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Abstract

In contrast to Aryal, Perrigne and Vuong (2009), this note shows that in an

insurance model with multidimensional screening when only information on whether

the insuree has been involved in some accident is available, the joint distribution of

risk and risk aversion is not identified.



Nonidentification of Insurance Models with

Probability of Accidents

G. Aryal, I. Perrigne & Q. Vuong

1 Introduction

This note studies the nonparametric identification of the joint distribution of risk and

risk aversion where data contain information on whether an insuree have had involved

in an accident.1 Aryal and Perrigne (2010) characterizes the optimal insurance contracts

sold by an insurer when insurees have private information about their risk and risk aver-

sion. Under the constant absolute risk aversion assumption, the paper shows that the

certainty equivalence without insurance coverage is a one dimensional sufficient statistics

that effectively reduces the two dimensional private information into one. Identification

of the distribution of certainty equivalence follows the same logic as in identification of

distribution of private value in first price auction, see Guerre, Perrigne and Vuong (2000).

The analogous of bids here is the (observed) choice of deductible, the unobserved pri-

vate valuation is the certainty equivalence and the one to one mapping between the two

is provided by the first order conditions that characterize optimal coverage. Although

the distribution of certainty equivalence is identified the joint distribution of risk and

risk aversion cannot be nonparametrically identified. Thus, this note complements Aryal,

Perrigne and Vuong (2009), where the risk is defined as the expected number of accidents

and the model is nonparametrically identified.

1In both theoretical research starting with Rothschild and Stiglitz (1976); as well as empirical re-

search starting with Chiappori and Salanie (2001) on insurance risk has always been interpreted as the

probability of accident.
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The identification is exactly the same as in Aryal, Perrigne and Vuong (2009) in Case

1 with the risk being interpreted as probability of having an accident. This identification

result allows us to recover (pseudo) certainty equivalence for every deductible we observe

in the data. The second step is then to use this information on the number of accidents

to recover the conditional distribution of risk for given certainty equivalence. Conditional

on a particular coverage (and hence certainty equivalence) the number of accidents is only

a function of risk and not risk aversion, and provides information on conditional all the

moments of risk and therefore the distribution. However, when we interpret risk as the

probability accident, the only information we can use is whether or not an insuree have

been in an accident and not the number of accidents: insurees with one or more than

one accident claims are treated as the same, which eliminates the variation in observed

claims to differentiate the riskiness of insurees. This variation in claims data is very

important for identification. We also introduce some exogenous variation in insuree and

car characteristics to explore the possibility of identification. We show that even under

some strong exclusion restriction assumption, in particular independence between the

exogenous characteristics and risk and risk aversion, the joint density function is not

identified. The non identification result relies on the characterization of identification of

arbitrary mixtures.

The rest of the paper is organized as follows. Section 2 briefly outlines the model and

introduces. Section 3 presents the main result of the paper: namely, First the distribution

of the certainty equivalence is identified. Second, the joint distribution of risk and risk

aversion is not identified from knowledge of distribution of certainty equivalence. Third,

it is shown that even with arbitrary variation in exogenously observed variable and under

any relevant exclusion restriction the model is not identified.

2 The Model

The aim of this section is to introduce the notations and the model. For a more detailed

analysis see Aryal and Perrigne (2010). An insuree is characterized by a risk θ, which
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is the probability of accident and a CARA coefficient a. Thus the utility function is

Ua(x) = −e−ax, a > 0. The pair (θ, a) is distributed as F (·, ·) on Θ × A = [θ, θ] × [a, a].

When there is an accident an it incurs a damage D. The damage is modeled as a random

variable distributed as H(·) on [0, d]. It is assumed that the damage D is independent of

(θ, a).2

Certainty Equivalence

Let, w > 0 be the weath of an insuree which is observed. When an insuree of type (θ, a)

buys no coverage his expected utility is

V (0, 0; θ, a) = −eaw
[

(1− θ) + θ

∫ d

0

eaDdH(D)

]
.

Certainty equivalence (CE(0, 0; θ, a)) is defined as the certain amount which makes the

insuree as well off as without any coverage. More specifically, let s = CE(0, 0; θ, a) then

−eaCE(0,0;θ,a) = −eaw
[
(1− θ) + θ

∫ d
0
eaDdH(D)

]
,

s = w −
log
[
1 + θ

{∫ d
0

exp(aD)dH(D)− 1
}]

a
.

Since s is a function of (θ, a), it is also a random variable distributed as K(·)3. More

specifically,

K(s̃) = Pr(s ≤ s̃) = 1−
∫ a

a

∫ τ(a,s̃)

θ

dF (θ, a),

where τ(a, s̃) = exp(a(w−s̃))−1∫ d
0 exp(aD)dH(D)−1

. Let, (t, dd) pair denote a coverage where t is the

premium a dd the deductible. An insuree of type (θ, a) then chooses the coverage (t, dd)

that maximizes his/her expected utility

V (t, dd; θ, a) = (1− θ)ua(w − t) + θ

[∫ dd

0

ua(w − t− y)dH(y) + ua(w − t− dd) (1−H(dd))

]
,

2In other words, knowing D does not carry any information on the risk and/or the risk aversion.
3Since a larger risk and/or risk aversion results in lower certainty equivalence without a coverage, s

(s) corresponds to the certainty equivalence of (θ, a) ((θ, a)), respectively.
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which is equivalent to choosing (t, dd) to maximize the corresponding certainty equiva-

lence

CE(t, dd; θ, a) = w − t−
log[
∫ dd
0
eaDdH(D) + eadd(1−H(dd))− 1]

a
.

Insurer’s Profit

A risk neutral insurer offers a contract/coverage (t, dd) that maximize its expected profit:

E(π) =

∫ a

a

∫ θ

θ

{
t(θ, a)−θ

[∫ d

0

max{0, D − dd(θ, a)}dH(D)

]}
dF (θ, a)

subject to incentive compatibility and individual rationality constraints:

(IC): V (t(θ, a), dd(θ, a), θ, a) ≥ V (t(θ̃, ã), dd(θ̃, ã), θ, a),∀(θ, a), (θ̃, ã) ∈ Θ2 ×A2.

(IR): V (t(θ, a), dd(θ, a), θ, a) ≥ V (0, 0, θ, a), ∀(θ, a) ∈ Θ×A.

Following Aryal and Perrigne (2010), make the change of variable from (θ, a) to (θ, s) and

note that t(θ, s) ≡ t(s), and after some simplification the expected profit is :

E(π) = max
{t(s),dd(s)}

∫ s

s

[
t(s)− E(θ|s)

∫ d

dd(s)

(1−H(D))dD

]
k(s)ds.

Optimization Problem

The objective of the insurer is to design contract (t(s), dd(s)) such that it maximizes the

expected profit subject to appropriate (IC) and (IR), which can be written in terms of

certainty equivalence. Aryal and Perrigne (2010) show that it is enough to ensure that

the (IR) binds for insurees of type s. The (IC) constraints imply that the insuree will

report their certainty equivalence to be s̃ that maximizes his/her certainty equivalence

from the coverage corresponding to the reported s̃. The local (IC) is then given by

maxs̃∈[s,s]CE(t(s̃), dd(s); θ, a) where at s = s̃

dd′(s) = −η(s, a, dd)t′(s), ∀s ∈ [s, s],
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and η(s, a, dd) = 1
θeadd(1−H(dd))

. Formulating the appropriate Hamiltonian, the optimal

contract is characterized by the solutions of the following two FOCs

η(s, a(s))E(θ|s)(1−H(dd))

+
K(s)

k(s)

1

η(s)

[
−∂η(s, a(s), dd(s))

∂dd

d(dd)

ds
+ η′(s, a(s))

]
= 1 (1)

ddd(s)

ds
= −η(s, a(s))

dt(s)

ds
(2)

with the following boundary conditions:

dd(s) = 0; t(s) =
1

a
log

[
1 + θ{

∫ d
0
eaydH(y)− 1}
1− θ

]
.

3 Identification

The model structure is defined as F (·, ·) and H(·). For every insuree i, we observe the

coverage choice (ti, ddi); the variable χi ∈ {0, 1} where χi = 1 if there is an accident

and 0 otherwise; the total amount of damage filed D. We also observe individual and

car characteristics X and Z, respectively, where (X,Z) ⊂ RdimX ×RdimZ. Conditional on

observed characteristics, Z = z and X = x, the risk and risk aversion is distributed as

F (·, ·|Z = z,X = x), on the set [θ(x, z), θ(x, z)]× [a(x, z), a(x, z)] ≡ Sθa|X,Z and the dam-

age D ∼ H(·|x, z) on [0, d(x, z)]. This model is then said to be identified if we can recover

uniquely the structure [F (·, ·|X,Z), H(·|X,Z)] ∈ FXZ ×HXZ from the observables. The

definition of the admissible set of structures, FXZ ×HXZ corresponds to Definition 1 and

2, respectively in Aryal, Perrigne and Vuong (2009).

Following Aryal, Perrigne and Vuong (2009) we have the following assumption:

Assumption 1

(i) (θ, a, χ,X, Z) is i.i.d across insurees.

(ii) D ⊥ (θ, a)
∣∣(χ,X,Z).

5



(iii) D i.i.d as H(·|X,Z).

(iv) χ ⊥ (X,Z, a)
∣∣θ with χ|θ ∼ B(θ).

Assumption 1-(iv) tells us that for any insuree with risk θ, the event accident or no

accident is distributed as a Bernoulli random variable with parameter θ as Pr[χ = 1] = θ.

Identification of K(·) and H(·)

After suppressing the dependence on (X,Z), we follow Case 1 in Aryal, Perrigne and

Vuong (2009) to conclude that the structure [K(·), H(·)] is identified. With complete

information on the damages H(·) can be identified therefrom. Observe that the the

FOCs characterizing optimal coverages as a function of s is the same as in Aryal, Per-

rigne and Vuong (2009) with only the interpretation of θ being probability of accident.

Following the exact steps as in Aryal, Perrigne and Vuong (2009), we can also identify

a(s) using the FOCs (2), (3) and expressing them as a function of observables, using

E(θ|s) = E(θ|dd) = E(χ|dd), which is observed in the data. Then since a(s) is identified,

we can express s as a function of observables, using the definition of s and the (IC) to

identify its distribution K(·). This result is then formalized as follows:

Proposition 1 (Aryal, Perrigne and Vuong (2009)): Suppose a continuum of insur-

ance coverages is offered to each insuree and all claims are observed. Under Assumption

1: The structure [K(·), H(·)] is identified.

Nonidentification of F (·, ·)

In this section, we show that F (·, ·) cannot be uniquely recovered from [K(·), H(·)]. In-

tuitively from the definition of s, the knowledge of Pr[s ≤ s̃], determines Pr[R = (θ, a) :

CE(0, 0; θ, a) ≤ s̃]. However this is not enough to determine the probability assigned to

all the open sets in (rectangles) in R2
++. As an illustration, consider a case where (θ, a)

can take finite values, with the same conditional mean E(θ|s) but with different joint mass

function, is provided below (see Fig.1). Case 1 and Case 2 corresponds to two joint prob-
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Figure 1: Finite Type Space

ability mass function which are observationally equivalent.4 At the lowest risk θ = 0.3,

there can be only one value of s for the lowest risk aversion a, hence in Case 2, the value

probability mass has to be the same, i.e. 1/4. Similarly for θ and a. The most interesting

thing is the third iso-certainty equivalence curve from the origin. There are three risk and

risk aversion pairs that correspond to the same certainty equivalent. Both cases 1 and

2 the conditional mean of θ is the same, hence are observationally equivalent although

the conditional mass functions are different. This example shows that Pr[θ̃ = θ|s] is a

function of only first moment of fθ|S(θ|s) and can be extended to the case with continuous

(θ, a) and is formalized below:

Proposition 3.1. Suppose a continuum of insurance coverages is offered to each insuree

and all claims are observed. Under Assumption 1’, F (·, ·) is not identified.

Proof. Let fθ,a(·, ·) and f̃θ,a(·, ·) be two joint density functions of (θ, a). Then, because

fθ,a(θ, a) = fθ,s(θ, λ
−1(s; θ))J where f(θ,s)(·, ·) is the joint density of (θ, s), λ(θ, a) = s

with J being the appropriate Jacobian of the transformation and similarly f̃θ,a(θ, a) =

4As it can be seen, the level a can take is not important because we can choose a such that for any θ,

the pair (θ, a) corresponds to a known s, i.e. λ(θ, a) = s.
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f̃θ,s(θ, λ
−1(s; θ))J , we know that fθ,a(·, ·) = f̃θ,a(·, ·) if and only if fθ|s(·|·) = f̃θ|s(·|·) because

k(s) is identified. We know Pr(χ = 1|s) from the data and can be expressed as a mixture:

Pr(χ = 1|s) =

∫
As(θ)

Pr(χ = 1|θ)f(θ|s)dθ =

∫
As(θ)

θf(θ|s)dθ,

where As(θ) = {θ : ∃a, s = λ(θ, a)}. Similarly, we have Pr(χ = 1|s) =
∫
As(θ)

θf̃(θ|s)dθ,
thus as long as k(θ|s) and k̃(θ|S) have the same first moments, they cannot be distin-

guished by the model and are therefore observationally equivalent.5

As a simple example of nonidentification consider two joint distribution of risk and cer-

tainty equivalence: fθS(·, ·) and f̃θS(·, ·) such that

fθ|S(·|s) = N(µ, σ(s)); f̃θ|S(·|s) = N(µ, σ̃(s))

and σ(s) 6= σ̃(s),∀s, where N(·, ·) is the Normal density. Then,

fθ,S(θ, s) = N(µ, σ(s))× k(s) & f̃θ,S(θ, s) = N(µ, σ̃(s))× k(s)

are observationally equivalent.

Nonidentification under Exclusion Restriction

Thus far we have not used the fact that the offered coverage vary with observed charac-

teristic of the insuree and his/her car. In view of the result above, answer to whether or

not the model is identified by using the variation in the observed covariates (X,Z) ∈ SXZ
under appropriate exclusion restriction.6 However, even with arbitrary variation in (X,Z)

and under the strongest exclusion restriction assumption, the model is not identified. The

model is first interpreted as an arbitrary mixture model, which simplifies the exposition

by making the analysis tractable and simple. The identification of the model is then iden-

tification of an appropriate mixture model. The objective will be to study identification

5More generally, it can be shown that a mixture of Binomial random variable with fixed n but variable

p is not identifiable and Bernoulli random variable is a Binomial random variable with n = 1.
6For instance, Guerre, Perrigne and Vuong (2009) use exclusion restriction in the form of exoge-

nous entry in auction to nonparametrically identify the utility function, which otherwise could not be

nonparametrically identified.
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under the most strongest exclusion restriction assumption, i.e. (θ, a) ⊥ (X,Z), which

makes the identification most likely.

Assumption 2’: We have

(i) (θ, a) ⊥ (Z,X).

Assumption 2’ then implies Sθa|X,Z = Sθa and FXZ = F . For notational convenience

we treat Z to be the only observed co-varaites.7 We begin with the functional form of

certainty equivalence, which is also the structural equation of the model

s = w −
log
[
1 +

(∫ d(z)
0

eaDh(D|z)dD − 1
)
θ
]

a
= w − v(θ, a; z).

Since we know s and w we know the distribution of v(θ, a; z) on the support SV |Z ≡ {v :

∃z ∈ SZ v = v(θ, a; z)} for some (θ, a) ∈ Sθa. Let QZ be the space of all conditional

density functions qv|Z(·|·) conditional on Z, defined over V × Z with Qv|Z(·|·) the cor-

responding distribution. Then, we can identify F (·, ·) from K(·) if and only if we can

identify it from Qv|Z(·|·), and hence the latter can be treated as the (structural) equation

of interest. Thus we are interested in a model for a continuous outcome v that is defined

by the following restrictions:

(Ra): For every z ∈ SZ , v = v(θ, a; z) is continuously differentiable and continuously

distributed with qv|Z(·|·) ∈ QZ , monotonic (increasing) in θ and a.

(Rb): For every z ∈ SZ , Fθa|Z(θ, a|z) = F (θ, a) and E(θ|z) = θz and θz is known and F is

the set of all feasible bivariate distribution function, absolutely continuous with respect

to Lebesgue measure and full support.

We observe a i.i.d samples of {vi, zi}Ni=1 and with sufficient observations i.e.(N →∞),

one can identify Qv|Z(v|z), for any v ∈ SV |Z and z ∈ SZ . Thus we have

Qv|Z(v|z) = Pr[(θ, a) ∈ Sθa : v(θ, a; z) ≤ v] = F ({(θ, a) ∈ Sθa|v(θ, a; z) ≤ v}). (3)

Let (Sθa,Bθa, F ) be a measurable space where Bθa includes singletons and φ : F → QZ
7This is without loss of generality because the argument neither distinguishes between X and Z nor

relies on their dimension. Moreover, Z is more likely to be continuous and hence is the best hope to aid

in identification.
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defined as φ(F ) = qv|Z(·|·) Then, φ(·) and (3) are related by the following mixture:

qv|Z(v|z) =

∫
Sθa

δ(v, z; θ, a)dF (θ, a),

where δ(v, z; θ, a) = 1 if v(θ, a, z) = v and 0 otherwise, also known as the kernel and

F (·, ·) is the mixing distribution. Hence, QZ is said to be identifiable if φ(·) is one-to-

one i.e. if F, F ′ ∈ F , F 6= F ′, then there exists in the data (v, z) such that qv|Z(v|z) 6=
q′v|Z(v|z). In other words, F (·) is identifiable if and only if φ is invertible, whence F (·, ·) =

φ−1(qv|Z)(v|z).

Let L = {δ(v, z; θ, a)|θ, a ∈ Sθa} be a family of atomic distributions which is measurable

in Z ×Sθa indexed by θ, a ∈ Bθa. Let L+ = {δ(v, z; ·)|(v, z) ∈ SV |Z ×SZ}. Let C0(Sθa) be

the Banach space of continuous functions on Sθa that vanishes as infinity and the norm is

||p|| = sup(θ,a)∈Sθa |p(θ, a)| for p ∈ C0(Sθa). Then we have the following characterization

of the identifiability of mixture by Blum and Susarla (1977):

Theorem 1 Suppose L+ ⊂ C0(Sθa). Then for (v, z) ∈ SV |Z ×SV , q1v|Z(v|z) = q2v|Z(v|z)⇒
F1(θ, a) = F2(θ, a), (θ, a) ∈ Sθa iff L+ is dense in C0(Sθa).

Thus the linear space spanned by L+ being dense in C0(Sθa) is necessary and sufficient for

the mapping φ(·) to be bijective and hence identifiable (invertible). We further know that

an easier characterization of a dense subset is given by the following result, see Conway

(1985) Corollary III.6.14.

Lemma 1: < L+ > is dense in C0(Sθa) for F (·, ·) ∈ F if and only if for all δ ∈
L+

∫
p̃(θ, a)δ(v, z; θ, a)dF (θ, a) = 0⇒ p̃ ≡ 0, F (·)−a.e. where p̃ ∈ L∞(F ).

The implication of this on identification is then immediate. Suppose F1 6= F2 but∫
Sθa

δ(v, z; θ, a)dF1(θ, a)−
∫
Sθa

δ(v, z; θ, a)dF2(θ, a)=0, then we have∫
Sθa

δ(v, z; θ, a)
(f1(θ, a)− f2(θ, a))

f1(θ, a)
dF1(θ, a) = 0⇒

∫
Sθa

δ(v, z; θ, a) p̃(θ, a)︸ ︷︷ ︸
∈L∞(Sθa)

dF1(θ, a) = 0.

Then from the Lemma 1 we have p̃(θ, a) = 0 − a.e.F1. But since f1(·, ·) > 0, we get

F1 = F2, a contradiction. Let p̃(θ, a) = 1 for all (θ, a ∈)Sθa. Then for a fixed (θ, a),

δ(·, ·; θ, a) puts positive weight (=1) only at that point (θ, a) ∈ Bθa. But because F (·, ·) is
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absolutely continuous, we get
∫
δ(v, z; θ, a)p̃(θ, a)dF (θ, a) = 0 for all δ(·, ·; y) ∈ L+, hence

L+ is not dense in C0(Sθa). As an example, let’s consider a simple B(θ,a)- measurable

function that equal to 1 on (θ, a) ∈ [θ, θ′]× [a, a′] and 0 elsewhere. This function cannot

be approximated by functions in L+. Therefore, even with sufficient variation in Z, L+

is not rich enough to provide sufficient data to show that F (·, ·) is point identified.

Careful observation of why L+ is not dense in C0(·) suggests that the problem could be

that class of sets generated by level curves in s does not generate rectangles -the building

blocks of Borel σ− algebra in Rn. This further suggests yet another intuitive reason why

the identification fails. As mentioned earlier, we are able to assign probability measure

to all sets of the form {(θ, a ∈ Sθa : v(θ, a; z) ≤ ṽ} for all ṽ ∈ SV |Z , and therefore on the

σ−algebra of the sets generated by these sets B = σ(v−1(ṽ)). Now, the question is the

following: Can we then uniquely extend the measure defined on B to the entire Borel σ−
algebra? From the classical uniqueness and extension theory of a probability measure, if

B is a π−system then it is sufficient to extend the measure uniquely. Note that π− system

is class of sets closed intersection. Since B is not a π− system the sufficient condition fails.

Unlike the result which uses mixture, this argument is only suggestive because it is only

a sufficient condition for identification and is only intended to complement the previous

arguments. Our nonidentification result is formalized by the following proposition:

Proposition 3: Suppose a continuum of insurance coverages is offered to each insuree

and all claims are observed. Under Assumption 1’ and Assumption 2’, F (·, ·) is not

identified.

4 Conclusion

In this paper, nonparametric identification of an insurance model with bi-dimensional

private information is investigated. It is shown that if this risk is defined as a probability

of an accident, the model is cannot be nonparametrically identified. When risk is defined

as the probability of an accident, the variation in the claims data cannot be used because
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for any coverage, filing one claim is the same as filing ten claims, say, as far as identification

is concerned. Aryal, Perrigne and Vuong (2009) define risk as the expected number of

accident and the number of accidents is modeled as a poisson process, and use the variation

in the claims data, once a coverage is chosen to identify the model. In most of the models

of insurance, risk is defined as the probability of accident and that implicitly ignores the

fact that an insuree can have multiple accidents. An insurance contract is written for a

period of at least six months, and up to one year, and in that period an insuree could

have more than one accidents. For an insurer, it is the expected number of accidents that

is of interest and not just the probability of one accident.

It is also interesting to note that the identification approach adopted here, in particular

the Lemma 1, is reminiscent of identification that relies on completeness assumption

such as in Tallis and Chesson (1982), Newey and Powell (2003) and Hu and Schennach

(2008), among others. In view of this result, one could pursue identification under some

parametric restrictions on F (·, ·) and or could characterize partial identification of F (·, ·),
both of which although important are not pursued in this paper.
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