between θ0 and tnθn with

κ(x, y, θ0 + tnθn)− κ(x, y, θ0) = 〈d(x, y, θ∗n), tnθn〉

Dividing both sides by tn and using the definition of gn in (22), we obtain

|gn(x, y)| = |〈d(x, y, θ∗n), θn〉 − 〈d(x, y, θ0), θ〉|
≤ |〈d(x, y, θ∗n), θn〉|+ |〈d(x, y, θ0), θ〉|
≤ ‖d(x, y, θ∗n)‖E‖θn‖E + ‖d(x, y, θ0)‖E‖θ‖E

Applying assumption 2.1, we obtain

|gn(x, y)| ≤ g(x, y)(‖θn‖E + ‖θ‖E)

Since θn is convergent it is also bounded in n, and hence there exists a constant
K with |gn(x, y)| ≤ Kg(x, y) for all n ≥ N.

Returning to the proof of (23), define

hn(y) :=
{∫
|gn(x, y)|dx

}2

and h(y) :=
{∫

Kg(x, y)dx
}2

As a first step to proving (23), we claim that hn → 0 almost everywhere on
Y. To see this, observe that assumption 2.1 gives

∫
h(y)dy < ∞, and hence

h is finite almost everywhere. For any y such that h(y) is finite, we have∫
Kg(x, y)dx < ∞. In addition, for this same y, we have |gn(x, y)| ≤ Kg(x, y)

and gn(x, y) → 0 for all x ∈ X. It follows from the dominated convergence
theorem that

∫
gn(x, y)dx → 0, and therefore hn(y) → 0. This verifies the

claim that hn → 0 almost everywhere on Y.

The final step is to show that
∫

hn(y)dy → 0. To see that this is so, observe
that, in addition to hn → 0 almost everywhere, we have 0 ≤ hn ≤ h for all n,
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and h is integrable by assumption 2.1. Another application of the dominated
convergence theorem now gives

∫
hn(y)dy→ 0.

The convergence
∫

hn(y)dy → 0 is equivalent to (23), completing the proof of
lemma 6.1. �

Lemma 6.2. Under the conditions of theorem 2.1 we have
√

n{ f (·, θ̂n)− f (·, θ0)}
d→ N(0, C)

where N(0, C) is the centered Gaussian defined in theorem 2.1.

Proof of lemma 6.2. Assume the conditions of the lemma. Let V be a random
variable on RM with V ∼ N(0, Σ), so that

√
n(θ̂n − θ0) converges in distribu-

tion to V. Let F be as defined in (18). We aim to show that
√

n{F(θ̂n)− F(θ0)}
d→ N(0, C) (24)

in L2(Y), where C is as defined in theorem 2.1. Lemma 6.1 showed that F is
Hadamard differentiable at θ0, when viewed as a mapping from Θ to L2(Y).
Applying a functional delta theorem (e.g., van der Vaart, 1998, theorem 20.8)
we obtain √

n{F(θ̂n)− F(θ0)}
d→ F′θ0

(V)

in L2(Y), where F′θ0
is as defined in (20). Thus, it remains only to show that

F′θ0
(V) ∼ N(0, C).

Using the definition of αm in the statement of theorem 2.1, we have

F′θ0
(V) =

∫
〈d(x, ·, θ0), V〉dx =

M

∑
m=1

∫
dm(x, ·, θ0)dxVm =

M

∑
m=1

αmVm

Each αm is an element of L2(Y) because

|αm(y)| ≤
∫
‖d(x, y, θ0)‖Edx ≤

∫
g(x, y)dx

and the right-hand side is square-integrable by assumption 2.1. It follows that
F′θ0

(V) = ∑M
m=1 αmVm is an L2(Y) valued random variable.

To show that F′θ0
(V) is Gaussian, we need to prove that the L2 inner prod-

uct 〈F′θ0
(V), h〉 is Gaussian in R for each h ∈ L2(Y). This follows immedi-

ately from the fact that V is multivariate Gaussian, since linear combinations
of multivariate Gaussian random variables are univariate Gaussian by defini-
tion, and

〈F′θ0
(V), h〉 =

M

∑
m=1
〈αm, h〉Vm (25)



22 YIN LIAO AND JOHN STACHURSKI

To show that the L2(Y) expectation of F′θ0
(V) is the zero element, we need to

show that the (scalar) expectation of (25) is zero for all h ∈ L2(Y). This is true
because EVm = 0 for all m.

Finally, we need to verify that the covariance operator of F′θ0
(V) is equal to C.

In other words, we must show that

E〈g, F′θ0
(V)〉 〈F′θ0

(V), h〉 = 〈g, Ch〉

where the expression for 〈g, Ch〉 is given in theorem 2.1. Evidently this equal-
ity is valid, since

E〈F′θ0
(V), g〉 〈F′θ0

(V), h〉 = E
(

M

∑
i=1
〈αi, g〉Vi

)(
M

∑
j=1
〈αj, h〉Vj

)

= E

(
M

∑
i=1

M

∑
j=1
〈αi, g〉〈αj, h〉ViVj

)
Passing the expectation through the sum yields the expression for 〈g, Ch〉 given
in theorem 2.1. �

Lemma 6.3. If the conditions of theorem 2.1 hold, then, for any given n, we have

√
n‖ f̂m(·, θ̂n)− f (·, θ̂n)‖ =

1√
m

OP(1)

where OP(1) indicates that the term is bounded in probability over m.

Proof. Fix n ∈ N. Since we claim only boundedness in probability, it suffices to
show that

√
m‖ f̂m(·, θ̂n)− f (·, θ̂n)‖ = OP(1) (26)

If we fix θ ∈ Θ, then V-uniform ergodicity and theorem 4.2 in Braun et al.
imply that

√
m{ f̂m(·, θ)− f (·, θ)} d→Wθ ∼ N(0, Sθ)

for some covariance operator Sθ. It follows from the continuous mapping the-
orem that

Ym(θ) :=
√

m‖ f̂m(·, θ)− f (·, θ)‖ d→ ‖Wθ‖ (27)

Let π(θ, dy) denote the distribution of the nonnegative scalar random variable
‖Wθ‖. In view of (19), each Xθ

t is a function of θ and the sequence η := {ηt}t≥1.
Since the randomness in f̂m(·, θ) comes only through each Xθ

t , we can write
Ym(θ) as Ym(θ) = Gm(η, θ) for some function Gm. Our aim is to show that

Ym(θ̂n) = Gm(η, θ̂n) = OP(1) (m→ ∞)
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Let h : R → R be bounded and continuous. Recalling that υ∞ is the joint law
of η and letting ν denote the law of θ̂n, we can write

E h ◦Ym(θ̂n) = E h ◦ Gm(η, θ̂n) =
∫ ∫

h ◦ Gm(z, θ)υ∞(dz)ν(dθ)

where the last equality is due to independence of η and θ̂n. We saw in (27) that,
for fixed θ,∫

h ◦ Gm(z, θ)υ∞(dz) = E h ◦Ym(θ)→
∫

h(y)π(θ, dy) (m→ ∞)

Since this convergence holds for all θ, and since θ 7→
∫

h ◦ Gm(z, θ)υ∞(dz) is
uniformly bounded by supx |h(x)|, the dominated convergence theorem im-
plies that

E h ◦Ym(θ̂n) =
∫ ∫

h ◦ Gm(z, θ)υ∞(dz)ν(dθ)→
∫ ∫

h(y)π(θ, dy)ν(dθ)

as m → ∞. Since h was an arbitrary continuous bounded function, we con-
clude that Ym(θ̂n) converges in probability to the distribution π(θ, dy)ν(dθ).
Since it converges in distribution it is also bounded in probability. The claim
in (26) is now verified. �

Proof of theorem 2.1. Adding and subtracting f (·, θ̂n), we can write
√

n{ f̂m(·, θ̂n)− f (·, θ0)} =
√

n{ f̂m(·, θ̂n)− f (·, θ̂n)}+
√

n{ f (·, θ̂n)− f (·, θ0)}

The proof of theorem 2.1 now follows from lemma 6.2 and lemma 6.3. �

The next lemma confirms the only technical step needed for deriving the sec-
ond expression for the covariance operator C in section 2.

Lemma 6.4. Under the conditions of theorem 2.1, we have

αm(y) =
∂

∂θm
f (y, θ0)

for any m in 1, . . . , M and any given y ∈ Y.

Proof. Fix m in 1, . . . , M and y ∈ Y. The lemma amounts to the claim that∫
∂

∂θm
p(y | x, θ0)φ(x, θ0)dx =

∂

∂θm

∫
p(y | x, θ0)φ(x, θ0)dx

Under the standard rules for differentiating under integrals, this statement is
valid if there exists an integrable function h onX such that, for all θ on a neigh-
borhood N of θ0,

|dm(x, y, θ)| :=
∣∣∣∣ ∂

∂θm
p(y | x, θ)φ(x, θ)

∣∣∣∣ ≤ h(x) (28)
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almost everywhere. Take N = V and h(x) := g(x, y) where V and g are as
defined in assumption 2.1. By the conditions of assumption 2.1, the function h
is integrable, and ‖d(x, y, θ)‖E ≤ h(x) for all θ ∈ N. This implies the inequality
in (28), and lemma 6.4 is proved. �
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