
 

 

WORKING PAPERS IN ECONOMICS & 
ECONOMETRICS 

 
 

Evidence on a Real Business Cycle model with 
Neutral and Investment-Specific Technology 

Shocks using Bayesian Model Averaging. 
 

Rodney W. Strachan 
Research School of Economics 

College of Business and Economics 
Australian National University 

E-mail: rodney.strachan@anu.edu.au 
 

Herman K. van Dijk 
Econometric and Tinbergen Institutes 

Erasmus University Rotterdam 
 
 

JEL codes: C11, C32, C52 
 
 
 

Working Paper No: 522 
ISBN:  086831 522 2  

 
May 2010  

 



Evidence on a Real Business Cycle model with Neutral
and Investment-Speci�c Technology Shocks using

Bayesian Model Averaging.

Rodney W. Strachan1

Research School of Economics
The Australian National University
email: rodney.strachan@anu.edu.au

Herman K. van Dijk

Econometric and Tinbergen Institutes
Erasmus University Rotterdam
email: hkvandijk@few.eur.nl

1Corresponding author. Strachan is also a Fellow of the Rimini Centre for Economic
Analysis.

1



ABSTRACT

The empirical support for a real business cycle model with two technol-
ogy shocks is evaluated using a Bayesian model averaging procedure. This
procedure makes use of a �nite mixture of many models within the class of
vector autoregressive (VAR) processes. The linear VAR model is extended
to permit cointegration, a range of deterministic processes, equilibrium re-
strictions and restrictions on long-run responses to technology shocks. We
�nd support for a number of the features implied by the real business cycle
model. For example, restricting long run responses to identify technology
shocks has reasonable support and important implications for the short run
responses to these shocks. Further, there is evidence that savings and invest-
ment ratios form stable relationships, but technology shocks do not account
for all stochastic trends in our system. There is uncertainty as to the most
appropriate model for our data, with thirteen models receiving similar sup-
port, and the model or model set used has signi�cant implications for the
results obtained.

Key Words: Posterior probability; Real business cycle model; Cointe-
gration; Model averaging; Stochastic trend; Impulse response; Vector
autoregressive model.
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1 Introduction.

In this paper we evaluate the robustness, in face of model uncertainty, of the
empirical support for a real business cycles (RBC) model with two types of
technology shocks: investment-speci�c technology shocks; and neutral tech-
nology shocks. We use sets of VAR models and take into account model
uncertainty using a Bayesian model averaging approach. Our work is distin-
guished frommost other model averaging papers since averaging over systems
of variables (rather than single equation models) implies averaging over fea-
tures of the model rather than averaging over sets of regressors. Although
averaging over models of systems adds a level of complexity, the approach we
propose makes such as exercise feasible and the results suggest the exercise
is worthwhile.
The RBC model investigated in this paper is based upon one described by

Fisher (2006). This model has several clear and empirically testable implica-
tions for the econometric model, but at the same time gives no direction on
other features of the econometric model. For example, the economic model
suggests that the Great Ratios (e.g., consumption to income, investment to
income) are stationary, that only investment-speci�c technology shocks have
permanent e¤ects on the real investment good price, and only technology
shocks a¤ect productivity in the long run. However, little direction is given
on the form of deterministic trends or the lag structure required to produce
the short run dynamics in the various processes. We measure model uncer-
tainty using Bayesian model averaging (BMA) and develop the method of
model averaging over reduced form vector autoregressive (VAR) models, al-
though these are rearranged into vector error correction models (VECM) to
more easily parameterize restrictions. The model uncertainty derives from
uncertainty over the number of stochastic trends present in the system, the
form of the deterministic trends, lag length, the form of the reduced form
equilibrium (cointegrating) relations and long run restrictions on responses
to shocks.
Applied economists have become comfortable accounting for parameter

uncertainty in inference, but model uncertainty is less commonly taken into
account. It is rare, however, that a well speci�ed economic model will �nd
unequivocal empirical support when confronted with a wide range of alter-
native econometric models, only a few of which derive from the economic
model.
This paper proposes evaluating the evidence on features of econometric
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models rather than models themselves. An economic model will often sug-
gest features that an econometric model should have. No one feature need be
associated with only one econometric model and few econometric models will
have all of the features implied by the theory. By considering the uncondi-
tional2 evidence on individual features of the model, it is possible to identify
those features that have stronger empirical support. The joint evidence for
those features implied by the economic model will indicate the empirical
support for the economic model. In this sense, our analysis de-couples the
dependence of the economic model from any one econometric model.
The idea underlying BMA is relatively straightforward. Model speci�c

estimates are weighted by the corresponding posterior model probability and
then averaged over the set of models considered. Although many statisti-
cal arguments have been made in the literature to support model averaging
(e.g., Leamer, 1978, Hodges, 1987, Draper, 1995, Min and Zellner, 1993 and
Raftery, Madigan and Hoeting, 1997), an increasing number of recent ap-
plications suggest its relevance for macroeconometrics (Fernández, Ley and
Steel, 2001, Sala-i-Martin, Doppelho¤er and Miller, 2004, Koop and Potter,
2003 and Wright, 2008). There are several arguments for model averaging
and only a few are mentioned here. At the simplest level, it is often attractive
to report inferences robust to model speci�cation. A large body of applied
work has demonstrated the that averaging results in gains in forecasting ac-
curacy (Bates and Granger (1969), Diebold and Lopez (1996), Newbold and
Harvey (2001), Terui and van Dijk (2002), Ravazzolo, van Dijk and Verbeek
(2007) and Wright (2008)). Some explanation for this phenomenon in partic-
ular cases was provided by Hendry and Clements (2002). Methodologically,
averaging over models addresses to some degree the well understood pre-test
problem (see, for example, Poirier, 1995, pp. 519-523).
In macroeconomic analysis it is not only the regressors that tend to di¤er

between models, but also the structure3 or features of the model. The ma-
jority of work using model averaging techniques have used single equation,
linear regression models. This paper di¤ers from most other model aver-
aging papers as it averages over systems that have interesting and complex
features, and so it does not only average over alternative regressors. Averag-

2Here �unconditional evidence�means that the empirical evidence does not depend upon
a single model or, in particlular, the other features in that model.

3We prefer to use the word �features�rather than �structures�to avoid confusing our
work with structural VAR analyisis. We consider the restrictions on the reduced form
model including those required to identify structural shocks in an SVAR.
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ing over systems increases the computational complexity and requires careful
consideration of the prior distributions.
This paper makes three contributions. First, the argument is developed

for using the model speci�cation and prior of Strachan and Inder (2004)
with new results. We show in this paper how to obtain posterior inference
from model averages in which the economically and econometrically impor-
tant features may have weights other than zero or one. In other words,
the inferences are based on a �nite mixture of models. Second, this paper
demonstrates how to estimate probabilities and parameters in models that
incorporate restrictions on the responses described in Fisher (2006) in the
presence of cointegration. Prior equality and inequality conditions are in-
cluded in the parameter space of structural VARs and we demonstrate how
to compute the posterior probabilities of such restrictions. An important
component of this contribution is an approach to estimating a model with
restrictions on the long run response matrix in a Beveridge-Nelson decom-
position of the Wald representation of the process. Subject to cointegration,
such restrictions imply highly nonlinear restrictions on the parameters in the
mean equations and this complicates sampling and estimation of posterior
probabilities. Third, the proposed methodology is demonstrated with an em-
pirical investigation of a RBC model. Important in this model are the long
run responses of investment prices and productivity to technology shocks and
that technology follows stochastic rather than deterministic trends.
The structure of the paper is as follows. In Section 2 the important fea-

tures of the economic model used by Fisher (2006) are outlined. We do not
develop the model or discuss the underlying theory as that is well covered in
Fisher�s paper and others in the area. Empirically testable features implied
by the economic model are identi�ed. In the Section 3 the basic econometric
models, the reduced form VECMs, of interest in this paper are introduced,
including characterizations of the features implied by the economic model.
We present the priors, the likelihood and the sampling scheme used to simu-
late the posterior in Section 4. The tools for inference in this paper, posterior
probabilities, are introduced. The evidence for the alternative restrictions are
presented in Section 5 as are estimates of important functions. In Section 6
we summarize conclusions and discuss possibilities for further research.
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2 A Real Business Cycle Model.

In this section we outline the features of the real business cycle model of
Fisher (2006), which is in turn based upon the competitive equilibrium
growth model of Greenwood, Hercowitz, and Krusell (1997) with two simpli-
�cations: capital is not separated into equipment and structures; and tech-
nologies are given stochastic rather then deterministic trends. The general
model was developed in Kydland and Prescott (1982) and detailed in King,
Plosser and Rebelo (1988), and an interesting early econometric analysis is
provided in King, Plosser, Stock and Watson (1991). The reader is directed
to these earlier papers for the development of the model as we focus upon
certain features that imply empirically testable restrictions upon our reduced
form econometric model.
The model suggests that a system of consumption, Ct; investment, Xt;

and output, Wt = Ct+Xt; will share a balanced growth path since each will
be driven by shocks to two technologies: an investment speci�c technology,
Vt; and neutral technology, At. We denote the logs of Ct; Xt; and Wt by ct;
xt; and wt respectively.
The resource constraint and Cobb-Douglas production technology are

given by
Ct +Xt � AtK

�
t H

1��
t ; 0 < � < 1

and period t+ 1 capital stock is given by

Kt+1 � (1� �)Kt + VtXt; 0 < � < 1:

Fisher (2006) speci�es technology as having stochastic rather than deter-
ministic trends. The log of investment-speci�c technology, vt = ln (Vt) ; and
the log of neutral technology, at = ln (At) ; are assumed to be simple random
walks, possibly with drifts, and with independent innovations. In the em-
pirical analysis we evaluate the evidence on the importance of deterministic
and stochastic trends as well as the relative contribution to business cycle
volatility of permanent and transitory shocks.
An implication of the production technology and the resource constraint

is that we can represent the log real price of an investment good in consump-
tions goods by pt = �vt and

pt = pt�1 � � � "�;t:
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Since � � 0; this justi�es the downward trend we see in the price of an
investment good. Neutral technology evolves by the process

at = 
 + at�1 + "a;t

where 
 � 0 and "t = ("v;t; "a;t)
0 has zero mean and constant covariance

matrix.
A �rst implication of this model is that the variables ct; xt; and wt will

all be integrated of order one due to a common stochastic trend given by
!at+(1� !) pt and the di¤erences between any two will be stationary. This
is not an unusual result in the balanced growth literature (see, for example,
King, Plosser, Stock and Watson, 1991) and it implies that we can treat the
relations

ct � wt and xt � wt

as valid cointegrating relations.
Denote by ht = ln (Ht) the log number of hours worked which is assumed

to have no unit root, although it may have a trend. The log price of an
investment good, pt; and labour productivity, at = ln (Wt=Ht) = wt � ht,
are assumed to have unit roots but pt should not cointegrate with the other
variables. Since ht is assumed to be I (0) ; and ct; wt and xt are all assumed
to be I (1) sharing a common stochastic trend, the above assumptions imply
that at will be I (1) and the relations

ct � wt + ht = ct � at and xt � wt + ht = xt � at

will be I (0) and form valid cointegrating relations. None of the assumptions
preclude the above I (0) relations having deterministic trends, but this is not
a feature we would expect to �nd.
Two important �nal restrictions apply to the long run responses of the

real price of investment, pt; and labour productivity, at, to technology shocks.
Fisher (2006) assumes that the long run responses of investment prices and
productivity only respond in the long run to the technology shocks, and in-
vestment prices respond only to investment-speci�c technology shocks. That
is, the long run response of pt to an investment-speci�c technology shock will
be nonzero, in fact negative, but its long run response to all other shocks will
be zero. Second, the long run response of at to both an investment-speci�c
and a neutral technology shock will be nonzero, but the long run response of
at to any other shock will be zero. These restrictions identify the investment-
speci�c technology shock, the I-shock, and the neutral technology shock, the
N-shock.
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Fisher imposes an additional restriction that, in the long run, the invest-
ment speci�c shocks lower the price of an investment good by an amount of
known proportion to the amount that it will raise labour productivity. This
assumption implies a linear restriction on the long-run responses of pt and
at to an investment-speci�c shock. The proportion is given as a function
of the elasticity parameter in the production function; speci�cally the pro-
portion is 1��

�
: Imposing this restriction then requires that we know � and

Fisher uses a value of � = 1=3 for the simulation experiment and � = 1=4
for the econometric analysis. This restriction is not necessary to identify the
shocks and we do not impose it. However, we use the relationship (detailed
in Fisher (2006)) between the long run responses to estimate �: The resulting
estimates suggest that the values Fisher used were very reasonable. As we
report the full posterior distribution of � from a range of models, we are able
to characterize more fully the uncertainty associated with �:

3 A Set of Vector Autoregressive Models.

When a VAR process cointegrates, the model may be written in the vector
error correction model (VECM) form. The VECM of the 1� n vector time
series process yt = (pt; at; ht; ct; xt) ; t = 1; : : : ; T; conditioning on l+1 initial
observations is

�yt = yt�1�� + dt�+�yt�1�1 + : : :+�yt�l�l + ut (1)

where �yt = yt � yt�1: The 1 � n vector of errors ut are assumed to be
iidN (0;
).4 The matrices �j j = 1; : : : ; l are n� n and � and �0 are n� r
and assumed to have rank r: We de�ne the deterministic terms dt� below.
Next, we specify the model set which is de�ned by the combinations of

restrictions imposed upon the VAR. The restrictions refer to particular types
of deterministic processes (indexed by d), the lag length (l), the number of
cointegrating relations (r), the (over)identi�cation restrictions on the cointe-
grating space (o), and the long run restrictions identifying technology shocks
(s).
The number cointegrating relations, r, determines the dimensions of �

and � and the number of stochastic trends in the system as n� r; where r =
4Throughout the paper, we denote the Normal distribution with meanm and covariance

matrix c by N (m; c) :
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0; 1; : : : ; n: Di¤erent overidentifying restrictions on � are denoted by o; where
o 2 f0; 1; 2g. If o = 0 then no overidentifying restrictions are imposed on �: If
o = 1 then it is assumed that pt has a unit root but does not cointegrate with
the other variables in the system. If o = 2 then the restriction implied when
o = 1 is imposed and, further, that hours worked, ht, and the great ratios
of consumption to income and investment to income are stationary. The
restrictions o = 1 and o = 2 imply a model speci�cation in which � = H1 
or � = H2 respectively for appropriate H1 and H2. The restriction implied
when o = 2 is stronger than that under o = 1 since sp (H2) � sp (H1) and
these overidentifying restrictions imply maximum cointegrating ranks such
that if o = 1 then r � 4 and if o = 2 then r � 3: Clearly then some models,
such as (r = n; o = 1) or (r = n� 1; o = 2) ; are a priori impossible and will
be assigned zero prior probability.
We allow for �ve di¤erent lag lengths such that l 2 f0; 1; 2; 3; 4g. The

deterministic processes are denoted by d 2 f1; 2; 3; 4; 5g and these processes,
given in the table below,are the �ve most commonly used combinations (see,
for example, Johansen, 1995):

d yt� yt
1 linear trend quadratic drift
2 linear trend linear drift
3 non-zero mean linear drift
4 non-zero mean no drift
5 zero mean no drift

Some models implied by the deterministic processes will be observation-
ally equivalent. For example, if r = 0 then the models with d = 2 or d = 3 will
be observationally equivalent as will the models with d = 3 and d = 4 when
r = n: The treatment of a priori impossible and observationally equivalent
models is explained in the next section when the prior is outlined.
Finally, the long run restriction to identify the technology shocks is em-

ployed. As discussed in the previous subsection, this restriction implies that
the long run response of pt is nonzero only for the investment-speci�c tech-
nology shocks and that the long run response of at is nonzero only for the
investment-speci�c technology shock and the neutral technology shocks. This
restriction can be parameterized using the standard Beveridge-Nelson form
of the Wald representation of the VECM as

�y0t = Cu0t + C� (L)�u0t where C = �? (�?��?)
�1 �?:
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The restriction on C implies the matrix will have the following zero entries:

C =

2666664
c11 0 0 0
c21 c22 0 � � � 0
� � � �

...
. . .

� � � �

3777775
where the asterisks (*) imply no restriction is imposed.
It seems reasonable to assume that as this is a long run restriction, im-

posing it has no implications for the short run dynamics and so does not
imply any restrictions on � or 
, but must imply restrictions on � and �:
Therefore it is necessarty to recover the values of � and � after imposing the
long run restriction and these new restricted values are denoted by e� ande�. With the ordering of the variables in the system given above, a Cholesky
decomposition of 
 = 
1=2
1=20 where 
1=2 is lower triangular, imposes no
further identifying restrictions on the model, however these identifying re-
strictions imply that the long run restrictions will be testable overidentifying
restrictions. Without the over identifying restrictions on the matrix C we do
not have an interpretation for the shocks identi�ed by the Cholesky decom-
position of 
: This is not a problem as we are interested in the technology
shocks and so only consider responses from models with s = 1.
Next we explain how, once the restriction is imposed on C, the restricted

values of � and � are recovered. Note that there is no information in C on
the orientation of � or � within the spaces they span, only the space of �
and the space of � can be obtained from C. This can be seen as, for any full
rank r � r matrices �a or �b; we can write C as

C = �? (�?��?)
�1 �? = �?�b (�a�?��?�b)

�1 �a�?:

The space of �? de�nes the space of � and, similarly, the space of �? de�nes
the space of �: It is possible to recover the space of �? and the space of �?
from C; however, no further information on � or � can be retrieved. Writing
� = (��0)1=2 V and � = U (�0�)

1=2 where V V 0 = U 0U = Ir, then the matrices
(��0)1=2 and (�0�)1=2 can be thought of as the norms of the matrices � and
�: These results imply that a restriction on C does not restrict 
; ��0 or �0�;
but will restrict sp (�) = sp (U) and sp (�0) = sp (V 0) :

Denote by eC the matrix C with the restrictions imposed. To recover the
restricted sp (�) and sp (�0) from eC; �rst observe that as eC has rank n � r;
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it may be written as eC = 
�0 where 
 and � are n� (n� r) full rank (n� r)

matrices. Necessarily sp (
) = sp
�e�?� and sp (�) = sp

�e�0?� : A singular

value decomposition of eC into eC = eU?S eV 0
? will then give semi-orthogonal

matrices eU? and eV 0
? such that

sp
�eU?� = sp (
) = sp

�e�?� and
sp
�eV 0

?

�
= sp (�) = sp

�e�0?� :
From eU? and eV 0

? construct semi-orthogonal matrices eU and eV such that

sp
�eU� = sp

�e�� and sp�eV 0
�
= sp

�e�0� and use these to construct e� and e�
as e� = (��0)1=2 eV 0 and e� = eU (�0�)1=2 :
Since C has rank n � r; the zero restrictions on C and the assumption

of nonzero responses of pt and at stated above implies C must have at least
rank two, the restriction can only apply if r 2 f0; 1; : : : ; n� 2g. This is
consistent with the two technology shocks entering the system as stochastic
trends. The index for this long run restriction is s and we set s = 0 when we
do not impose the restrictions and s = 1 when the restrictions are imposed.
In summary, each model will be de�ned by the combination of the de-

terministic process (d), lags of di¤erences (l), cointegrating rank (r), overi-
dentifying restrictions on the cointegrating space (o), and whether or not
the long run responses are restricted (s). Each model will be identi�ed by
Mi where i = (d; l; r; o; s) and i 2 �; the set of all i considered. As an
example of some models we will use, suppose we allow a linear drift and
nonzero mean in the cointegrating relations (d = 3) ; two lags of di¤erences
(l = 2), stationary great ratios and hours worked (r = 3; o = 2) and the long
run identifying restrictions for the technology shocks are imposed (s = 1).
This model would be denoted as M(3;2;3;2;1). In total we average using 508
models in our application.5

5There are 900 models implied by the restrictions. However, this reduces to 508 models
when we exclude a priori impossible models, meaningless models and only consider one
in a set of observationally equivalent models.
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4 Priors, Posteriors and Model Averaging.

In this section the priors and resultant posterior are presented. We begin
with discussion of the prior model probabilities taking into account that
some models are impossible and others that are observationally equivalent.
Next we consider the priors for the covariance matrix and the mean equa-
tion parameters excluding (�; �) ; that is: �; �1; : : : ; �l: For notational
convenience we collect these mean equation parameters into a ki � n matrix
� = [�0 �01 � � � �0l]

0 and vectorize into � = vec (�) : Conditional upon �;
the model in (1) is linear in the equation parameters vec (�) and �. This fact
makes it relatively straightforward to elicit priors on 
 and �, however we
adopt a transformation that improves the sampling scheme. For this reason
we give the full prior after we have given careful consideration to the prior
for �; before then presenting the method of posterior analysis.

4.1 The Prior.

Ideally all models would be treated as a priori equally likely, however this
is not a straightforward issue in VECMs.6 The priors for the individual el-
ements of i = (d; l; r; o; s) are not independent, as certain combinations are
either impossible (such as when r = n and o = 2), meaningless (such as,
for example, r = 0 with o = 1) or observationally equivalent to another
combination (such as the models with r = n and d = 1 or 2). The prior
probability for impossible and meaningless models is set to zero. However,
the researcher must carefully consider how she wishes to treat observation-
ally equivalent models. Treating these models as just one model and then
assigning equal prior probabilities to all models biases the prior weight in
favour of models with 0 < r < n: This could shift the posterior weight of
evidence in favour of some economic theories for which we wish to determine
the support.7 Alternatively, these could be treated as separate models. A
choice must be made and in this paper, observationally equivalent models
are treated as one model.
A referee has raised the interesting question as to whether it is appropriate

to specify independent priors for d; l; r; o; and s: One might expect, for

6The authors are grateful to Geert Dhaene, John Geweke and an anonymous referee
for useful comments on this issue.

7This issue could be viewed as a con�ict between the desire to be uninformative across
statistical models and the desire to be uninformative across economic models.
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example, that a strong deterministic process such as d = 1 might reduce
the prior expectation of �nding stochastic trends in the processes. This
might imply that the probabilitiy Pr (r < njd) may decrease as d increases.
Similarly a shorter lag length, l, might be associated with a higher prior
probability of �nding (more) stochastic trends. We do not pursue this idea
further, but note that it might be a worthwhile topic for investigation.
For each model we use a proper prior for 
 that is an inverted Wishart

with scale matrix S = In10 and degrees of freedom � = n + 1 as this prior
is rather uninformative. We specify a weakly informative proper prior for �,
however, defer speci�cation of the full prior to the end of the next subsection,
but the prior for vec (�) conditional upon (
; �;Mi) (and hyperparameters
discussed below) has zero mean and covariance matrix 1

�
V a where V a =



 Ir.8

For � and �i; we had initially speci�ed a normal prior with zero mean and
covariance matrix 1

�
V 0 where V 0 = 

Iki, however a referee pointed out that

it would make more sense that coe¢ cient matrices for higher lags are more
likely to be near zero. This suggests using the well known Litterman prior
(Litterman, 1980, 1986, Doan, Litterman and Sims, 1984). As we average
over models with di¤erent numbers of lags we feel we already allow the data
to choose shorter lags, however, as we have already mentioned, shrinkage
tends to improve inference (Ni and Sun (2003)) which suggests a technical
reason to prefer the Litterman prior. To express our uncertainty as to which
is the correct prior, we specify the prior for �i to be a mixture of two normal
zero mean priors. One with covariance matrix V 0 and the other with the
Litterman type prior for a VECM speci�ed in Villani (2001).
The covariance matrix in Villani (2001), which we will denote by 1

�
V 1;

has zero o¤-diagonals and the variance of each element of �i shrinks toward
zero the higher is i and for o¤ diagonal elements of �i. The coe¢ cients for
own lags are not quite as heavily shrunk as the coe¢ cients for other vari-
able lags. The full covariance matrix for � can be represented as 1

�
V � where

V � = (Iu+ V 0 (1� u)) (I (1� u) + V 1u) where u 2 f0; 1g with prior prob-
abilities Pr (u = 1) = Pr (u = 0) = 0:5:9 The posterior estimate of u will
inform us on the data�s preference between the two speci�cations and in this

8If an informative prior is used on for the cointegrating space then we recommend the
prior for � described in Koop, León-González and Strachan (2008).

9Alternatively we could give u a continuous distribution over [0; 1] and mix continuously
over the two normals. Either approach seems reasonable.
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sense produces an empirical Bayes prior for �: We found the posterior was
not very informative on the choice of u (either 0 or 1). The estimated pos-
terior probability that the Litterman prior was adopted, i.e., the estimate of
Pr (u = 1jy) ; was 0.29 which shows some preference for V 0, but this does not
indicate strong evidence for either covariance matrix. It would seem, there-
fore, that mixing over the two normals, rather choosing one, is a reasonable
approach. However, mixing the densities produced a posterior probability of
one that there are no lags in the model. This result seems due to the extra
shrinkage implied by the Litterman prior.
The parameter � determines the overall degree of shrinkage that is applied

to the mean equation parameters. Further evidence on the in�uence of this
parameter can be found in Strachan and Inder (2004). A gamma prior with
mean E (�) = 5 and a relatively large variance V (�) = 16:67 is speci�ed for
�: These settings provide a reasonable degree of shrinkage towards zero which
has been shown to improve estimation (see Ni and Sun (2003)). The posterior
distribution of �, by contrast, is very tight with a mean of E (�jy) = 0:001
and variance V (�jy) = (0:0195)2 : This result suggests the data prefer less
shrinkage, although the Litterman prior already imposes a signi�cant degree
of shrinkage. Setting the prior mean of � (and therefore variance) to a larger
value did not signi�cantly change the posterior estimates of other objects of
interest (such as impulse responses). We concluded that while the bulk of
the posterior mass of � is near zero, there is su¢ cient mass away from zero
to give enough shrinkage.
This paper argues, with new results to support this argument, for using

the model speci�cation and prior of Strachan and Inder (2004) as a more
general and less problematic approach than what is commonly used in these
models. The general argument is that any inference that can be achieved with
linear identifying restrictions can be achieved with the identifying restrictions
in this paper, and this inference can be achieved without encountering the
issues that surround the linear restrictions.
As in many reduced rank models, there is a well known identi�cation issue

since � and � appear as a product in (1) such that �� = �

�1� = ���� and
(�; �) and (��; ��) are observationally equivalent. What is not often recog-
nized in the cointegration literature is that the space of � and the space of
� are fully identi�ed under the likelihood and, without restrictions on �; the
data can only inform us about the space of �. Any further restrictions, such
as to identify the elements of � and � to permit interpretation; are necessarily
part of the prior and will potentially have implications for posterior inference.
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In the Bayesian literature it is common to use linear identifying restrictions
to impose restrictions to permit interpretation and estimation. That is, by
assuming c� is invertible for known (r � n) matrix c and the restricted � to
be estimated is � = � (c�)�1 : The free elements are collected in B = c?�
where c?c0 = 0: For example, if c = [Ir 0] then � = [Ir B

0]0 and a prior is
then speci�ed for B.10 We do not impose such restrictions for several reasons:
empirically they can have a determining e¤ect on inference (Lopes and Wests
(2004)); imposing such restrictions has the unexpected and undesirable result
that it makes the assumption supporting the restrictions a priori impossi-
ble (Strachan and Inder, 2004); these restrictions have been associated with
nonexistence of moments, improper posteriors, local nonidenti�cation prob-
lems and reducibility of Markov chain methods (Kleibergen and van Dijk
(1994 & 1998) and Bauwens and Lubrano (1996)).
A further problem with the priors that use linear identifying restrictions is

that the posterior is improper at any point where the restriction Rvec (�) = r
for any known R and r (see Appendix I). This issue has not been discussed
in the literature but has the same implications as local nonidenti�cation. Is
it important to stress that this result holds for any known R and r and so
implies an almost everywhere covering of the support.
This paper uses a speci�cation of Strachan and Inder (2004) that permits

estimation with minimal restrictions. To implement this approach, specify
� to be semi-orthogonal, i.e., �0� = Ir; and specify a Uniform distribution
for � (for background information, see Strachan (2003), Strachan and Inder
(2004), Strachan and van Dijk (2003) and Villani (2005)). This approach
does not preclude achieving interpretable coe¢ cients, B, by imposing such
identifying restrictions as these can be imposed ex-post once a draw or an
estimate of � is obtained. As many choices of identifying restrictions can
be imposed to permit as many interpretations of the coe¢ cients is desired.
The di¤erence is that these restrictions are imposed on draws or estimates
from the posterior and not in the prior. This approach avoids problems of
local non-identi�cation, all moments exist and sampling is simpli�ed. We
make the argument, and we think this to be a compelling argument, that
there is nothing gained but much potentially is lost from imposing the linear
normalization a priori. Using the normalization of Strachan and Inder (2004),

10There exist practical problems with incorrectly selecting c: The implications for clas-
sical analysis of this issue are discussed in Boswijk (1996) and Luukkonen, Ripatti and
Saikkonen (1999) and in Bayesian analysis by Strachan (2003). In each of these papers
examples are provided which demonstrate the importance of correctly determining c:
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coe¢ cients from whatever linear normalization the researcher wishes can be
retrieved ex-post.11

This approach to identi�cation is closer to the identifying restrictions
used in classical models with reduced rank structures. For example, the
well known Johansen method of identifying the cointegrating vectors uses a
similar approach. as do other nonlinear models. See, for a further example,
the multi-mode model discussed in Magnus and Neudecker (1988).
For the cases in which identifying restrictions discussed in Section 2 of

the form � = H (o = 1) are imposed, set  where  0 = Is and give  a
Uniform prior. For computational and mathematical simplicity, we convert
H to be semiorthogonal by the transformation H ! H (H 0H)�1=2 : This
transformation is innocuous since the space of H; which is the important
parameter, is unchanged by this transformation.
As � is semiorthogonal, the posterior distribution will be nonstandard re-

gardless of the form choosen for the prior. Therefore, to obtain an expression
for the posterior useful for obtaining draws of �; we use an approach proposed
in Koop, León-González and Strachan (2010). Note that the matrices � and
� always occur in a product form as �� such that it is possible to introduce
any full rank square r� r matrix � such that �� = ����1� = ���� without
a¤ecting the posterior.The matrices �� and � have the same support, how-
ever, � is semiorthogonal with the Stiefel manifold (see Muirhead, 1982 or
James, 1954) as its support while �� has as its support the nr dimensional
real space. The matrix �� is given a Normal prior with zero mean and co-
variance matrix n�1Inr. Transforming back to the parameters of interest is
straightforward via � = ����1 and � = ���: The prior for �� resembles that
of Geweke (1996) except that our prior implicitly speci�es, in addition to a
proper prior for �, that the marginal prior for � = ����1 is Uniform. The
e¢ ciency of this approach is discussed in Koop, León-González and Strachan
(2010).
The prior is speci�ed to impose an important inequality constraint. The

VECM is assumed to be balanced, in that all stochastic elements are I (0) ;

11More recently, the topic of invariance to rescaling of the data has been raised in
conversations with colleagues. Our prior is not invariant and no uniform, invariant prior
exists. Such invariance gives us the virtue of being able to say that the probability of
being in this region is the same after rescaling, no matter what the region. As we prove
in Appendix II, no proper prior in the literature is invariant. While it might be worth
further investigation, we do not consider invariance further here except to note that we
are yet to see a Bayesian cointegration study in which it is an important issue.
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and so the support under the prior is restricted to exclude explosive unit
roots: call this restricted region the stationary region. Imposing a restriction
on the support of the parameters implies the prior must be renormalized so
that it integrates to one. The renormalizing constant, ps, is the probabil-
ity mass in the stationary region under the prior described above over the
unrestricted support.
To give this a more formal explanation let the vector of all parameters in

the model that appear in the likelihood, i.e., p; �; �; and 
 , be denoted by
� and the unrestricted support is �; � 2 � = Gr;n�r � Rn(ki+r) � R

n(n+1)=2
+

(where Rn(n+1)=2+ denotes the blunt, one-sided cone that forms the support of
all n�n positive de�nite symmetric matrices) and let the full prior be denoted
as p (�). Next, denote the stationary region as �S � � and an indicator
function for this region as 1 (� 2 �S) : Then the renormalizing constant pS =R
�S
p (�) d� and the prior with the restriction imposed is pS (�) = p (�) =pS:

Let a� =
�
vec (��)0 ; �0

�0
; b� = vec (��) and

V =

�
V a 0
0 V �

�
:

Introduce �� as the vector containing the elements of ��; a�; and 
: The full
prior distribution for the parameters in a given model is then

p (��; �; ujMi) _ exp
n
��
2
a�0V �1a� � n

2
b�0b�

o
nnr=2

�1 (� 2 �S) =pS

� j
j�(�+n+1+r+uki)=2 exp
�
�1
2
tr
�1S

�
��

n(ki+r)+1
2 exp

�
�5�
6

�
:

The indicator, 1 (� 2 �S), in the prior is expressed in terms of � rather than
�� as we have de�ned the support for �. We could de�ne the support for ��

under the restriction, ��S, however since is 1 (� 2 �S) = 1 (�� 2 ��S), this is
not necessary.

4.2 Posterior Analysis.

An expression for the posterior distribution of the parameters for any model
given the data is obtained by combining the prior, p (��; �; ujMi) ; with the
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likelihood for the data L (yj��;Mi) where y represents all data. That is,12

p (��; �; ujMi; y) _ p (��; �; ujMi)L (yj��;Mi) = k (��; �; u;Mijy) : (2)

As the sampler uses a Gibbs sampling scheme, it is necessary to present the
conditional posterior for each parameter.
In the following results, we gather together terms to keep expressions no-

tationally concise. Collect yt�1� and the vector z2;t = (d2;t;�yt�1; : : : ;�yt�l)
into the vector zt = (yt�1�

�; z2;t) ; and de�ne the ki�nmatrix� = (�0;�01; : : : ;�0l)
0

and the (r + ki)� n matrix A = [��0 �0]0.
As the model is linear conditional upon b�; standard results show that

the posterior for a� conditional on all other parameters will be normal with
mean a and covariance matrix V constructed as

a = V
�

�1 
 Iki+r

�
vec

 
TX
t=1

z0t�yt

!
and

V =

  

�1 


TX
t=1

z0tzt

!
+ �V �1

!�1
:

Next, the posterior for b� conditional upon the other parameters will be
normal with mean b and covariance matrix V b which are constructed as

b = V b

�
��
�1 
 In

�
vec

 
TX
t=1

y0t�1 (�yt � z2;t�)

!
and

V b =

" 
��
�1��0 


TX
t=1

y0t�1yt�1

!
+ nInr

#�1
:

The posterior for � will be Gamma with degrees of freedom �� = n (ki + r)+
3 and mean �� = 1=

�
a�0V �1a� + 5=3

�
=�� (see, for example, Koop (2003)):

Finally, u will have a Bernoulli conditional posterior distribution with p =
Pr (u = 1ja�;
; ��; y) equal to

p = exp
n
��
2
a�0V �1

0 a�
o
=
h
exp

n
��
2
a�0V �1

0 a�
o
+ exp

n
��
2
a�0V �1

1 a�
oi

:

We use the following scheme at each step q to obtain draws of (a�;
; ��; �; u) :

12Note that as � and u are hyperparameters, do not enter the likelihood.
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1. Initialize (
; b�; a�; �; u) =
�

(0); b�(0); a�(0); �(0); u(0)

�
;

2. Draw 
jb�; a�; �; u from IW
�
S + u�A0A+

PT
t=1 u

0
tut; T + uki + r

�
;

3. Draw a�j
; b�; �; u from N
�
a; V

�
;

4. Draw b�j
; a�; �; u from N
�
b; V b

�
;

5. Draw �j
; b�; a�; u from Gamma(��; ��);

6. Draw uj
; b�; a�; � from Bernoulli (p);

7. Repeat steps 2 to 6 for a suitable number of replications.

The algorithm described above gives draws from the model without long
run or stationarity restrictions. A Metropolis-Hastings algorithm is used to
obtain draws from the model subject to the restriction when s = 1 (see, for
example, Koop pp. 92-99 (2003)) with draws from the unrestricted posterior
as the candidate density. As there are fewer parameters in the restricted
model than the unrestricted model, we augment the restricted posterior with
a normal distribution for the parameters in the �rst two rows of C that are
replaced by zeros in eC (for a similar approach, see Kleibergen and Paap
(2002)).
An important component of Bayesian inference is the posterior probability

of each model, p (Mijy). These can be derived from the marginal likelihoods
mi for each model via the expression

p (Mijy) =
mip (Mi)X

j2�
mjp (Mj)

(3)

where the summation in the denominator is over all models: The marginal
likelihood for any model Mi is given by

mi =

Z
�

k (��; �; ujMi; y) d (�
�; �; u) : (4)

There are several ways to compute the posterior probabilities. Rewriting
the expression in (3) as

p (Mijy) =
mip (Mi)X

j2�
mjp (Mj)

=
mi=m0p (Mi)X

j2�
mj=m0p (Mj)

(5)
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where the marginal likelihood m0 is for some model M0; suggests a way to
compute the model probabilities if there is a way to compute the Bayes factor
given by the ratio mi=m0 for all models.
If M0 nests within another model Mi in the model set (M0 need not

actually be in the model set considered) then the Savage-Dickey density
ratio (SDDR) can be used to estimate m0=mi (Verdinelli and Wasserman
(1995) and see Koop, León-González and Strachan (2008) for an example
of an application of this approach). Each of the models considered in this
study collapses to, or nests, a single model at the point where a� = 0: Denote
this model, M0. The SDDR can be computed as the ratio of the marginal
posterior to the marginal prior at the point a� = 0. That is,

m0

mi

=
p (a� = 0jMi; y)

p (a� = 0jMi)
:

Given sequences of draws
�

(q); b

�(q)
� ; �(q); u(q)

�
; q = 1; : : : ; K from the

posterior and
�

(j); b

�(j)
� ; �(j); u(j)

�
; j = 1; : : : ; K from the prior13, the mar-

ginal posterior and prior densities for a� at the point a� = 0 can be approxi-
mated by

bp (a� = 0jMi; y) = K�1
KX
q=1

p
�
a� = 0j
(q); b�(q)� ; �(q); u(q);Mi; y

�
and

bp (a� = 0jMi) = K�1
KX
j=1

p
�
a� = 0j
(j); b�(j)� ; �(j); u(j);Mi

�
:

For the model with long run restrictions, s = 1, the same form of the SDDR
can be used with � and � replaced by e� and e�:
The SDDR approach described above is used to estimate the Bayes factors

for the models with support � (i.e., the model without the restriction to the
stationary region) as it is easier and faster to sample from this model than
from the model with support restricted to the stationary region �S: However
the prior is speci�ed to restrict the support for all models to �S: The Bayes
factors for the models on �S can be obtained from draws from the prior and
posterior on �.
13It is relatively straightforward to show that the conditional priors are all proper and

of standard Normal and inverted Wishart forms. Therefore sampling from the prior is not
di¢ cult.
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Let mi be the marginal likelihood for the model on � and let miS be the
marginal likelihood for the same model with the support restricted to �S.
Denote by p (��; �; ujy) and p (��; �; u) the posterior and prior respectively
over the support � (used to compute mi=m0 above) and let the indicator
function for the stationary region be 1 (�� 2 �S) : As shown in Klugkist and
Hoijtink (2007),

miS

mi

=

R
p (��; �; ujMi; y) 1 (� 2 �S) d (��; �; u)R
p (��; �; ujMi) 1 (� 2 �S) d (��; �; u)

:

The above expression implies that the Bayes factor miS=mi can be estimated
by

1
M
�Mi=11

�
�(i) 2 �S

�
1
N
�Ni=11

�
�(i) 2 �S

�
where the numerator uses draws from the posterior and denominator uses
draws from the prior. We can use this simple expression because the restric-
tion from � to �S is an inequality restriction. To compute the posterior
probabilities of the models on �S; multiply mi=m0 by miS=mi to obtain

miS

m0

=
mi

m0

miS

mi

and again an estimate of p (MiS jy) can be estimated using (5).
Probability estimates were produced from �ve runs of 1000 after burn-

in iterations with di¤erent initial conditions to check convergence and the
results are very similar from each run. For example, the probabilities di¤ered
at most at the second or, more often, the third decimal place.

4.3 Bayesian Model Averaging with MCMC.

In this section we outline how we implement Bayesian model averaging to
provide unconditional inference. One of the advantages of the approach in
this paper over previous approaches is that for all model speci�cations con-
sidered the posterior will be proper and all �nite moments of b� = vec (��)
(or �) exist. The importance of this statement becomes evident when we
consider that economic objects of interest to decision-makers are often linear
or convex functions of the cointegrating vectors. To report expectations of
these objects, it is necessary that the moments of b� exist.
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Suppose we have an economic object of interest � which is a function of
the parameters for a given model (��jMi), � = � (��jMi). Examples include
estimates of impulse responses, forecasts, or loss functions. To report the
unconditional (upon any particular model) expectation of this object it is
necessary to estimate

E (�jy) =
X
i2�

E (�jy;Mi) p (Mijy)

where E (�jy;Mi) is the expectation of � from model i: Denote the qth draw

of the parameters from the posterior distribution for modelMi as
�
��(q)

�
and

so the qth draw of � as �(q) = �
�
��(q)jMi

�
. UsingM draws of the parameters

from the posterior distribution for each of the J models, �rst obtain estimates
of E (�jy;Mi) from each model by

bE (�jy;Mi) =
1

M
�Mq=1�

(q).

These estimates are then averaged as

bE (�jy) = JX
j=1

bE (�jy;Mi) bp (Mijy)

in which bp (Mijy) is an estimate of p (Mijy) :

5 The Application and the Results.

In this section we provide empirical evidence on the support for the real
business cycle model with two technology shocks and the various restrictions
that this economic model implies for the econometric model. We begin with
the posterior probabilities of the features of the reduced form VECM that
are implied by this RBC model. We then report the estimates of objects of
interest including impulse response functions.
The variables of interest are: log real price of an investment good mea-

sured in consumptions units, pt; log labour productivity, at; log number of
hours worked, ht; log of consumption, ct; and log investment, xt. The data,
which are seasonally adjusted, start in the �rst quarter of 1948 and end in
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the second quarter of 2009. Where appropriate, the data are measured in
1996 dollars de�ated using a chain-weighted index of consumption prices.
We measure the investment price using an investment de�ator divided by

a consumption de�ator and we follow the approach using real total invest-
ment price from the National Income and Product Accounts (NIPA) for the
investment price. Alternative approaches to constructing pt are discussed
quite extensively in Fisher (2006) and Greenwood, Hercowitz, and Krusell
(1997). These papers raise the issue of the lack of quality adjustment in the
NIPA series. However, in a related study, Fisher (2005) concludes important
�ndings are robust to using the NIPA-based total investment price rather
than alternatives that address these issues. Therefore, we do not explore
the alternative approaches as we assume that the NIPA based measure will
be appropriate. We compute the consumption de�ator using a Fisher index
and data from the Bureau of Economic Analysis on nondurable goods and
services.
Productivity is constructed from nonfarm output per hour measured in

consumption units and hours worked. Hours worked is hours of all persons in
the nonfarm business sector obtained from the FRED (Federal Reserve Eco-
nomic Data), which sourced this data from the U.S. Department of Labor:
Bureau of Labor Statistics. Consumption is personal consumption expendi-
tures less durable goods and investment is gross private domestic investment
in consumption units sourced from the Bureau of Economic Analysis.
The cardinal product of the supports of d; l; r; o; and s produces 900 mod-

els, however 392 of these models can be excluded as observationally equiva-
lent to another model, impossible or meaningless leaving only 508 models to
estimate. Of these models, there were sixteen models with measurable sup-
port. Six models accounted for half the posterior mass and thirteen models
accounted for 99.99% of the posterior probability mass. The posterior prob-
abilities of the top thirteen models is presented in Table 1. Table 2 presents
the same information as the marginal probabilities of the various features of
the VECM. Although relatively few models get any support, it is clear that
support is fairly evenly spread over the top thirteen models.
According to the model of Fisher, it might be reasonable to expect the

model to contain drift terms (d = 3) as the technologies are random walks
with drifts, but we would not expect trends in the cointegrating relations
(d = 2) or quadratic trends in the variables (d = 1). The deterministic
process seems to be reasonable as quadratic drifts are excluded and there
are no trends in the equilibrium or cointegrating relations. The models that
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contain no drifts (d = 4 and 5) receive most of the support with some support
for drift terms. This result does not exclude drifting behaviour (random
walks can still drift without a drift term) but it does suggest the driving
e¤ect of technology is weak. These results do not con�ict with Fisher�s
model as the drifts are speci�ed to be non-negative and so may be zero. The
presence of a drift, however, is less important in the economic model than
the trending behaviour being stochasic rather than deterministic, and the
evidence is conclusively in favour of this feature.
The posterior probability of having three or fewer stochastic trends is

zero and the results suggest there is likely to be four. The RBC is driven
by technology shocks which, in Fisher and KPSW, are stochastic trends.
These are the only stochastic trends described in the economic model and
KPSW assume technology is (in the three variable model) the only stochastic
trends that enters the system. As the economic model implies there are
only two common stochastic trends, there appear to be two extra stochastic
trends. CC report evidence of an extra stochastic trend in a three variable
system, but they then choose use the single trend model for inference. These
extra trends could be entering from unobserved variables such as preference
shocks or government expenditures. Fuentes-Albero, Kryshko, Ríos-Rull,
Santaeulàlia-Llopis and Schorfheide (2009) (FKRSS) estimate a DSGEmodel
with AR(1) process for these shocks. Although they use a prior that restricts
them to the stationary region, they report results indicating these shocks have
very high roots. A referee has suggested that this �nding (of extra stochastic
trends) could result from not modelling structural instability. We agree that
this is a potential source and consider this a topic for future work.
The data are uninformative about the form of the cointegrating relations.

That is, there is almost the same support for a process with no restrictions
(almost 40%) as there is for the processes with restrictions (60%). The
60% probability mass on o = 1 and o = 2 suggests the assumptions that
the price of an investment good is nonstationary and does not cointegrate
with any other variable in the system, and that the Great Ratios enter the
equilibrium relations, are not unreasonable. Since the posterior probability
that r > 1 is zero, the evidence suggests that the Great Ratios are not
themselves stationary. An important result is that the restrictions on the
long run responses of investment price and productivity to the technology
shocks (the identifying restrictions for these shocks) also have reasonable
support.
Overall the evidence in the estimated probabilities for the features of the
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econometric model suggested by the RBC of Fisher (2006) are reasonable
with the exception of the number of stochastic trends. But the evidence is
not decisive and there remains considerable model uncertainty.

Table 1: Posterior probabilities, P (Mijy), of the top �ve models.
Cumulative

d l r o s P (Mijy) probabilities
5 0 1 0 0 0:0951 0:0951
4 0 1 0 0 0:0911 0:1862
5 0 1 2 0 0:0858 0:2720
5 0 1 1 0 0:0855 0:3575
4 0 1 2 0 0:0833 0:4408
4 0 1 1 0 0:0772 0:5180
5 0 1 0 1 0:0731 0:5912
5 0 1 1 1 0:0724 0:6635
5 0 1 2 1 0:0697 0:7333
4 0 1 0 1 0:0691 0:8024
4 0 1 2 1 0:0687 0:8711
4 0 1 1 1 0:0646 0:9357
3 0 0 0 0 0:0643 1:0000

Table 2: Posterior probabilities of features
for a real business cycle model.

d = 3 d = 4 d = 5 r = 0 r = 1
0:0643 0:4540 0:4817 0:0643 0:9357
o = 0 o = 1 o = 2 s = 0 s = 1
0:3927 0:2997 0:3076 0:5823 0:4177

A number of interesting outputs can be obtained from the models with
s = 1: Fisher (2006) chooses a value for � in Section 2 to improve estimation
e¢ ciency. As our objective is to evaluate the empirical support for such
assumptions, we do not impose a value for � but rather estimate the posterior
distribution. This parameter is estimated using the models where s = 1 and
the posterior density is presented in Figure 1 below. Although some 26.6%
of draws fell outside the range (0; 1) - 23% of draws fell below zero and 3.6%
fell above one - the assumption that � = 0:25 seems perfectly reasonable. In

25



fact, conditional on � 2 [0; 1] ; the posterior mean is 0.25. This estimate is
useful as it permits recovery of neutral technology change if we assume the
equality Wt = AtK

�
t H

1��
t (FKRSS).

Figure 1: Posterior density of � estimated from all models with s = 1:

An important area of interest in RBC models is the dynamics of wt; ct;
and xt; including role of the permanent and transitory shocks in the business
cycle. By decomposing the variance into the components due to transitory
and permanent shocks, it is possible to gain an impression of the relative
importance of these e¤ects for the variability of the consumption, investment
and output. As the model set includes models with the same features (d; l; r; o
and s) as those used in other studies, speci�cally King, Plosser, Stock and
Watson (1991, hereafter KPSW) and Centoni and Cubadda (2003, hereafter
CC), it is possible to compare results across studies. As the model in this
paper has two additional variables (pt and ht), the results will di¤er from
those in KPSW and CC unless (pt; ht) is strongly exogenous to (ct; xt; wt) :
Therefore, the original results from KPSW and CC are also provided. KPSW
and CC use output, wt, whereas this paper uses productivity, at = wt � ht.
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As at is a linear function of ht which is also included in the model, the
decomposition for wt can be readily obtained from the estimation output.
KPSW derive an identi�cation scheme for this decomposition based upon

a single productivity shock entering these variables. This model is extended
in Fisher to permit two types of permanent shocks, however in both cases
the economic model implies that the Great Ratios (ct �wt and xt �wt) will
be stationary. As discussed above, results from this study suggest there is
uncertainty associated with this aspect of the theory as the evidence suggest
more than one stochastic trend entering (ct; xt; wt). However, the equilibrium
relations appear to be well described by linear combinations of the Great
Ratios. Notwithstanding this ambiguity, it is not evident that the excess of
stochastic trends a¤ects estimates of other outputs such as permanent and
transitory proportions of the variance over the business cycle .
KPSW estimate the proportion of variance due to transitory shocks in

the time domain for the model with one stochastic trend, stationary Great
Ratios and a linear deterministic trend with 8 lags of di¤erences. For xt and
wt they report proportions varying from 0.12 (ct), 0.88 (xt) and 0.55 (wt) at
one quarter after the shock to 0.11 (ct), 0.53 (xt) and 0.19 (wt) respectively at
24 quarters after the shock. Our interest is in the proportion of business cycle
�uctuations due to permanent shocks and so we follow Centoni and Cubadda
(2003) (hereafter CC) who consider the variance decomposition within the
frequency domain.
Figure 2 presents the posterior distribution of the transitory component

of ct; xt and wt constructed by averaging over all models. This plot shows
signi�cant mass at zero for all three variables suggesting a large role for
permanent shocks. The exception is investment which has more mass towards
one.
With their slightly shorter sample, CC found proportions of variability

over an 8-32 quarter period of 0.43 for ct, 0.86 for xt and 0.82 for wt. Table
3 reports the proportions of �uctuations over 8 to 32 quarters that are due
to permanent shocks for the three variables using the updated data set and
extended model set in this study. For these results the full model set is used,
including models with s = 0:
Both the CC and KPSW models assign a smaller proportion of the vari-

ability in consumption, investment and income to the permanent shocks (pro-
ductivity shocks in their models) than the other models. The remaining
models generally agree with each other, at least in the relative sizes if not
the exact values. We estimated using di¤erent subsets of the model set and
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found that adding less likely models to the model set tends to decrease the
temporary component in investment. An important in�uence on the pro-
portion is the imposition of the long run restrictions. The last row of Table
3 reports the estimates for all models with the restrictions on the long run
responses (s = 1); that is, the restrictions that identify the two technology
shocks. These models produce results closer to those of KPSW and CC sug-
gesting that conditioning upon particular models or model sets has a noteable
a¤ect upon the results obtained. When model uncertainty is incorporated
into the study, the support shifts against the conclusions of CC and KPSW
that the permanent component is not an important determinant of business
cycle �uctuations for consumption and output. Although the conclusion is
consistent for investment.

Figure 2: Posterior densities of the transitory component of output, con-
sumption and investment.
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Table 3: Estimated proportion of variance due to
transitory components in the frequency domain.

Models used ct xt wt
CC model 0:870 0:928 0:439

KPSW model 0:870 0:923 0:440
Best model 0:135 0:693 0:052
Top 5 models 0:180 0:609 0:068
Top 10 models 0:199 0:575 0:075
All models 0:181 0:527 0:068

All models with s = 1 0:347 0:885 0:096

We conclude by discussing the responses in at; ct; xt; and the log Great
Ratios ct �wt and xt �wt to technology shocks. These shocks are identi�ed
when the restrictions on long run responses s = 1; are imposed. In this study,
the restrictions are over-identifying restrictions as a Cholesky decomposition
of the covariance matrix has been used to identify structural shocks. Al-
though our interest is in the responses to technology shocks, it is instructive
to compare responses to shocks without the overidentifying restrictions. The
contrast gives an impression of the importance of the restriction for achiev-
ing identi�cation. Figures 3 and 4 show, respectively, the posterior densities,
constructed from 12,000 of the parameters in each included model, of re-
sponses in productivity to the structural shocks. The response in Figure 3 is
to the second structural shock in et = 
�1=2ut, while the response in Figure 4
is to a neutral technology shock, "a;t. The lines in these �gures are the higher
posterior density (HPD) regions for the densities.14

These �gures clearly suggest that the just identi�ed shock et is not a
neutral technology shock and the restriction s = 1 has important implications
for short run dynamics. There is about the same degree of uncertainty for the
estimate of the two responses: Note that the scales on the y-axis di¤er but the
mass in both �gures is spread over about 5%. An interesting econometric
result is that, although the response to et is always negative, some of the
response paths to "a;t appear to converge to zero although it is explicitly
allowed to stay away from zero in the long run. As "a;t is identi�ed by a

14An HPD region is the smallest region in the support with a given probability mass.
This implies the HPD regions are always unique (unlike credible intervals) and their bor-
ders (shown in the Figures 3 and 4) are contours of the densities. These are more infor-
mative that percentiles as they show up, for example, multimodality.
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Figure 3: Highest posterior density regions for the response in ct�wt to the
second structural shock. The di¤erent lines denote contours of the posterior
densities at each point on the shock horizon. The mass in the region with a
higher density is indicated on the key. The impulses are over 34 quarters.

restriction on the model generating et; we might expect that as "a;t converges
to zero then so would et: One explanation for this apparent contrast is that
the sampling process to obtain draws from the model subject to s = 1 does
not draw from exactly the same region of the support as when s = 0: The
Metropolis-Hastings sampler will draw from the region of the support with
highest mass under s = 1, and this region may be near but need not be the
same as for the unrestricted model.
The mean response paths of at; ct; and x;are reported in Figures 5 and 6.

Figure 5 shows the mean responses to a one standard deviation investment
speci�c shock, "�;t. The shocks are not scaled as we regard the information
on the average size of a shock to be important. The average size of the "�;t
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Figure 4: Highest posterior density regions for the response of ct � wt to
neutral technology shock. The di¤erent lines denote contours of the posterior
densities at each point on the shock horizon. The mass in the region with a
higher density is indicated on the key. The impulses are over 34 quarters.

responses in Figure 5 are much smaller than for the "a;t shocks in Figure
6. The response paths of productivity to shocks in "�;t and "a;t are similar
in form to the estimated paths in Fisher (2006), although the response to
"a;t in Figure 6 seems to converge more from the initial shock towards zero.
The negative initial response in productivity to an investment speci�c shock
described by Fisher in his simulation experiment does not appear in Figure
5, but these results match his post-1982 empirical estimates.
Fisher does not include consumption and investment in his econometric

analysis and so does not report estimated responses for these variables, but
he does produce simulated responses. In this sense, the results in this paper
provide empirical results to supplement those of Fisher. The estimated re-
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sponses in investment to the shock in "�;t and in consumption to the shock
in "a;t do not con�ict with the simulated responses in Fisher. However the
responses in ct to a shock in "�;t stays negative unlike the simulated response
of Fisher, and the response in xt to the "a;t shock is always of the wrong sign.
The relative directions of these responses of ct and xt meet with Fisher�s
argument that investment speci�c shock directly only a¤ects the production
of investment goods making current consumption more expensive relative to
future consumption. Thus we expect to see lower immediate consumption
and higher immediate investment after an investment speci�c shock than af-
ter a neutral shock. These responses of ct and xt reported here are greater
than we would expect based upon Fisher�s simulation.

Figure 5: Mean impulse respones of at; ct and xt to an investment speci�c
technology shock, "�;t.

In addition to considering how technology shocks a¤ect consumption, in-
come and investment, we are often interested in functions of these variables
such as the savings rate or investment rate. We extend the results to produce
response paths of the ratio of consumption to income and the ratio of invest-
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Figure 6: Mean impulse respones of at; ct and xt to a neutral technology
shock, "a;t.

ment to income to the technology shocks. Figure 7 gives us an indication of
how income is allocated to savings/consumption and investment in response
to technology shocks. The response of consumption to a neutral technology
shock is quite strong with an initial fall in the consumption ratio that slowly
reverts back towards zero. Fisher does not give an indication of how much
of output is consumed, but his simulation results suggest a much stronger
initial response to a neutral shock by output than consumption suggesting
the short term pattern reported here is compatible with his model. The
responses of output and consumption to an investment speci�c technology
shock are not so clear in Fisher, so it is di¢ cult to judge how compatible is
the small response in these results with his model.
The response for investment relative to output to the investment speci�c

shock suggests a slight increase in the allocation to investment over time.
However, the full distributions reported below indicate that this response
cannot be distinguished from zero at all horizons. Assuming investment is
currently less than half of total income, the response of the investment ratio
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Figure 7: Mean impulse respones of ct � wt and xt � wt to neutral and
investment speci�c technology shocks, "a;t and "�;t:

to a neutral shock matches well with Fisher�s simulation results as a larger
absolute response by income than investment leads to a fall in the investment
ratio. As the response in investment remains subdued (relative to output),
the long run response tends to stay slightly negative. In summary, it appears
that both a neutral or investment speci�c technology shock will lead to a
notable initial decrease in the proportion of output devoted to consumption,
while only neutral shocks lead to a fall in the allocation to investment.
The mean responses reported above do not fully inform us about the

uncertainty associated with the responses. Figures 8 to 12 below and 4
above, present the HPD regions for responses in ct and xt to both shocks and
the responses of ct � wt and xt � wt to a neutral technology shock: What
is immediately obvious is the amount of uncertainty about the location of
the response paths. This uncertainty is in part due to the size of the model
set or diversity of the models in the model set and this diversity results in
what appear to be multiple paths. The number of modes that appear in

34



the densities, the degree of skew and kurtosis suggest that decision making
processes that rely upon unimodal or symmetric distributions will give very
unreliable answers.
The distribution of the response of ct to a "�;t shock becomes very disperse

very quickly. Although the mean in Figure 5 decreases monotonically, the
proportion of the density above zero �uctuates steadily around 25% re�ect-
ing the increasing dispersion and it is clear that considerable mass remains
around 0.4%. Figure 9 shows the density for the response of xt to a shock to
"�;t: The density tends to remain around its mode at 0.13%, but has a small
amount of mass above 0.5% and a secondary mode rising to about 0.28%
after 34 lags. Although the mean in Figure 5 remains low, there is reason-
able chance (around 5%) of seeing signi�cantly higher responses. That the
mean lies between the two modes at 34 lags, in a low probability area, raises
a question about its usefulness as a measure of location.
The pattern in Figure 10 is very similar to the simulated response of

consumption to a neutral technology shock produced by Fisher. However,
again there is signi�cant uncertainty surrounding the estimate. Figures 11
and 12 largely con�rm the earlier results for these shocks but we include
them to demonstrate the range of patterns and degrees of dispersion that
result when model uncertainty is taken into account.

6 Conclusion.

This paper presents a Bayesian approach to investigating the support for
an economic model by considering the empirical support for the features
that model implies for a reduced form econometric model. The economic
model is the a real business cycle model of Fisher (2006), with reference to
other papers that use this class of model such as Greenwood, Hercowitz,
and Krusell (1997) and KPSW. An important component of this model is
the restrictions of long run responses that are used to identify investment
speci�c and neutral technology shocks. For many of the important features
implied by this model we �nd reasonable support and some, such as the
long run identifying restrictions, receive quite strong support. Further, the
impulse responses demonstrate that the predictions of the model are quite
plausible. The only feature that is strongly rejected is the assumption that
the technology shocks are the only sources of instability as stochastic trends.
The methodology is an important contribution of this paper. The ap-
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Figure 8: HPD regions for impulse responses of consumption to an investment
speci�c technology shock. See the discussion on Figures 3 and 4 for the
interpretation of the lines in this graph.

proach results in unconditional inference on these features of the vector au-
toregressive model as the e¤ect of any one model on the inference has been
averaged out, and so model uncertainty is incorporated into the analysis.
Techniques are developed for estimating marginal likelihoods for models de-
�ned by structural features such as cointegration, deterministic processes,
short-run dynamics and overidentifying restrictions upon the cointegrating
space.
The method presented in this paper has already found applications in

several other areas. Koop, Potter and Strachan (2005) investigate the sup-
port for the hypothesis that variability in US wealth is largely due to tran-
sitory shocks. They demonstrate the sensitivity of this conclusion to model
uncertainty. Koop, León-González and Strachan (2008) develop methods
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Figure 9: HPD regions for impulse responses of investment to an investment
speci�c technology shock:

of Bayesian inference in a �exible form of cointegrating VECM panel data
model. These methods are applied to a monetary model of the exchange rate
commonly employed in international �nance. Other current work includes
investigating the impact of oil prices on the probability of encountering the
liquidity trap in the UK and stability of the money demand relation for
Australia.
We end with mentioning two topics for further research. First, although

our mixing over priors partially addresses this issue, there remains the issue
of the robustness of the results with respect to wider prior and model speci�-
cations. Very natural extensions of the approach in this paper are to consider
forms of nonlinearity and time variation in the model itself as Cogley and
Sargent (2001, 2005) and Primiceri (2005) do for the VAR. For instance, in
using a SVAR for business cycle analysis one may use prior information on
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Figure 10: HPD regions for impulse responses of consumption to a neutral
technology shock:

the length and amplitude of the period of oscillation (see Harvey, Trimbur
and van Dijk (2007)). An example of a possible nonlinear time varying model
that may prove useful is presented in Paap and van Dijk (2003). Systematic
use of inequality conditions and nonlinearity implies a more intense use of
MCMC algorithms. Second, one may use the results of our approach in ex-
plicit decision problems in international and �nancial markets like hedging
currency risk or evaluation of option prices.
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Figure 11: HPD regions for impulse responses of investment to a neutral
technology shock:
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Figure 12: HPD regions for impulse responses of xt � wt to a neutral tech-
nology shock:
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8 Appendix I: Impropriety of priors de�ned
on B almost everywhere.

This appendix provides a proof that that at any point R0� = a for �xed R
and a; the posterior for B; for a wide class of priors, is improper. This result
is demonstrated for the restriction �2 = 0 where �2 is the last n2 � n � r

rows of � =
�
�1
�2

�
. The claim is for a more general restriction than this,

R0� = a, but the proof carries through since we can rewrite � as

� = R (R0R)
�1
R0�+R? (R

0
?R?)

�1
R0?�

= Ra1 +R?a0

= [R R?]

�
a1
a0

�
= Ra

where R = [R R?] and a =
�
a1
a0

�
: R0� = a implies a1 = a and this result

shows that a proof for �2 = 0 will imply the same results for a0 = 0:
To focus the proof on the relevant features of the models, consider the

model for the n� 1 vector yt given by

�yt = ��0yt�1 + ut where ut s iidN (0;�)

and t = 1; :::; T:

Collecting the terms into matrices and transposing gives

Y = X��0 + u

where the tth rows of Y; X and u are �y0t; y
0
t�1 and u

0
t respectively. The above

assumptions give the likelihood as

L (Y j�; �;�) _ j�j�T=2 exp
�
�1
2
tr��1u0u

�
:

The proof is built upon the model speci�cation of Villani (2005) as that paper
is probably the most important in that it has generated much applied work
and made an important contribution to the theory of Bayesian cointegration
analysis. The form of the posterior in Villani (2005) is also very general
as it can be used to represent posteriors from the �at prior and inform on
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results we will obtain using convex priors such as that in Kleibergen and
Paap (2002). The prior of Villani (2005) is given by

p (�; �;�) _ j�j�(n+r+q+1)=2 exp
�
�1
2
tr��1 (A+ ���0��0)

�
where A is a known full rank n � n matrix, and q; � > 0: Combining the
likelihood and prior above gives the posterior

p (�; �;�jy; r) _ j�j�(T+n+r+q+1)=2 exp
�
�1
2
tr��1 (u0u+ A+ ���0��0)

�
:

Integrating p (�; �;�jy; r) with respect to � results in

p (�; �jy; r) _ ju0u+ A+ ���0��0j�(T+r+q)=2 :

At this point, it is necessary to rewrite the posterior in terms of � and then
�1 and �2: To do this, use the following result

u0u+ A+ ���0��0 = (Y �X��0)
0
(Y �X��0) + A+ ���0��0

= S + (�� b�)V �1 (�� b�)0
where S = Y 0Y + A � b�V �1b�0; V = (�0M�)

�1
; M = X 0X + �Ir; andb� = Y 0X�V: This expression gives the posterior in terms of �, which can be

rewriten in terms of �1 and �2 as

p (�; �jy; r) _
��S + (�� b�)V �1 (�� b�)0���(T+r+q)=2

=
��V + (�2 � b�2)0 S�122 (�2 � b�2) + (�1 � b�1:2)0 S�111:2 (�1 � b�1:2)���(T+r+q)=2

where b�01:2 = b�1 + (�2 � b�2)0 S�122 S21; b�2 = Y 0
2X�V where Y2 is the T � n2

made up of the last n2 columns of Y ,

S =

�
S11 S12
S21 S22

�
and S11:2 = S11 � S12S

�1
22 S21: The marginal distribution of �2 and � is then

p (�2; �jy; r) _
��V + (�2 � b�2)0 S�122 (�2 � b�2)���(T+r+q�n1)=2 jS11:2j�n1=2
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Next, impose the restriction �2 = 0 to obtain the marginal distribution for
� as

p (�2; �jy; r) _
��V + b�02S�122 b�2���(T+r+q�n1)=2 jS11:2j�n1=2

=
���(�0M�)

�1
+ (�0M�)

�1
�0X 0Y2S

�1
22 Y

0
2X� (�

0M�)
�1
����(T+r+q�n1)=2

� jSj�n1=2 jS22jn1=2

= j�0M�j(T+r+q�n1)=2
���0M� + �0X 0Y2S

�1
22 Y

0
2X�

���(T+r+q�n1)=2
� jSj�n1=2 jS22jn1=2 :

At this point the aim is to obtain the posterior for � in terms of quadratic
forms of � which will give the density for a l;m� poly-t distribution. Then
using the results of Drèze (1977) for these distributions, it is possible to
determine some of the properties of the distribution, such as whether it exists.
Use the following results to derive the form of the conditional density

p (�j�2; y; r) :�
S11 S12
S21 S22

�
=

�
Y 0
1Y1 Y 0

1Y2
Y 0
2Y1 Y 0

2Y2

�
+

�
A11 A12
A21 A22

�
�
� b�1V �1b�01 b�1V �1b�02b�2V �1b�01 b�2V �1b�02

�
such that S22 = Y 0

2Y2 + A22 � Y 0
2X� (�

0M�)
�1
�0X 0Y2 and S = Y 0Y + A �

Y 0X� (�0M�)
�1
�0X 0Y: Therefore, it is now possible to rewrite the determi-

nants jSj and jS22j as

jSj = j�0M1�j j�0M�j�1 jY 0Y + Aj and
jS22j = j�0M2�j j�0M�j�1 jY 0

2Y2 + A22j

whereM1 =M�X 0Y (Y 0Y + A)�1 Y 0X andM2 =M�X 0Y2 (Y
0
2Y2 + A22)

�1 Y 0
2X.

The expression
���0M� + �0X 0Y2S

�1
22 Y

0
2X�

�� can be shown to have a quadratic
form by using the matrix �

� 0
0 In

�
to show���0M� + �0X 0Y2S

�1
22 Y

0
2X�

�� =

����� �0 0
0 In

� �
M +X 0Y2S

�1
22 Y

0
2X 0

0 In

� �
� 0
0 In

�����
=

����� �0 0
0 In

� �
� 0
0 In

����� ����� M +X 0Y2S
�1
22 Y

0
2X 0

0 In

�����
= j�0�j

��M +X 0Y2S
�1
22 Y

0
2X
�� :
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Rewrite
��M +X 0Y2S

�1
22 Y

0
2X
�� as a quadratic form of � as��M +X 0Y2S

�1
22 Y

0
2X
�� =

��S22 � Y 0
2XM

�1X 0Y2
�� jM j jS22j�1

=
���Y 0
2Y2 + A22 � Y 0

2XM
�1X 0Y2 � Y 0

2X� (�
0M�)

�1
�0X 0Y2

��� jM j jS22j�1
= j�0M3�j j�0M�j�1 j�0M2�j�1 j�0M�j

�
��Y 0
2Y2 + A22 � Y 0

2XM
�1X 0Y2

�� jM j jY 0
2Y2 + A22j�1

_ j�0M3�j j�0M2�j�1

whereM3 =M�X 0Y2 (Y
0
2Y2 + A22 � Y 0

2XM
�1X 0Y2)

�1
Y 0
2X;S11�S12S�122 S21 =

Y 0
2Y2 + A22 � Y 0

2X� (�
0M�)

�1
�0X 0Y:

p (�j�2 = 0; y; r) _ j�0M�j(T+r+q�n1)=2���0M� + �0X 0Y2S
�1
22 Y

0
2X�

���(T+r+q�n1)=2
jSj�n1=2

jS22jn1=2

_ j�0M�j(T+r+q�n1)=2

j�0�j�(T+r+q�n1)=2 j�0M3�j�(T+r+q�n1)=2 j�0M2�j(T+r+q�n1)=2

j�0M1�j�n1=2 j�0M�jn1=2

j�0M2�jn1=2 j�0M�j�n1=2

_ j�0�j�(T+r+q�n1)=2 j�0M�j(T+r+q�n1)=2

� j�0M1�j�n1=2 j�0M2�j(T+r+q)=2 j�0M3�j�(T+r+q�n1)=2 :
We assume that all of the Mj are positive de�nite. The results of Drèze

(1977) are expressed for vector poly-t variables not matrix form. Using stan-
dard approaches we can show they can be used to learn something of the dis-
tribution above. Each of the determinants above can be written as quadratic
forms in B such as

�0M0� = [Ir B0]

�
M0;11 M0;12

M0;21 M0;22

� �
Ir
B

�
= M0;11 +B0M0;21 +M0;12B +B0M0;22B

= M0;11 +B0M0;22M
�1
0;22M0;21 +M0;12M

�1
0;22M0;22B +B0M0;22B

= M0;11 �B0M0;22
bB � bB0M0;22B +B0M0;22B + bB0M0;22

bB � bB0M0;22
bB

= M0;11 � bB0M0;22
bB + �B � bB�0M0;22

�
B � bB� :
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Denote by p (b1jB2; y) the conditional distribution of b1; the (n� r)�1 vector
formed from the �rst column of B; conditional upon the remaining columns,
B2, is a 3-2 poly-t with the same exponents as the joint distribution above
for all elements of B: That is,

p (�j�2 = 0; y; r) = p (Bjy) = p (b1jB2; y) p (B2jy) :

The results of Zellner (1971) show that the conditional distribution of b1;
p (b1jB2; y), is a 3-2 poly-t with the same exponents as the joint distribution
above for all elements of B; p (Bjy) : To obtain the marginal distribution for
B2 we integrate p (Bjy) with respect to b1 :

p (B2jy) =
Z
p (Bjy) db1 =

Z
p (b1jB2; y) db1p (B2jy)

If the conditional for b1 is not proper, the whole joint distribution for B is
not proper. From Drèze (1977), the condition for propriety is

0 < � (T + r + q � n1) =2+(T + r + q � n1) =2+(T + r + q � n1) =2�(T + r + q � n1) =2�(n� r) :

Since this sum is � (n� r) < 0, this shows that the posterior is not proper.
In the above discussion we have shown that the integralZ

p (�1; Bj�2 = 0; y; r) d (�1; B) (6)

diverges implying the posterior is improper. The prior of Kleibergen and
Paap (2002) implies a form similar to the joint posterior for (�1; B) above
multiplied by the convex function

jIr +B0Bj(n�r)=2 j�01�1j
(n�r)=2

:

That is, the posterior has the form

p (�1; Bj�2 = 0; y; r) jIr +B0Bj(n�r)=2 j�01�1j
(n�r)=2

d (�1; B)

Clearly if (6) is a divergent integral, then as the expression above involves
convex functions of B and �1; the integral of this density will also diverge.
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9 Appendix II: Noninvariance of priors on
the cointegrating space.

In this appendix we provide a formal proof that none of the proper priors
on cointegrating spaces that currently exist in the literature (e.g., Geweke
(1996), Kleibergen and Paap (2002), Strachan and Inder (2004) and Villani
(2005)) are invariant to rescaling. We �rst show this for the prior of Villani
(2005) and then use this result to provide the foundation for the proof that the
priors of Kleibergen and Paap (2002) and Geweke (1996) are not invariant.
There do exist priors that are invariant and these are presented in Kleiber-

gen and van Dijk (1994) and Strachan (2003). However these are both data
dependent and so not actually priors. The uniform prior on B implies an
invariant prior on p = sp (�), but this prior is di¢ cult to justify and has
been largely discounted because of the large number of computational and
theoretical issues that result from its use. As discussed in Strachan and Inder
(2004), this prior implies a very informative and unusual prior on the cointe-
grating space as it assigns mass away from the normalization chosen by the
economist; e¤ectively the assumption made by the economist to justify the
normalization is made a priori impossible. The priors of Kleibergen and van
Dijk (1994) and Kleibergen and Paap (2002) share this feature, although the
latter is not invariant to scale. Geweke (1996) presents a prior that sensibly
weights the cointegrating space given an economists choice of normalization,
but again this prior is not invariant to scale.
Before we turn to the priors that are not invariant, we discuss the source

of the invariance and how it manifests in various priors. The lack of invari-
ance of priors results from the transformation from a spherically symmetric
distribution to an elliptically symmetric distribution. To demonstrate this
e¤ect, consider rescaling the vector yt by a n�n diagonal matrix � in which
the diagonal elements are not all equal15. Let the model for yt be

�yt = ��0yt�1 + ut (7)

and after rescaling

��yt = ���0��1�yt�1 + �ut (8)

�eyt = e�e�0eyt�1 + eut (9)

15Rescaling by a common value causes no problems.
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where eyt = �yt; e� = ��; e� = ��1� and eut = �ut. Further, note that
rescaling implies the transformation of the covariance matrix e� = ���: For
simplicity we assume the �rst r variables are not rescaled such that

� =

�
Ir 0
0 �1

�
:

Priors on vectors identi�ed using the linear restrictions �0 = [Ir B0] will
usually contain a term such as jIr +B0Bjv dB; where � may be positive or
negative. The term jIr +B0Bjv dB applies the same mass in all directions
of the space of �, p. In Villani (2005) � = �n=2 and in Kleibergen and
Paap (2002) v = (n� r) =2. After rescaling, the term jIr +B0Bjv dB will

become
���Ir + eB0�21

eB���v j�1jr d eB (see appendix) and it is the �21 that implies

that the distribution of the eB are no longer spherically symmetric and the
distribution now favors particular directions of p. Therefore, the implied
distribution on the cointegrating space has changed. If the prior were uniform
prior to rescaling, after rescaling it no longer is, and if it were not uniform
prior to rescaling then the implied distribution on the cointegrating space
has changed after rescaling.
The full prior for (�; �;�) in equation (3.1) of Villani (2005) for the model

in (7) is

p (�; �;�) d (�; �;�) = cr j�j�(n+r+1)=2 exp
�
�1
2
tr��1 (A+ ���0��0)

�
d (�; �;�)

where cr is an integrating constant. Next, consider the rescaling transforma-
tion in (8) and (9). After the transformation, we have the prior for

�e�; e�; e��
p
�e�; e�; e�� = cr

�����1e���1����(n+r+1)=2
� exp

�
�1
2
tr�e��1����1 eA��1 + ���1e�e�0�2e�e�0��1�� j�jc d�e�; e�; e��

= ecr ���e�����(n+r+1)=2 exp��1
2
tre��1 � eA+ �e�e�0�2e�e�0�� d�e�; e�; e��

where ecr absorbs the Jacobian for the transformation such that
crd (�; �;�) = ecrd�e�; e�; e�� :
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The only material di¤erence between the prior p
�e�; e�; e�� and the prior

p (�; �;�) is the term e�0�2e� in the exponent rather than the term �0�: How-
ever it is this term that results in the prior for the cointegrating space being
non-uniform. We use the results of Villani (2005) to demonstrate this. If we

apply the linear normalization e� = � IreB
�
as in Villani (2005) and integrate

p
�e�; e�; e�� with respect to �e�; e�� we obtain a prior for eB proportional to

���Ir + eB0�21 eB����p=2
which does not meet Villani (2005) Lemma 3.4 and is not uniform on the
Grassman manifold (see Muirhead, 1982 or James, 1954), the support of the
cointegrating space.
The prior in Strachan and Inder (2004) assumes �0� = Ir such that

the support for � is the Stiefel manifold, and the prior for � is uniform on
the Stiefel manifold. This prior implies a uniform prior on the Grassman
manifold, the support of p. As it is uniform in all directions and the support
is spherical and compact, the prior on � is symmetric. Rescaling of the data
retains the uniform distribution on the rescaled parameter, but the support
is no longer spherical but ellipsoidal. For this reason, a uniform distribution
on e� implies an nonuniform prior on p.
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