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NONPARAMETRIC BOUNDS ON RETURNS TO EDUCATION IN SOUTH AFRICA:

OVERCOMING ABILITY AND SELECTION BIAS

Martine Mariotti and Jürgen Meinecke1

Our objective is to estimate the average treatment effect (ATE) of education on

earnings for African men in South Africa. Estimation of the ATE in our data is

difficult because of omitted ability bias and a high degree of sample selection due

to low labor force participation. Manski and Pepper (2000) suggest is a promising

nonparametric identification strategy but it only helps with the problem of omitted

ability bias. We propose an extension of their identification strategy to deal with the

sample selection problem.

Accounting for ability and selection bias, we compute upper bounds on the ATE for

the years 1995 and 2000. We estimate an upper bound of 12.64 percent in 1995 and

10.68 percent in 2000. Compared to parametric estimation our bounds are informa-

tive: The OLS returns to schooling equal 15.59 percent in 1995 and 15.31 percent

in 2000. Our results suggest that many parametric estimates are severely upwards

biased, which results from unobserved heterogeneity.

Keywords: returns to schooling, partial identification, nonparametric estimation.

1. INTRODUCTION

One of the policies of Apartheid in South Africa (1950–1994) was the unequal distribution of ed-

ucation across race groups such that whites have historically attained high levels of education while

Africans have attained low levels. An important consequence of the educational distribution was un-

equal opportunities for employment in skilled occupations, with Africans forced to work in lower

skilled occupations because of their lower educational attainment (Mariotti 2009). As a result, a post

Apartheid adjustment to education policy was called for in order to level the playing field with the

expectation that higher education leads to higher incomes through employment in more skilled occu-

pations.

However, there is little consensus on just how much higher education contributes to higher incomes. A

number of studies have attempted parametric estimations of the returns to education in post–Apartheid

South Africa. A summary of these results shows a wide distribution of returns with some returns as

high as 100 percent for secondary and tertiary education. A possible explanation for the large spread

in the point estimates is that the data are sensitive to the parametric methodology used. The lack of

suitable instruments further contributes to the difficulty in pinning down a reliable point estimate.
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2 M. MARIOTTI AND J. MEINECKE

Manski and Pepper’s (2000) nonparametric identification strategy is the starting point for our esti-

mation. Manski and Pepper propose two mild monotonicity assumptions with which they are able

to impose an upper bound on the average treatment effect of education one earnings. First, the as-

sumption of monotone treatment response (MTR) states that the human capital earnings function

is weakly increasing in education. This is implicit in any Mincerian wage regression and should be

uncontroversial. Second, monotone treatment response (MTS) concerns how people select themselves

into education. Roughly speaking, it means that high ability people select themselves into higher levels

of education.

The MTS assumption is credible whenever people can freely select themselves into education. If there

exist institutional restrictions (e.g., borrowing constraints, discrimination, household bargaining) that

prevent highly able people to access high levels of education then the MTS assumption could be vi-

olated. In South Africa, for African males, this might be the case. In addition, this group has a low

labor force participation rate of around 50%. The determinants that drive selection into education and

employment are partly unobserved and are likely to break the MTS assumption.

We therefore propose an extension to Manski and Pepper’s framework to account for sample selection

into employment. We introduce the weakest set of assumption that enables us to identify the ATE of

education on earnings for the population of African males in South Africa.

The data that we use come from the October Household Survey and Income and Expenditure Survey

of 1995 and the Labor Force Survey and Income and Expenditure Survey of 2000. Using our modified

nonparametric estimator, we find an upper bound on the average treatment effect of a high–school

degree of 12.64 percent (per year of high–school) in 1995 and 10.68 percent in 2000. Compared to stan-

dard parametric estimates, our bound is informative. The OLS estimates of the return to education

for 1995 and 2000 are 15.59% and 15.31%.

2. LITERATURE REVIEW

One of the secondary benefits of the fall of Apartheid in 1994 has been an improvement in data

collection that has provided researchers the opportunity to document the transformation of individual

social and economic characteristics. In particular, a large body of work has documented changes in

the return to education since the fall of Apartheid. The results are consistent in the racial hierarchy

of returns, in that, firstly, Africans persistently earn a higher return for higher levels of education

and, secondly, that higher levels of education earn a higher return across all race groups relative to no

education.1 However, there is a large variation in the quantification of the returns with several studies

finding surprisingly high returns.

Thomas (1996) provides a brief, useful account of the state of education in South Africa by 1991. Di-

viding the 1991 population census into cohorts he shows that whites attained higher levels of education

1The racial hierarchy arises most likely because the proportion of Africans with high levels of education—a legacy

of the apartheid education system—is extremely low. This result is despite the restricted employment opportunities for

highly educated Africans.
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than non-whites, and that levels of education have been increasing over time for all race groups. Indi-

ans and Coloureds have the second highest levels of educational attainment, with Africans acquiring

the lowest amount of education. Following the Soweto school riots of 1976, the government increased

expenditure on African education within South Africa (but not the homelands which were supposed

to be funding their own students). Despite the increased expenditure, by 1991 African education con-

tinued to lag behind that of the other races.

Mwabu and Schultz (1996) use the Project for Standards of Living Survey Data (PSLSD) set of 1993

to measure the returns to education. Using the working age population, an OLS regression finds that

the return to education is 16% for secondary education and 27% for higher education for Africans

while for whites the comparative returns are 8% and 15%. The quantile regression results find that

the return to primary education for Africans is between 10% and zero, the return to some secondary

education is between 10% and 18% (although the difference is not significant) and the return to higher

education ranges from around 23% to around 30%. For whites, the return to primary education is

zero, the return to secondary ranges from zero to 20% and the return to higher education ranges from

around 7% to around 15%. They also apply the quantile regression approach to determine the direction

of correlation between education and ability. The negative correlation between the two suggests that

people substitute education for ability.

In a later paper, Mwabu and Schultz (2000) look again at returns to education and find that the

returns are greater at higher levels of educational attainment for Africans than for whites. This is most

likely a result of both the low quantity of Africans who have attained higher education as well as job

reservation which means that Africans and whites do not compete for the same jobs and therefore do

not compete for wages. Using the PSLSD, they spline education into three groups (primary, secondary

and higher), apply OLS and find that the return to African education (for men) is 8.4% at the primary

level, 15.8% at the secondary level and 29.4% at the tertiary level. For white men they find 0% for

primary, 8.4% for secondary and 15.1% for tertiary. They claim that the results are similar to those

found using a Heckman two stage procedure. The authors are concerned with how the returns might

change in the future and they note that as more people acquire higher levels of education the return

is likely to drop for those levels.

Chamberlain and van der Berg (2002) try to account for differences in the quality of education across

race groups in determining the return to education. They proxy for quality using test scores from the

PSLSD survey of 1993 and weight the years of schooling an individual has attained in the October

Household Survey 1995 by using a predicted test score. Using a two stage selection procedure, they

find that the return to education is around 5% before accounting for quality and that it increases to

around 6% after accounting for quality.

Serumage-Zake and Naudé (2003) use a double hurdle model where they predict simultaneously

whether a person will enter the labor market as well as whether they will find a job. They find

returns around 12% using the 1995 October Household Survey.

Hertz (2003) shows that errors in the reporting of educational attainment can bias the estimated return
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to education upward. Using the PSLSD and KIDS panel data set in an OLS regression he shows that

failing to correct for reporting error results in a return to education of 11 to 13%. Whereas, correcting

for the error and using a within-family fixed effects approach reduces the return to between 5 and 6%.

He shows that errors in the schooling variable are strongly correlated within families.

Keswell (2004), in a paper examining differences in the return to similar levels of schooling across

race groups finds that the rate of return for Africans was around 11% at the end of Apartheid. This

finding is from the PSLSD data set. He finds, using the Labour Force Surveys (LFS) of 2001 and 2002,

that this return declined to 7%. These private returns to education are measured in OLS and Tobit

regressions.

Keswell and Poswell (2004) use several data sets (PSLSD of 1993, October Household Survey (OHS)

of 1995 and 1997 and LFS of September 2000) to show that returns to higher levels of education in

South Africa are convex. The estimation procedure they use is OLS allowing for non-linear returns to

education in the form of polynomials in the second and third degree on the education variables. They

find the return to primary school in 1993 is 2%, secondary school 28% and tertiary is between 68 and

72%. In 1995 the return to primary school decreases to zero, secondary school remains around 28%

and tertiary education increases to between 71 and 86%. The return to secondary school decreases to

21% in 1997, and that to tertiary education to between 54 and 61%. Finally, in 2000, the return to

primary education is negative, secondary drops to between 15 and 16% and tertiary remains constant.

Leibbrandt, Levinsohn and McCrary (2005) use the October Household Survey and Income and Ex-

penditure Survey of 1995 to compare South Africa’s income distribution to that found using the Labour

Force Surveys and Income and Expenditure Survey in 2000. Using both descriptive methods and non-

parametric techniques they find that the income distribution has shifted to the left over the five year

period. In determining causes of the shift they find that the return to attributes has declined from

1995 to 2000. Specifically with respect to education, they find that the return to additional years of

education decreased for African men and increased for white men. They claim that this result is ex-

pected due to continuing labor market rigidities. In 1995 for African men under 60 years of age, the

return to education is between 11% and 14%. By 2000 the return for the youngest cohorts has declined

by 4 percentage points. It remains constant for older cohorts.

Maitra and Vahid (2005) examine the effect of household characteristics on living standards between

1993 and 1998 in KwaZulu Natal. They use the KIDS panel data set. They account for non-random

sample attrition since it appears that wealthier households were more likely to attrite. Using quantile

regression techniques, they find that the return to education on log wage ranges from zero at the

highest quantile and lowest level of education to 108% for the lowest quantile at the highest level of

education. They find a negative correlation between education and ability, possibly a result of limited

African access to occupations during apartheid. They find that by 1998 there is no longer any difference

in the return across quantiles which they suggest is due to the openness of the labor market after the

end of apartheid.
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3. DATA

The data we use are from four surveys, two for 1995 and two for 2000 as there is no single data set

that contains adequate information on both demographics and incomes for either year. We are able

to match households from the two surveys within each year but not across the years, resulting in two

cross-sectional data sets.

We combine the 1995 October Household Survey (OHS95) and the 1995 Income and Expenditure

Survey (IES95), both collected by Statistics South Africa. The OHS95 is one of a series of general

household surveys run from 1994 intermittently until 1999 during October of each year. The surveys

contain information on household members’ demographic characteristics, education and health levels,

employment status, access to infrastructure, and dwelling structures. In 1995 96,261 individuals from

29,700 households were interviewed.

We supplement the OHS95 data with income data from the IES95 which contains detailed information

on household and personal income and expenditure. The survey consists of 29,582 households and

128,917 individuals.2 The merged OHS95 and IES95 data set consists of 114,568 individuals from

27,135 households.3 Finally, we inflate the data by 39%, the increase in the consumer price index

between 1995 and 2000.

In 2000, the Labour Force Survey (LFS) replaced the OHS. It is implemented biannually once in

March and once in September. We use the September 2000 survey as it largely contains the same

households as those in the IES 2000 (IES00). The LFS00 consists of 105,370 individuals from 26,571

households.The IES00 consists of 104,153 individuals from 26,263 households. Upon merging the IES00

with the LFS00, we have 103,732 individuals from 26,150 households.4

We restrict our analysis to African males between the ages of 18 and 65 who are employed and for

whom we have education information.5 We have 9,527 individuals in 1995 and 8,837 individuals in

2000. We ignore females to avoid potential complications with labor force and child rearing decisions.

The basic Manski and Pepper non-parametric analysis uses only income and education data, we provide

summary statistics for these two variables in Table I and Table II. Table I shows that the mean real

income of African males has declined between 1995 and 2000, consistent with the findings in Hoogeveen

and Özler (2004) and Leibbrandt at el. (2005). Table II summarizes educational attainment in 1995

and 2000 by highest educational qualification obtained. A higher percentage of people completed high

school in 2000 than in 1995, while a lower percentage obtained no education at all. Yet, overall, the

aggregate educational attainment of employed African males hardly changed over the five year period.

One problem that Manski and Pepper do not deal with is sample selection bias. In a developed

country environment, focusing the analysis on the working sample does not lead to bias since such a

2Leibbrandt, Levinsohn and McCrary (2005) point out that the reason the OHS95 income data is so poor might be

because Statistics South Africa anticipated re–interviewing the same households for the IES95 later in the year.
3We drop people whose gender or race changes and those who age more than a year between surveys.
4Again we delete any observations that do not match up such as people whose gender or race changed between the

surveys or those who age more than a year.
5The African population is the group most negatively affected by apartheid as well as the most numerous.
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TABLE I

—Data: Summary Statistics on Income, OHS/LFS

and IES

1995 2000

Mean 23,432 22,470

s.d. 22,289 62,937

Skewness 4.01 51.53

Kurtosis 42.10 3,448

Log Mean 9.68 9.49

s.d. 0.94 1.08

Skewness -0.46 0.75

Kurtosis 2.98 5.49

Income percentile: 1 1,668 550

5 2,836 2,000

10 4,170 3,480

25 8,674 7,200

50 18,354 14,560

75 30,024 25,200

90 48,372 43,200

95 63,384 62,400

99 100,080 132,000

Observations 9,527 8,837

Note.—In 2000 Rand. Employed African males.

large portion of the adult population is actually in the labor force. However, in developing countries

this is often not the case. In particular, the labor force participation rates for African males in the

post apartheid period in South Africa are comparatively low. Table III shows that for both 1995 and

2000, African male labor force participation is remarkably low and is declining from 1995 to 2000.

While such a low labor force participation is likely to have substantial social and economic implications,

for our purposes the main concern is the resulting sample selection bias - why do some work and others

not? And what is the wage of a non-worker likely to be if he had a job? The simplest way to answer

this question would be to assume that a working man’s wage is the same as the wage a non-worker

would earn if he had a job and then to proceed with the estimation. However, since we do not know

how a person selects himself into work, we are reluctant to make that assumption. Instead we would

like to use a segment of the working sample to place bounds on the wage a non-worker could earn.

In Section 4 we show that the upper bound on the ATE is given by the difference between the upper

bound to the return on a more advanced year of education less the lower bound on a less advanced

year of education. It follows that we need one segment of the working sample to provide an upper

bound on the return a non-worker could earn if he had received a more advanced level of education.

In addition, we need a different segment of the working sample to provide a lower bound on the return

a non-worker with few years of education could earn. This will give us the unconditional upper bound

on the return to education.
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TABLE II

—Data: Distribution of Education, OHS/LFS

and IES

1995 2000

No schooling 14.74 11.03

Sub A/Sub B/Standard 1 5.88 7.11

Grade4/Standard 2 6.46 5.24

Grade5/Standard 3 6.08 5.57

Grade6/Standard 4 7.43 6.79

Grade7/Standard 5 8.60 8.98

Grade8/Standard 6 10.35 9.27

Grade9/Standard 7 6.46 6.87

Grade10/Standard 8/NTCI 8.54 8.78

Grade11/Standard 9/NTCII 4.59 6.53

Grade12/Standard 10/NTCIII 12.42 16.17

Diploma 6.42 5.38

Degree 2.05 2.29

Note.—In percent. Employed African males.

As we show in the estimation section, to deal with sample selection bias we need two additional

variables to assist us in bounding the ATE a non-worker could earn - one to restrict the upper bound

on several years of education, and one to restrict the lower bound on few years of education. These

need to be variables that we know affect the choice of whether to work or not. Table IV provides

information for two possible variables: the number of migrant workers and the number of pensioners.

We use migrant worker wages to establish an upper bound on the return to education for a given year

of schooling since we believe that migrant workers are at least as productive as non-migrant workers

(references). Due to historical restrictions on population movement in South Africa before and during

apartheid a large migrant labor force continues to exist today. We assume that those people who do

not leave, regardless of whether they work or not, are unlikely to be as productive as those who have

left. This provides us with an upper bound on the return a non-worker with some education might

earn. At most, he can earn what a migrant worker earns, not more, since if he was as productive as a

person who is already a migrant worker, he would be one too.

For the lower bound, we look at the members of the household who stayed behind and are not migrant

workers. Since we do not know from which household a migrant worker comes, we cannot look at

his remaining relatives to calculate a lower bound on their wages. However, we do know whether

a household has a pensioner or not. Pensioners are valuable members of poor households in South

Africa. The South African old age pension is the primary system of redistribution in the economy.

It is around twice the average per capita income of African households and is an important source

of income for around 1/3 of African households. Pension eligibility is dependent on age (60 years

for women and 65 years for men) and is not means tested, this means that any poor household

with an elderly person receives the pension. Ardington et al. (2007), Posel et al. (2004), Bertrand
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TABLE III

—Data: Labor Force

Participation Rates, OHS/LFS

1995 2000

Age 15 - 19 0.05 0.04

Age 20 - 24 0.20 0.17

Age 25 - 29 0.49 0.43

Age 30 - 34 0.66 0.53

Age 35 - 39 0.68 0.59

Age 40 - 44 0.72 0.57

Age 45 - 49 0.68 0.56

Age 50 - 54 0.65 0.51

Age 55 - 59 0.54 0.53

Age 60 - 64 0.34 0.30

Age 65 - 69 0.18 0.22

Total 0.48 0.40

Observations 18096 20215

Note.—African males aged be-

tween 18 and 65.

et al. (2003), Case and Deaton (1998, 1999) have shown that the receipt of a pension affects other

household members’ labor force participation decisions. They find a lower labor force participation of

prime-aged males. Furthermore, they show that households with pensioners are more able to overcome

credit constraints. This implies that households with pensioners are more likely to be able to send off

their most productive males (as migrant workers) while the less productive males remain at home.

We therefore assume that the labor force participation decisions of those males who remain at home

with the pensioner are somewhat random, as the more productive members of the household have

already left. Therefore, there should be no unobservable differences in the characteristics of workers

and non-workers who live with pensioners. Table IV shows that, indeed, migrant workers earn more

tan non-migrants on average, suggesting this variable is suitable as a restriction on the upper bound.

The table also shows that workers in households without pensioners earn more and have more potential

experience, suggesting that the variable measuring whether or not a person lives with a pensioner is

suitable for restricting the lower bound. Section 4 explains in further detail how we use these two

variables.
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TABLE IV

—Data: Migrant Workers and Pensioners

Migrant Workers

1995 2000

Migrant workers 12.44% 29.89%

Migrant (characteristics of workers with zi = 8) Yes No Stat. diff. Yes No Stat. diff.

Log Average wage 9.69 9.61 No 9.83 9.34 Yes

Average experience (E=1) 24.22 25.39 Yes 24.57 25.62 No

Average experience all 24.15 22.08 Yes 22.62 19.70 Yes

Pensioners

1995 2000

Households with pensioners 8.77% 12.79%

Pensioner (characteristics of workers with zi = 0) Yes No Stat. diff. Yes No Stat. diff.

Log Average wage 8.94 8.99 No 8.29 9.05 Yes

Average experience (E=1) 35.52 37.50 Yes 40.61 39.51 No

Average experience all 33.72 38.37 Yes 38.11 39.01 Yes

Note.—African males aged between 18 and 65.

4. DERIVING MEANINGFUL AND FEASIBLE BOUNDS ON ATE

This section states the estimation objective, sets up the model and estimation framework and sum-

marizes Manski and Pepper’s (2000) results.

4.1. Estimation Objective

We need to introduce some non–conventional notation first. A person i ∈ I has a realized treatment

zi ∈ T and a realized outcome yi := yi(zi) ∈ Y , both of which are observable. The function yi(·) : T →

Y is called response function. The latent or conjectural outcomes yi(t) with t 6= zi are not observed.

Specifically, the treatment zi is years of education and the response yi(·) is log–earnings.

Our goal is to derive an upper bound on the average treatment effect of one year of education on

earnings defined as

Γ(s, t) :=
∆(s, t)
t− s

,

where: ∆(s, t) := E[y(t)]− E[y(s)],

for s < t. In words, we compute the difference between the expected value of log–earnings after t years

of education and the expected value of log–earnings after s years of education and average it out on a

per–year basis. This will tell us by how much, on average, one year of education affects log–earnings.

Why is this difficult? A naive idea for computing, for example, E[y(t)] would be to simply average out

the log–earnings for those individuals in the sample who have t years of education. The problem, of

course, is that we are dealing with a select sample; people have already sorted themselves into their

preferred level of schooling and thus causing selection bias.
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To circumvent the selection problem we will use a nonparametric framework suggested by Manski and

Pepper (2000). Compared to parametric identification we will impose relatively mild assumptions to

obtain the ATE. This, of course, comes with a disadvantage: The object of interest, Γ(s, t), is not point

identified. Instead, we will only be able to bound it below a certain threshold. Nevertheless, a bounded

estimate can be informative, which we will see below.

4.2. Correcting for Omitted Variables (Ability) Bias

The selectivity of the sample is caused by ability bias. We ignore bias due to sample selection into

work for now. For developed countries, conditioning on white males, ability bias is the main threat

to estimating the ATE of education on earnings. The typical justification for omitted variables bias is

that people with higher ability tend to select themselves into higher levels of education, and vice versa.

This seems reasonable ex–ante in economies in which there are almost no frictions: no discrimination,

easy access to educational institutions, no borrowing constraints (or free education), no constraints on

individuals due to household bargaining (free choice). Developed countries are most likely to offer such

conditions.

In that light, the framework of Manski and Pepper (2000) for identifying the ATE of education on

earnings is promising. Manski and Pepper solve the problem of ability bias by imposing the following

two mild monotonicity assumption:

Assumption 1 (Monotone Treatment Response)

Let T be an ordered set. For each i ∈ I,

t2 ≥ t1 ⇒ yi(t2) ≥ yi(t1).

Assumption 2 (Monotone Treatment Selection)

Let T be an ordered set. For each t ∈ T ,

u2 ≥ u1 ⇒ E [y(t)|z = u2] ≥ E [y(t)|z = u1] .

What do these assumptions mean and how do they differ? As Manski and Pepper (2000) write, both

assumptions are distinct versions of the statement “wages increase with schooling.” The MTR Assump-

tion concerns the functional form of the income equation, it does not address the stochastic selection

process that makes people choose different levels of education. All it says is that more education will

weakly increase a person’s income, holding ability constant. The MTR Assumption deals with the di-

rect or pure effect that education has on earnings. The assumption does not deal with the indirect

effect that education could have through its correlation with ability (or any other covariates). This is

a statement regarding the (human capital production) functional form.

The MTS Assumption, in contrast, is concerned with the stochastic selection process that runs in

the background of the model. Schooling is an endogenous treatment, different people tend to select

themselves into different education levels for a multitude of (often unobserved) reasons. Consider the

following social experiment: You can force people to attend school for exactly t years. How would this
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affect the subset of people who in the absence of your intervention would have chosen to attend school

for u2 years? How would this affect the subset of people who in the absence of your intervention would

have chosen to attend school for u1 < u2 years? The MTS Assumption claims that you would expect

a higher income for the former group (i.e., the subset of people who chose u2 years of education).

The MTR Assumption is consistent with the human capital accumulation model. The MTS Assump-

tion is weaker than a standard instrumental variable assumption and is consistent with the idea of

people with high ability selecting themselves into higher paying jobs. The joint validity of the MTR

and MTS Assumptions can be tested statistically.

Manski and Pepper (2000) establish the following two important results (a comprehensive derivation

is in Appendix B):

Proposition 1 (Sharp MTS–MTR Bounds on Unconditional Expectation)

The bounds on the expected value of earnings conditional on being employed but unconditional on

education, E[y(t)|E = 1], under Assumptions 1 and 2 are

∑
u<t

E[y|z = u, E = 1] · Pr(z = u|E = 1) + E[y|z = t, E = 1] · Pr(z ≥ t|E = 1)

≤ E[y(t)|E = 1] ≤∑
u>t

E[y|z = u, E = 1] · Pr(z = u|E = 1) + E[y|z = t, E = 1] · Pr(z ≤ t|E = 1),

where E is an employment dummy variable that takes on the value one if a person worked and zero

otherwise.

Last, to put an upper bound on the average treatment effect ∆(s, t|E = 1) := E[y(t)|E = 1] −

E[y(s)|E = 1], for s < t, under both the MTR and MTS Assumptions, we subtract the lower bound

on E[y(s)|E = 1] from the upper bound on E[y(t)|E = 1]:

Corollary 2 (Sharp Upper Bound on ATE)

The upper bound on the average treatment effect of education on earnings, ∆(s, t|E = 1), under

Assumptions 1 and 2 is

∆(s, t|E = 1) ≤ ∆(s, t|E = 1) :=∑
u<s

(
E [y|z = t, E = 1]− E [y|z = u, E = 1]

)
· Pr(z = u|E = 1) . . .

+
(
E [y|z = t, E = 1]− E [y|z = s, E = 1]

)
· Pr(s ≤ z ≤ t|E = 1)] . . .

+
∑
u>t

(
E [y|z = u, E = 1]− E [y|z = s, E = 1]

)
· Pr(z = u|E = 1).

Last, defining the ATE per year as Γ(s, t|E = 1) = ∆(s,t|E=1)
t−s we obtain the upper bound on the ATE

per year as

Γ(s, t|E = 1) ≤ ∆(s, t|E = 1)
t− s

.(4.1)
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4.3. Correcting for Selection into Employment

The Manski and Pepper (2000) bounds from Proposition 1 and Corollary 2 take care of the omitted

variables bias due to unobserved ability. As discussed earlier, ability bias presents the biggest challenge

in the estimation of the returns to education for developed countries and conditioning on white males.

Manski and Pepper apply their estimator to the US National Longitudinal Survey of Youth data and

find informative upper bounds on the ATE that lie below parametric returns to education estimates

by Card (1993) and Card (1994).

We are interested in bounding the ATE of education on earnings for African males in South Africa for

the years 1995 and 2000. In addition to omitted variables bias we will also have to deal with sample

selection into employment. As discussed in the data section, labor force participation rates for that

group are low compared to data for white males in the US (see Table III). For the subpopulation of

white males in the US data it is reasonable to ignore the sample selection problem because almost any

white male above the age of 26 will work. The MTR and MTS Assumptions 1 and 2 will likely not

break down if a small degree of sample selection is present. However, in the case of South Africa, this

will no longer be true.

We therefore adjust the bounds to deal with the sample selection problem. To fix ideas, every expec-

tation and probability in Proposition 1 is taken conditional on being employed, i.e., the employment

indicator variable E is equal one. For the US data it is implicitly assumed that Pr(E = 1) ≈ 1 in which

case suppressing the conditioning on E = 1 is mostly a matter of notational convenience.

In the case of South Africa the employment probability is closer to 50% and we therefore derive a bound

estimator that accounts for such a degree of sample selection. Instead of bounding E[y(t)|E = 1] we

would like to bound E[y(t)]. To outline our extension of Manski and Pepper’s framework, break up

the unconditional expectation into two parts:

E[y(t)] = Pr(E = 0) · E[y(t)|E = 0] + Pr(E = 1) · E[y(t)|E = 1].

Both probabilities in the last equation are estimable from the data. For E[y(t)|E = 1] we can, in

principal, apply Manski and Pepper’s method. The main complication stems from the term E[y(t)|E =

0] because the earnings of non–employed people are not observed. Even imposing monotonicity–type

assumptions will not solve that problem. To deal with those counterfactual earnings we will impose

mild relations between certain sub–populations for which E = 0 and E = 1.

To derive an upper bound on E[y(t)] we introduce a monotone instrumental variable w1 which is a

dummy variable that takes on value one if a person migrated away from home in order to work and

send remittances back to his household and zero otherwise. We impose two assumptions on w1:

Assumption 3 (Complementarity)

Pr(E = 0, w1 = 1) = 0.

Assumption 4 (Monotone Instrumental Variable 1)

E[y|v1 = u1, w1 = 0, z ≥ t, E = 0] ≤ E[y|v1 = u1, w1 = 1, z ≥ t, E = 1].
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Assumption 3 states that a person cannot send remittances back home if he is not working. Keeping true

to that assumption is merely a matter of defining the variable w1 appropriately. The MIV Assumption

4 plays a more important role in establishing the upper bound on E[y(t)]. It creates a link between

non–workers and workers. We require that the expected earnings of non–employed people who do

not send remittances be weakly less than the expected earnings of those persons who work and send

remittances back home. The idea behind this assumption is that households internally negotiate and

decide do send their relatively productive members away from home in order to find employment and

send remittance money back home. An example would be a household member who moves away from

home to work in a diamond mine.

To derive a lower bound on E[y(s)], with s < t, we introduce a monotone instrumental variable w2

which is a dummy variable that takes on value one if a person lives in a household with a pensioner

who receives state pension benefits and zero otherwise. We impose two assumptions on w2:

Assumption 5 (Monotone Instrumental Variable 2)

E[y|v1 = u1, w2 = 0, z ≤ s, E = 0] ≥ E[y|v1 = u1, w2 = 1, z ≤ s, E = 0].

Assumption 6 (Conditional Mean Independence)

E[y|v1 = u1, w2 = 1, z ≤ s, E = 0] = E[y|v1 = u1, w2 = 1, z ≤ s, E = 1].

The MIV Assumption 5 says that the expected earnings of people who live in households without

pensioners weakly exceed those of people who live together with pensioners. This assumption is imposed

only on the non–employed sub–population, in that sense we are referring to counterfactual earnings.

The justification for this assumption comes from research which finds that households with pensioners

are more likely to send individual members away from home to find work and send back remittances. If

those migrating individuals are on average more productive than their non–migrating family members

then Assumption 5 holds. The conditional mean independence Assumption 6 links non–workers and

workers. For people who live at home together with a pensioner household member we assume that

the expected earnings for non–employed and employed people are the same. This assumption could be

restrictive for general levels of s. However in the computation of the lower bound, to find the ATE, we

will restrict ourselves to values of s = 0. In that case, Assumption 6 says that for the zero education

group conditional on having a pensioner in the household that the expected earnings of workers and

non-workers are the same. This implies that selection into work is not driven by unobserved ability for

that sub–population.

We get the following result.

Proposition 3 (Bounds Adjusting for Sample Selection)

The bounds on the unconditional expectation of earnings, E[y(t)], under Assumptions 1, 2, 3, 4, 5,
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and 6 are:

∑
u<t

Pr(z = u) ·
(

E[y|z = u, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = u, w2 = 1, E = 1] ·
(
Pr(w2 = 1, E = 1) + Pr(E = 0)

))
. . .

+ Pr(z ≥ t) ·
(

E[y|z = t, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = t, w2 = 1, E = 1] ·
(
Pr(w2 = 1, E = 1) + Pr(E = 0)

))
≤ E[y(t)] ≤∑

u>t

Pr(z = u) ·
(

E[y|z = u, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = u, w1 = 1, E = 1] ·
(
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

))
. . .

+ Pr(z ≤ t) ·
(

E[y|z = t, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = t, w1 = 1, E = 1] ·
(
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

))
.

Proof. See Appendix C.

Last, to put an upper bound on the average treatment effect ∆(s, t) := E[y(t)] − E[y(s)], for s < t,

under Assumptions 1 through 6, we merely add subtract the lower bound on E[y(s)] from the upper

bound on E[y(t)]:

Corollary 4 (Sharp Upper Bound on ATE)

The sample selection adjusted upper bound on the average treatment effect of education on earnings,

∆(s, t), under Assumptions 1, 2, 3, 4, 5, and 6 are

∆(s, t) ≤ ∆(s, t) :=
∑
u<s

Pr(z = u) ·
(

E[y|z = u, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = u, w2 = 1, E = 1] ·
(
Pr(w2 = 1, E = 1) + Pr(E = 0)

))
. . .

+ Pr(z ≥ s) ·
(

E[y|z = s, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = s, w2 = 1, E = 1] ·
(
Pr(w2 = 1, E = 1) + Pr(E = 0)

))
. . .

−
∑
u>t

Pr(z = u) ·
(

E[y|z = u, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = u, w1 = 1, E = 1] ·
(
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

))
. . .

− Pr(z ≤ t) ·
(

E[y|z = t, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

− E[y|z = t, w1 = 1, E = 1] ·
(
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

))
.
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Next, defining the ATE per year as Γ(s, t) = ∆(s,t)
t−s we obtain the sample selection adjusted upper

bound on the ATE per year as

Γ(s, t) ≤ ∆(s, t)
t− s

.(4.2)

Proof. See Appendix C.

5. RESULTS

5.1. Main Findings

Table V presents, for the years 1995 and 2000, the empirical mean of log-income given t years of

education, Ê[y|z = t], the distribution of years of education in the data, P̂r(z = t), and the number of

observations in each education category. We restrict our sample to employed African males between

the ages of 18 and 65. The columns for Ê[y|z = t] and P̂r(z = t) are the main ingredients for the

estimation of the MTR–MTS bounds. What is striking in the South African case is the high number

of uneducated (t = 0) people: 1,489 out of 11,702 persons in 1995 and 947 out of 9,143 persons in

2000 do not have any formal education. The low education level in South Africa is in stark contrast to

developed countries. Manski and Pepper (2000), using the United States National Longitudinal Survey

of Youth data set, have a minimum level of schooling of 8 years and a maximum level of schooling of

20 years. In the South African data, for African males, the maximum level of schooling is 16 years (for

a very small fraction of the sample).

We consider it advantageous, for bound estimation, that the minimum schooling level is zero. We

want to estimate the bounds in equations (4.1) and (4.2) holding s fixed at zero and letting t ≥ 8.

Like that, we compare, for example, E[y(8)] to E[y(0)], i.e., we calculate the average treatment effect

of eight years of education. Equations (4.1) and (4.2) break the ATE down to a per–year basis. For

each ordered pair (s = 0, t) with t ≥ 8 we compute two alternative bounds on the ATE. First, we get

Manski and Pepper’s (2000) upper bound, equation (4.1), that corrects for unobserved ability bias.

Second, we compute the adjusted bound, equation (4.2), that corrects for unobserved ability bias and

sample selection into employment.

Table VI contains the results for African males aged 18–65. The first row in column (1) reports the

result for Γ(0, 8|E = 1) of equation (4.1), i.e., the bounds without sample selection correction. The

upper bound estimate on the return to education is equal to 11.74%. This means that people with

eight years of education have received an additional return of at most 11.74% per year on each of their

eight years of education. In column (2) we report the 95% quantile of the empirical distribution of the

bound estimate. For Γ(0, 8|E = 1) the 95% quantile equals 13.57% which provides a more conservative

estimate of the upper bound.

Continuing downwards in column (1), the bound estimate is more or less stable up to t = 12 which

represents the final year of high school. The final high–school year is in fact the most frequent level

of education and we estimate an upper bound on the ATE of a high–school education on earnings

of 11.85% per year. For t = 14, 15 the bound estimates increase markedly which we attribute to a
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TABLE V

—Empirical Mean of Log-Income and Distribution of Years of

Schooling

1995 2000

s bE[y|z = t] cPr(z = t) N bE[y|z = t] cPr(z = t) N

0 9.92 0.127 1489 8.93 0.104 947

1

8.90 0.057 662

8.76 0.008 77

2 8.88 0.019 169

3 9.12 0.040 362

4 9.04 0.058 682 9.13 0.047 433

5 9.01 0.056 650 9.16 0.052 472

6 9.18 0.070 823 9.24 0.067 613

7 9.39 0.087 1021 9.30 0.090 825

8 9.61 0.110 1288 9.41 0.094 863

9 9.69 0.070 813 9.43 0.072 659

10 9.94 0.094 1102 9.72 0.098 896

11 10.04 0.049 571 9.56 0.063 580

12 10.30 0.145 1702 9.87 0.172 1571

14 10.69 0.056 653 10.64 0.050 453

15 11.13 0.021 246 11.08 0.017 152

16 11.16 0.008 71

Total 1 11,702 1 9,143

Note.—In 1995 years of schooling t = 1, 2, 3 are comprised in one category.

Everything conditional on employed African males, age 18–65.

combination of additional returns due to post–high school education and low sample size.

In all cases, the MTR–MTS bound lies below the OLS estimator of 15.59%. To obtain this estimate we

ran a typical Mincerian wage regression of log-income on a constant, education, potential experience

(linear and quadratic), and province (there are nine provinces in the data). The OLS estimator is, of

course, biased. Card (2001) comprehensively discusses different sources of bias in the OLS estimator

of the return to schooling. Summarizing research findings in the area, Card argues that, if anything,

the OLS estimator is downwards biased (for example, comparing to instrumental variables estimation

of discrete dynamic choice programming model estimation). We therefore regard the OLS estimator

as a lower bound for parametric estimation. In this sense then the bound estimates of column (1) in

Table VI for the year 1995 are informative because they fall below estimates that result from parametric

estimation. Even if we base our conclusions on only the conservative 95% quantile, the bound estimates

for t = 8, 9, 10, 11, 12, 14 all fall below the parametric estimates.

The results for 1995 are qualitatively similar if instead we use our adjusted upper bounds that account

for sample selection. The first row in column (3) reports the result for Γ(0, 8) of equation (4.2), i.e.,

the bounds with sample selection correction. The upper bound on the return to education is equal to

12.89% which is higher than the non–adjusted bound in column (1). In column (4) the corresponding

conservative 95% quantile of the empirical distribution equals 15.43%.
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TABLE VI

—Estimation Results: Upper Bounds on Return to Schooling, Age 18–65

1995 2000

UB w/o 95% UB with 95% UB w/o 95% UB with 95%

correction Quantile correction Quantile correction Quantile correction Quantile

s t (1) (2) (3) (4) (5) (6) (7) (8)

0 8 11.74 13.57 12.89 15.43 8.74 10.65 12.90 14.52

0 9 10.94 12.91 12.15 14.74 7.91 9.95 11.16 12.99

0 10 11.47 13.27 12.10 14.61 8.83 11.13 11.60 13.61

0 11 11.05 12.61 11.80 14.54 7.02 9.79 9.47 12.13

0 12 11.85 13.75 12.64 14.91 8.39 10.78 10.68 13.13

0 14 12.69 14.40 12.66 15.19 12.26 14.72 14.19 16.65

0 15 14.74 16.74 15.90 17.36 14.34 17.20 16.70 19.60

0 16 13.91 15.80 15.03 11.50

N 11, 702 9, 143

OLS 15.59 (0.15) 15.31 (0.20)

Note.—Numbers in percent. Columns (1) and (5) contain upper bound estimates on ATE without correcting

for sample selection, based on equation (4.1). Columns (3) and (7) contain upper bound estimates adjusting

for sample selection, based on equation (4.2). Corresponding quantiles via bootstrap with 2,000 repetitions.

Bottom row presents OLS regression of log-income on constant, education, potential experience (linear and

quadratic), province. Standard errors in parentheses.

Continuing downwards in column (3), the bound estimate again is relatively stable up to t = 14. The

ATE of high–school education over zero education is at most 12.64% per year of education with a 95%

quantile of 14.91%. Comparing columns (1) and (3), the adjusted upper bounds that correct for sample

selection (column (3)) are (by construction) at least as large as the Manski and Pepper (2000) bounds

(column (1)) that only correct for ability bias. The corrected bounds are however still informative

vis-á-vis the OLS estimates. For all values of t between 8 and 14 do the bounds fall to the left of the

OLS point estimates.

For the year 2000 a qualitatively similar picture emerges and the bound results are generally stronger.

For example, the estimate for the ATE of high–school education on earnings is at most 8.39% (without

sample selection correction) and 10.68% (with correction). Both numbers are considerably lower than

the parametric estimate of 15.31%. And again it is true that all nonparametric results lie to the left

of the OLS estimate. For education levels beyond high–school (t = 14, 15, 16) the ATE jump up to

14.19%, 16.70%, and 15.03% which indicates that the added value of attending higher education for

African males is increasing. However, the increase in ATE for those levels of education could also be the

result of small sample size. We also caution that by the nature of the upper bounds it is not logically

correct to claim that, for example, the ATE of education on earnings is higher for t = 14 (upper bound

of 14.19%) than for t = 12 (upper bound of 10.68%).

By the same reasoning we cannot claim that on average the ATE of education on earnings has decreased

between 1995 and 2000. The ATE of a high–school degree on earnings was bounded above by 12.64% in
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TABLE VII

—Estimation Results: Upper Bounds on Return to Schooling, Age 18–39

1995 2000

UB w/o 95% UB with 95% UB w/o 95% UB with 95%

correction Quantile correction Quantile correction Quantile correction Quantile

s t (1) (2) (3) (4) (5) (6) (7) (8)

0 8 12.84 14.74 13.86 16.07 10.12 13.44 15.37 17.36

0 9 12.33 14.37 13.01 16.02 9.58 12.81 13.83 16.20

0 10 12.54 14.67 12.64 15.23 9.86 13.13 13.48 15.55

0 11 12.25 14.07 12.58 13.20 8.33 11.74 11.72 14.52

0 12 12.84 14.99 13.06 15.08 9.56 12.87 12.62 15.53

0 14 13.52 15.73 12.84 16.17 13.36 16.43 15.80 18.08

0 15 14.98 17.51 15.95 17.54 14.77 19.35 17.50 20.78

0 16 14.72 17.64 15.75 12.77

N 6, 958 5, 507

OLS 18.48 (0.20) 18.61 (0.27)

Note.—Numbers in percent. Columns (1) and (5) contain upper bound estimates on ATE without correcting

for sample selection, based on equation (4.1). Columns (3) and (7) contain upper bound estimates adjusting

for sample selection, based on equation (4.2). Corresponding quantiles via bootstrap with 2,000 repetitions.

Bottom row presents OLS regression of log-income on constant, education, potential experience (linear and

quadratic), province. Standard errors in parentheses.

1995 and by 10.68% in 2000 (bounds adjusting for sample selection). Because we cannot point identify

the ATE it is conceivable that the actual treatment effect of education was lower in 1995 than in

2000. It is curious that even the OLS estimator—which as a point identified estimation method should

be able to establish whether the ATE increased or decreased over time—is not able to distinguish

significantly the 1995 from the 2000 estimates.

5.2. Sensitivity to Cohort Effects

We could be concerned that the MTS Assumption 2 breaks if older cohorts (age groups) had more

restricted access to education than younger ones. Recall that the justification for the MTS assumption

was that people select themselves into education according to their abilities. Higher ability people tend

to have more education. The cohort effect could theoretically reverse this causation between education

and ability. For example, if high ability people of older cohorts could on average only go to school for

six years they will be observed in the data with little education and high income (because their high

ability is rewarded in the market and also because they have high levels of work experience). On the

other hand, if low ability people of younger cohorts go to school for an average of eight years (due to

improved access to education) they will be observed in the data with relatively high education levels

but low incomes (because of lower ability and less experience). This example illustrates how the the

MTS assumption might be violated due to cohort effects.

We therefore drop people older than 39 years from the sample and repeat the calculations from Table
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VI. The new results are collected in Table VII. Qualitatively, everything that was true for the 18–65

age group still holds true for the 18–39 age group. The bounds for the younger cohort are generally

higher. For example, for the year 1995, the ATE of high–school education is at most 12.84% (without

correction for sample selection) and 13.06% (with correction) while the OLS point estimate is 18.48%.

For the year 2000 the upper bound on the high–school ATE is 9.56% (without correction) and 12.62%

(with correction). Again, the conservative 95% quantiles for education levels less than 15 fall below

the OLS estimates.

We take the results from this subsections as evidence that cohort effects do not violate Assumption 2.

We have repeated this exercise for even younger cohorts with similar findings.

6. CONCLUSION

Our research objective is to estimate the average treatment effect on earnings of one year of educa-

tion for African males in South Africa. We construct a cross–sectional data set combining the OHS95

and IES95 in 1995 and LFS00 and IES00 in 2000. We cannot use OLS to point identify the ATE

because of the well–known problem of unobserved ability bias. The parametric alternative of instru-

mental variables estimation is not feasible because there are no strong instrumental variables in the

data.

Instead we use Manski and Pepper’s (2000) nonparametric bound estimator which allows us to esti-

mate an upper bound on the ATE. There is one complication with Manski and Pepper’s estimator:

It is only useful for populations with high labor force participation rates. Labor force participation of

Africans in South Africa, however, is very low. We therefore modify Manski and Pepper’s estimator to

account for such degrees of sample selection.

Using the modified nonparametric estimator, we find an upper bound on the return to a high–school

degree of 12.64% (per year of high–school) in 1995 and 10.68% in 2000. Compared to standard para-

metric estimates, our bound is informative. The OLS estimates of the return to education for 1995

and 2000 are 15.59% and 15.31%. Our bound estimates for almost all levels of education fall below the

OLS estimates.
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APPENDIX A: PARAMETRIC IDENTIFICATION OF ATE

A.1. The Human Capital Earnings Function: Schooling and Ability

Our goal is to estimate the causal effect ceteris paribus of education on earnings. To do that, assume that there exists

a human capital production function for individual i

yi(·, ·) : T ×A→ Y(A.1)

that maps years of schooling s ∈ T and ability a ∈ A into individual earnings outcomes yi(s, a) ∈ Y . This function

is a smaller version of Mincer’s (1974) human capital earnings function. Manski (1997) calls equation (A.1) a response

function. The function simply illustrates that schooling s and ability a have a direct or pure effect on earnings.

For practical purposes the presence of ability in the response function creates at least three problems:

(i) Ability is not well defined.

(ii) Ability is not measured with sufficient accuracy.

(iii) Ability is not part of most data sets, and hence unobserved.

Standard cross–sectional data sets typically collect years of education, s, along with income y. Estimation has to rely on

these variables only. Going back to equation (A.1) we define

yi(·) := yi(·, ā) : T → Y,

which is a univariate function (holding ability constant) mapping schooling into earnings outcomes. Our goal is to

measure the pure effect of schooling on earnings ceteris paribus:

∆(s, t) :=E [y(t, ā)]− E [y(s, ā)](A.2)

=E [y(t)]− E [y(s)] ,

where s ∈ T and t ∈ T are years of education and s < t. The object ∆(s, t) is the average treatment effect of schooling

on earnings, the estimation of which is our research objective.

A.2. Digression: Naive Nonparametric Estimation

In the sample data we observe, for a every person i, her level of schooling, zi ∈ T , and her income yi := yi(zi) ∈ Y .

Note that we distinguish between the latent levels of schooling, denoted s and t, and the observed level of schooling for

person i, denoted zi. The latent outcomes yi(s) or yi(t) are not observed whenever s 6= zi or t 6= zi. To estimate the effect

of schooling on earnings we use a random sample of people for which we observe data pairs on schooling and income

({zi, yi} ∈ T ×Y ). A naive nonparametric solution for estimating ∆(s, t) is to simply average those income observations

yi for which zi = s, and compare them to the average of the income observations for which zi = t. The problem with

this approach is that ability and schooling are correlated. The observed data are realizations of peoples’ optimization

decisions in which ability can be seen as a state variable and schooling as a choice variable.6 High ability people are

more likely to choose higher levels of schooling (and vice versa). Schooling is hence endogenous, the resulting estimator

for ∆(s, t) is biased upward.

A.3. Problems of Parametric Estimation

There are at least two problems with parametric estimation: functional form and selection. Writing log–earnings as a

linear function of schooling looks simplistic but it is convention in labor economics. Card (2001) argues for an additional

quadratic schooling term so that the marginal effect of schooling is declining in schooling (assuming that the coefficient of

the quadratic schooling term is negative). But even this assumptions seems arbitrary. Because the relationship between

earnings and schooling is not governed by a deterministic law, there will always remain different opinions about functional

form.

6Keane and Wolpin (1997) develop a dynamic choice programming model along those lines.
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Regarding selection, the OLS model simply disregards the problem of correlation between schooling and ability. Consider

two persons with different levels of ability. If in a social experiment we could force both of them to obtain the same

amount of schooling t then disregarding any selection we would expect both of them to have the same income:

E[yi(t)|ai = a1] = E[yi(t)|ai = a2] for a1 6= a2.(A.3)

It is more realistic, however, to think that the person with higher ability would receive a higher income, in which case the

equality in equation (A.3) turns into an inequality. The availability of an instrumental variable changes this interpretation

a bit. Equation (A.3) is replaced by

E[yi(t)|qi = q1] = E[yi(t)|qi = q2],

for q1 6= q2. This claim holds by the definition of an instrumental variable.

A.4. Ordinary Least Squares Estimation

The first assumption of any parametric analysis always is linearity. Countless papers in labor economics run versions

of the following regression:

yi = ziβ + ai + εi,(A.4)

where yi is the logarithm of earnings, ai is unobserved ability, εi is a random error, and β is some coefficient. Equation

(A.4) is a simplification of Mincer’s (1974) human capital earnings function, with two essential features: the linear link

between schooling and log–earnings and the effect of unobserved ability on earnings. Using a random sample {zi, yi},

the classical linear regression model simply estimates β as the slope coefficient using the assumption

E[ai + εi|zi] = 0,(A.5)

Under equations (A.4) and (A.5) the average treatment effect ∆(s, s+ 1) equals

∆(s, s+ 1) = E [yi(s+ 1)]− E [yi(s)]

= E [(zi + 1)β + ai + εi|(zi + 1)]− E [ziβ + ai + εi|zi]

= E [(zi + 1)β|zi]− E [ziβ|zi]

= (zi + 1)β − ziβ

= β.

To estimate the average treatment effect we therefore only need to run an OLS regression and obtain the slope coefficient.

A.5. Instrumental Variables Estimation

Parametric estimation seems like a convenient way to estimate ∆(s, s+1). And given the assumptions so far, it is also

the best linear unbiased estimator. An obvious drawback is assumption (A.5). A better set of assumptions would be

E[ai|zi] 6= 0

E[εi|zi] = 0.

Ability is unobserved in the data. Running an ordinary least squares regression of log–earnings on education yields an

inconsistent estimate for β. The average treatment effect is not identified. The way around this problem is instrumental

variables estimation. In order to identify β we need an instrumental variable, v ∈ V , which satisfies:

(i) Constant treatment response:7 y(s, v1) = y(s, v2) = y(s) for all v1 6= v2

(ii) Correlation: E[si|vi] = πvi with π 6= 0

(iii) Exogeneity: E[ai|vi] = 0.

7The term ‘constant treatment response’ was first defined by Manski and Pepper (2008).
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The average treatment effect equals

∆(s, s+ 1) = E [yi(s+ 1)]− E [yi(s)]

= E [(si + 1)β + ai + εi|si]− E [siβ + ai + εi|si]

= E [(si + 1)β + ai + εi|vi]− E [siβ + ai + εi|vi]

= β.

APPENDIX B: DERIVING MANSKI AND PEPPER’S (2000) BOUNDS

B.1. No Assumptions Bound

Although the subsection title promises a bound without any assumptions, we will need to assume that the range of

the dependent variable is bounded. The range of Y is [K0,K1]. The misnomer “no assumptions bound” is due to Manski

(1989) and we do not intend to deviate from his convention. In any case, the assumption of bounded support will become

redundant later; it only serves as an auxiliary assumption to derive the main results.

We start with the following decomposition of the conditional expectation8:

E[y(t)|v = u] = E[y(t)|v = u, z = t] · Pr(z = t|v = u) + E[y(t)|v = u, z 6= t] · Pr(z 6= t|v = u).

Whenever the conjectural treatment t equals the actual treatment z we rewrite E[y(t)|v = u, z = t] = E[y|v = u, z = t]

and thus

E[y(t)|v = u] = E[y|v = u, z = t] · Pr(z = t|v = u) + E[y(t)|v = u, z 6= t] · Pr(z 6= t|v = u).

This bit of rewriting helps see that the only term on the right hand side of the last equation that is not identifiable by

the data is E[y(t)|v = u, z 6= t]. What is the interpretation of E[y(t)|v = u, z 6= t]? It is the expected value of income

after exactly t years of education for the subset of people who would choose to attend school for more or less than t

years of schooling. It is the expected value of a counterfactual event. We do not observe this latent value in the data.

The only thing we know about E[y(t)|v = u, z 6= t] is that it lies between K0 and K1. Therefore we use those extremes

to bound the expectation:

E[y(t)|v = u] ≥ E[y|v = u, z = t] · Pr(z = t|v = u) +K0 · Pr(z 6= t|v = u)(B.1)

E[y(t)|v = u] ≤ E[y|v = u, z = t] · Pr(z = t|v = u) +K1 · Pr(z 6= t|v = u).

B.2. Monotone Instrumental Variable

The bounds in inequalities (B.1) are sharp in the absence of more information. But for practical purposes the no

assumptions bounds have at least two drawbacks: They are likely not informative (if the range of Y is wide) and

researchers usually do not know the values of K0 and K1. To ameliorate the first problem, Manski and Pepper (2000)

introduce their monotone instrumental variable assumption.

Assumption 7 (Monotone Instrumental Variable)

Let V be an ordered set. The variable v is a monotone instrumental variable in the sense of mean–monotonicity if, for

each t ∈ T , and all (u1, u2) ∈ (V × V ) such that u2 ≥ u1

E[y(t)|v = u2] ≥ E[y(t)|v = u1].

How does this assumption help us? So far, the variable v did not play any active role in the derivation of the bounds.

Now, if we observe different individuals with different values for v we can refine the bounds. By Assumption 7 we get,

for all u1 ≤ u ≤ u2

E[y(t)|v = u] ≥ E[y(t)|v = u1](B.2)

E[y(t)|v = u] ≤ E[y(t)|v = u2].

8All expressions within Appendix B should be understood as conditional on being employed, i.e., the employment

indicator variable E is equal to 1.
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For each of the expectations on the right hand side of the two inequalities (B.2), equation (B.1) provides bounds. The

inequality E[y(t)|v = u] ≥ E[y(t)|v = u1] holds for all u1 ≤ u. To tighten the bound on E[y(t)|v = u] we can pick the

maximum value of the lower bound on E[y(t)|v = u1], hence

E[y(t)|v = u] ≥ supu1≤u {E[y|v = u1, z = t] · Pr(z = t|v = u1) +K0 · Pr(z 6= t|v = u1)} .(B.3)

Likewise, to refine the upper bound on E[y(t)|v = u] we can pick the minimum value of the upper bound on E[y(t)|v = u2],

hence

E[y(t)|v = u] ≤ infu2≥u {E[y|v = u2, z = t] · Pr(z = t|v = u2) +K1 · Pr(z 6= t|v = u2)} .(B.4)

B.3. Monotone Treatment Selection

The assumption of monotone treatment selection is a modification of the MIV Assumption 7. When instrument and

treatment coincide, v = z, then the MIV Assumption collapses to

Assumption 8 (Monotone Treatment Selection)

Let T be an ordered set. For each t ∈ T ,

u2 ≥ u1 ⇒ E [y(t)|z = u2] ≥ E [y(t)|z = u1] .

In order to derive the bounds on E[y(t)|v = u] = E[y(t)|z = u] we will use equations (B.3) and (B.4), the next proposition

states the result.

Proposition 5 (MTS Bounds)

For a given latent treatment level t ∈ T and for different levels u of actual treatment z, the bounds on E[y(t)|z = u]

under Assumption 8 are

u < t⇒ K0 ≤ E[y(t)|z = u] ≤ E[y|z = t]

u = t⇒ E[y(t)|z = u] = E[y|z = t]

u > t⇒ E[y|z = t] ≤ E[y(t)|z = u] ≤ K1.

Proof. See section B.7.

B.4. Monotone Treatment Response

The next step towards tightening the bounds on E[y(t)|v = u] involves an assumption on the response function

y(·) : T → Y .

Assumption 9 (Monotone Treatment Response)

Let T be an ordered set. For each i ∈ I,

t2 ≥ t1 ⇒ yi(t2) ≥ yi(t1).

Under the MTR Assumption Manski (1997, Corollary M1.2) derives bounds on E[y(t)|v = u] that make more use of the

information contained in the sample data than the MIV bounds (B.3) and (B.4).

Proposition 6 (Monotone Treatment Response Bounds)

The bounds on E[y(t)|v = u] under Assumption 9 are

E[y(t)|v = u] ≥ E[y|v = u, z ≤ t] · Pr(z ≤ t|v = u) +K0 · Pr(z > t|v = u)(B.5)

E[y(t)|v = u] ≤ E[y|v = u, z ≥ t] · Pr(z ≥ t|v = u) +K1 · Pr(z < t|v = u).(B.6)
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Proof. See section B.7.

What is the advantage of the MTR bounds (B.5) and (B.6) over the MIV bound (B.3) and (B.4)? The MTR bounds

use more information from the sample data. For example, the MTR lower bound uses the relatively uninformative range

restriction K0 on Y only for treatment values z > t, for all values z ≤ t it exploits the more informative sample data.

Compare this to the MIV lower bound which uses K0 for all values of z 6= t and exploits the sample data only for z = t.

The MIV upper bound also makes productive use of the sample data only for z = t while the MTR upper bound exploits

all z ≥ t. Altogether the MTR bounds thus use the entire range for z while the MIV bounds only exploits the sample

data for z = t.

B.5. Combining MIV with MTR

Our goal is to derive sharp bounds on E[y(t)] without restricting the support Y of y(·) to the interval [K0,K1].

Combining the MIV Assumption 7 with the MTR Assumptions 9 will yield bounds that still depend on K0 and K1,

however the MIV-MTR bounds are the last crucial step that we need before we are ready to derive unrestricted bounds

on E[y(t)].

Proposition 7 (MIV–MTR Bounds)

The bounds on E[y(t)|v = u] under Assumptions 7 and 9 are

E[y(t)|v = u] ≥ supu1≤u {E[y|v = u1, z ≤ t] · Pr(z ≤ t|v = u1) +K0 · Pr(z > t|v = u1)} .(B.7)

E[y(t)|v = u] ≤ infu2≥u {E[y|v = u2, z ≥ t] · Pr(z ≥ t|v = u2) +K1 · Pr(z < t|v = u2)} .(B.8)

Proof. See section B.7.

How do the MIV-MTR bounds (B.7) and (B.8) compare to the MIV bounds (B.3) and (B.4)? The MIV-MTR bounds

make better use of the sample data than the MIV bounds. This is a direct consequence of the properties of the MTR

bounds as discussed above in section B.4.

B.6. Combining MTS with MTR

Now we are ready to derive bounds on E[y(t)] that do not rely on the artificial restriction that the support Y of y(·)

is bounded below by K0 and above by K1. Starting point is the observation that under MTS the instrument v and the

treatment z coincide. In order to derive the bounds on E[y(t)|v = u] = E[y(t)|z = u] we will adapt equations (B.7) and

(B.8) to the new environment in which v = z. We need to be careful about how the actual treatment value u relates to

the latent value t. The discussion here is similar to section B.3. The next proposition states the MTS–MTR bounds.

Proposition 8 (Sharp MTR–MTS Bounds on Conditional Expectation)

The bounds on E[y(t)|v = u] = E[y(t)|z = u] under Assumptions 8 and 9 are

u < t⇒ E[y|z = u] ≤ E[y(t)|z = u] ≤ E[y|z = t]

u = t⇒ E[y|z = t] ≤ E[y(t)|z = u] ≤ E[y|z = t]

⇔ E[y|z = t] = E[y(t)|z = u]

u > t⇒ E[y|z = t] ≤ E[y(t)|z = u] ≤ E[y|z = u].

Proof. See section B.7.

To obtain bounds on the unconditional expectation, ‘integrate’ out over all values of z:

Corollary 9 (Sharp MTR–MTS Bounds on Unconditional Expectation)

The bounds on E[y(t)] under Assumptions 8 and 9 areX
u<t

E[y|z = u] · Pr(z = u) + E[y|z = t] · Pr(z ≥ t)

≤ E[y(t)] ≤
X
u>t

E[y|z = u] · Pr(z = u) + E[y|z = t] · Pr(z ≤ t).
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Last, to put an upper bound on the average treatment effect ∆(s, t) := E[y(t)]−E[y(s)], for s < t, under both the MTR

and MTS Assumptions, we merely add subtract the lower bound on E[y(s)] from the upper bound on E[y(t)]:

∆(s, t) ≤
X
u<s

`
E [y|z = t]− E [y|z = u]

´
· Pr(z = u)(B.9)

+
`
E [y|z = t]− E [y|z = s]

´
· Pr(s ≤ z ≤ t)

+
X
u>t

`
E [y|z = u]− E [y|z = s]

´
· Pr(z = u).

B.7. Proofs

Proof of Proposition 5. We need to be careful about how the actual treatment value u relates to the latent

treatment value t. There are three cases.

(i) If u < t then the term E[y|v = u1, z = t] in equation (B.3) equals E[y|z = u1, z = t] which is undefined for

u1 ≤ u. The probability Pr(z = t|v = u1) = Pr(z = t|z = u1) = 0 for u1 ≤ u. The only thing remaining for

the lower bound is K0, noting that Pr(z 6= t|v = u1) = Pr(z 6= t|z = u1) = 1 for u1 ≤ u. Hence, if u < t then

K0 ≤ E[y(t)|z = u]. Next, to derive the upper bound when u < t consider equation (B.4). How do we find the

infimum? We have the degree of freedom to set u2 = t which gives an upper bound of E[y(t)|z = t] =: E[y|z = t].

For all other values of u2 ≥ u the upper bound will just be K1 which exceeds E[y|z = t]. Thus, if u < t then

E[y(t)|z = t] =: E[y|z = t] ≥ E[y(t)|z = u].

(ii) If u = t then the supremum of the lower bound in equation (B.3) is E[y(t)|z = t] which equals E[y|z = t]. The

infimum of the upper bound is also equal to E[y|z = t].

(iii) If u > t in the derivation of the lower bound from equation (B.3) we have the degree of freedom to set u1 = t

which gives a lower bound of E[y(t)|z = t] =: E[y|z = t]. For all other values of u1 ≤ u the upper bound will

just be K0 which is less than E[y|z = t]. Thus, if u > t then E[y(t)|z = t] =: E[y|z = t] ≤ E[y(t)|z = u]. Next,

to derive the upper bound when u > t consider equation (B.4). How do we find the infimum? If u > t then the

term E[y|v = u2, z = t] in equation (B.4) equals E[y|z = u2, z = t] which is undefined for u2 ≥ u. The probability

Pr(z = t|v = u2) = Pr(z = t|z = u2) = 0 for u2 ≥ u. The only thing remaining for the upper bound is K1, noting

that Pr(z 6= t|v = u2) = Pr(z 6= t|z = u2) = 1 for u2 ≥ u. Hence, if u > t then K1 ≥ E[y(t)|z = u].

In summary, we have

u < t⇒ K0 ≤ E[y(t)|z = u] ≤ E[y(t)|z = t] =: E[y|z = t]

u = t⇒ E[y(t)|z = u] = E[y|z = t]

u > t⇒ E[y(t)|z = t] =: E[y|z = t] ≤ E[y(t)|z = u] ≤ K1.

Proof of Proposition 6. By the MTR Assumption 9 we have

t < z ⇒ K0 ≤ y(t) ≤ y(z)

t = z ⇒ y(t) = y(z)

t > z ⇒ y(z) ≤ y(t) ≤ K1.

This carries over immediately to the conditional expectations:

t < z ⇒ K0 ≤ E[y(t)|v = u] ≤ E[y(z)|v = u, z > t] =: E[y|v = u, z > t](B.10)

t = z ⇒ E[y(t)|v = u] = E[y(z)|v = u, z = t] =: E[y|v = u, z = t](B.11)

t > z ⇒ E[y(z)|v = u, z < t] =: E[y|v = u, z < t] ≤ E[y(t)|v = u] ≤ K1.(B.12)

Now we combine the two lower bounds from equations (B.10) and (B.12) by weighing them with their probabilities,

P (t < z|v = u) and P (t > z|v = u), and we also involve equation (B.11) to obtain the MTR lower bound

E[y(t)|v = u] ≥ K0 · Pr(z > t|v = u) + E[y(z)|v = u, z ≤ t] · Pr(z ≤ t|v = u).
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Likewise, we combine the two upper bounds from equations (B.10) and (B.12) by weighing them with their probabilities,

P (t < z|v = u) and P (t > z|v = u), and we also involve equation (B.11) to obtain the MTR upper bound

E[y(t)|v = u] ≤ E[y(z)|v = u, z ≥ t] · Pr(z ≥ t|v = u) +K1 · Pr(z < t|v = u).

Proof of Proposition 7. The MIV-MTR bounds follow immediately by adapting the derivation of the MIV bounds

in section B.2. Starting point is Assumption 7. We get, for all u1 ≤ u ≤ u2

E[y(t)|v = u] ≥ E[y(t)|v = u1](B.13)

E[y(t)|v = u] ≤ E[y(t)|v = u2].

For each of the expectations on the right hand side of the two inequalities (B.13), equations (B.5) and (B.6) provide

bounds. The inequality E[y(t)|v = u] ≥ E[y(t)|v = u1] holds for all u1 ≤ u. To tighten the bound on E[y(t)|v = u] we

can pick the maximum value of the lower bound (B.5), hence

E[y(t)|v = u] ≥ supu1≤u {E[y|v = u1, z ≤ t] · Pr(z ≤ t|v = u1) +K0 · Pr(z > t|v = u1)} .(B.14)

Likewise, to refine the upper bound on E[y(t)|v = u] we can pick the minimum value of the upper bound (B.6), hence

E[y(t)|v = u] ≤ infu2≥u {E[y|v = u2, z ≥ t] · Pr(z ≥ t|v = u2) +K1 · Pr(z < t|v = u2)} .(B.15)

Proof of Proposition 8. There are three cases.

(i) If u < t the lower bound will be the supremum (across u1) of E[y|z = u1, z ≤ t]·Pr(z ≤ t|z = u1)+K0 ·Pr(z > t|z =

u1). The term Pr(z > t|z = u1) = 0 while Pr(z ≤ t|z = u1) = 1 so the supremum has to be based on E[y|z = u1, z ≤

t]. Therefore, the lower bound is supu1≤u {E[y|z = u1, z ≤ t]} which is equal to supu1≤u {E[y|z = u1]} when u < t.

Contrast the lower bound here to the one in section B.3 for u < t. Imposing the MTS assumption only, the lower

bound was K0. Already it emerges that the lower bound under MTR–MTS is more informative than under MTS

only. As for the upper bound, the infimum of E[y|z = u2, z ≥ t] · Pr(z ≥ t|z = u2) +K1 · Pr(z < t|z = u2) will be

based on E[y|z = u2, z ≥ t]. Therefore, the upper bound for the case u < t equals infu2≥t {E[y|z = u2, z ≥ t]} which

is equal to infu2≥t {E[y|z = u2]}. (Note that we use infu2≥t and not infu2≥u. This holds because the intersection

of {z = u2} and {z ≥ t} when u < t and for all u2 ≥ u equals {z ≥ t}.)

(ii) If u = t then the supremum of the lower bound in equation (B.7) is supu1≤t {E[y|z = u1]}. The infimum of the

upper bound is also equal to infu2≥t {E[y|z = u2]} which is the same as for the case u < t.

(iii) If u > t the lower bound will be the supremum (across u1) of E[y|z = u1, z ≤ t] · Pr(z ≤ t|z = u1) + K0 ·

Pr(z > t|z = u1). The term Pr(z > t|z = u1) = 0 while Pr(z ≤ t|z = u1) = 1 so the supremum has to

be based on E[y|z = u1, z ≤ t]. Therefore, the lower bound is supu1≤t {E[y|z = u1, z ≤ t]} which is equal to

supu1≤t {E[y|z = u1]} when u < t. (Note that we use supu1≤t and not supu1≤u. This holds because the intersection

of {z = u1} and {z ≤ t} when u > t and for all u1 ≤ u equals {z ≤ t}.) As for the upper bound, the infimum of

E[y|z = u2, z ≥ t] · Pr(z ≥ t|z = u2) + K1 · Pr(z < t|z = u2) will be based on E[y|z = u2, z ≥ t]. Therefore,

the upper bound for the case u > t equals infu2≥u {E[y|z = u2, z ≥ t]} which is equal to infu2≥u {E[y|z = u2]}.

Contrast the upper bound here to the one in section B.3 for u > t. Imposing the MTS assumption only, the upper

bound was K1. Again it is true that the bound under MTR–MTS is more informative than under MTS only.

In summary, we have

u < t⇒ supu1≤u {E[y|z = u1]} ≤ E[y(t)|z = u] ≤ infu2≥t {E[y|z = u2]}(B.16)

u = t⇒ supu1≤t {E[y|z = u1]} ≤ E[y(t)|z = u] ≤ infu2≥t {E[y|z = u2]}

u > t⇒ supu1≤t {E[y|z = u1]} ≤ E[y(t)|z = u] ≤ infu2≥u {E[y|z = u2]} .
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Next, note that

u1 ≤ u2 ⇒ E[y|z = u1] :=E[y(u1)|z = u1] (definition)(B.17)

≤E[y(u2)|z = u1] (by MTR)

≤E[y(u2)|z = u2] (by MTS)

≤E[y|z = u2] (definition).

The observation that E[y|z = u1] ≤ E[y|z = u2], which may appear obvious, does not follow from the MTR Assumption

or from the MTS Assumption alone, but only from combining the two. The result that E[y|z = u1] ≤ E[y|z = u2] implies

that

supu1≤u {E[y|z = u1]} = E[y|z = u]

infu2≥t {E[y|z = u2]} = E[y|z = t]

supu1≤t {E[y|z = u1]} = E[y|z = t]

infu2≥u {E[y|z = u2]} = E[y|z = u],

and therefore by combining the results from equations (B.16) and equations (B.17) we obtain informative bounds that

do not rely on bounded support Y of y(·):

u < t⇒ E[y|z = u] ≤ E[y(t)|z = u] ≤ E[y|z = t]

u = t⇒ E[y|z = t] ≤ E[y(t)|z = u] ≤ E[y|z = t]

⇔ E[y|z = t] = E[y(t)|z = u]

u > t⇒ E[y|z = t] ≤ E[y(t)|z = u] ≤ E[y|z = u].

APPENDIX C: SELECTION CORRECTED BOUNDS

This section contains the proofs of Proposition 3 and Corollary 4. To get the upper bound on the ATE we first derive

the upper bound on E[y(t)] and then we derive the lower bound on E[y(s)] for s < t. The upper bound on the ATE

results as the upper bound on E[y(t)] minus the lower bound on E[y(s)] which finally we will average out over the years

to obtain equation (4.2).

C.1. Upper Bound on E[y(t)]

Starting point for deriving nonparametric bounds that deal with endogenous sample selection is the MTR upper

bound from equation (B.6). Recall that we obtained as the upper bound

E[y(t)|v = u] ≤ E[y|v = u, z ≥ t] · Pr(z ≥ t|v = u) +K1 · Pr(z < t|v = u).

The conditioning variable v now has two dimensions and we make this explicit by defining the vectors v := (v w1)′

and u := (u ω1)′ and rewriting

E[y(t)|v = u,w1 = ω1] ≤ E[y|v = u,w1 = ω1, z ≥ t] · Pr(z ≥ t|v = u,w1 = ω1) . . .

+K1 · Pr(z < t|v = u,w1 = ω1).

The last inequality holds for all ordered pairs (u, ω1) ∈ (U,W1). By the law of total probability we can now expand

E[y(t)|v = u,w1 = ω1] ≤

E[y|v = u,w1 = ω1, z ≥ t, E = 1] · Pr(z ≥ t, E = 1|v = u,w1 = ω1) . . .

+ E[y|v = u,w1 = ω1, z ≥ t, E = 0] · Pr(z ≥ t, E = 0|v = u,w1 = ω1) . . .

+K1 · Pr(z < t|v = u,w1 = ω1).
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The newly introduced conditioning variable E is a labor force participation dummy which takes on value 1 if the person

is working and 0 if the person is not working (a rigorous definition of what counts as working is part of the data section).

The main identification problem is created by the term E[y|v = u,w1 = ω1, z ≥ t, E = 0] which cannot be estimated from

the data. There are two crude ways of circumventing this counterfactual expectation. A bounded support assumption in

the spirit of Manski’s worst–case bounds would solve this problem via E[y|v = u,w1 = ω1, z ≥ t, E = 0] ≤ K1. In many

applications this is likely to be uninformative. Alternatively, we could assume positive selection into work, for example:

E[y|v = u,w1 = ω1, z ≥ t, E = 0] ≤ E[y|v = u,w1 = ω1, z ≥ t, E = 1]. However, as Blundel et al. (2007) point out there

is no good reason to assume this.

A weaker set of assumptions is centered around the variable w1 which we restrict to be binary. In the case of binary w1

we can integrate out to obtain

E[y(t)|v = u] ≤

Pr(w1 = 0|v)

„
E[y|v = u,w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, E = 1|v = u,w1 = 0) . . .

+ E[y|v = u,w1 = 0, z ≥ t, E = 0] · Pr(z ≥ t, E = 0|v = u,w1 = 0) . . .

+K1 · Pr(z < t|v = u,w1 = 0)

«
. . .

+ Pr(w1 = 1|v)

„
E[y|v = u,w1 = 1, z ≥ t, E = 1] · Pr(z ≥ t, E = 1|v = u,w1 = 1) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 0] · Pr(z ≥ t, E = 0|v = u,w1 = 1) . . .

+K1 · Pr(z < t|v = u,w1 = 1)

«
=: RHS.

We get

RHS = E[y|v = u,w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 0, E = 1|v = u) . . .

+ E[y|v = u,w1 = 0, z ≥ t, E = 0] · Pr(z ≥ t, w1 = 0, E = 0|v = u) . . .

+K1 · Pr(z < t, w1 = 0|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 1, E = 1|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 0] · Pr(z ≥ t, w1 = 1, E = 0|v = u) . . .

+K1 · Pr(z < t, w1 = 1|v = u)

= E[y|v = u,w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 0, E = 1|v = u) . . .

+ E[y|v = u,w1 = 0, z ≥ t, E = 0] · Pr(z ≥ t, w1 = 0, E = 0|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 1, E = 1|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 0] · Pr(z ≥ t, w1 = 1, E = 0|v = u) . . .

+K1 · Pr(z < t|v = u).(C.1)

Plugging Assumption 3 into equation (C.1) gives

RHS = E[y|v = u,w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 0, E = 1|v = u) . . .

+ E[y|v = u,w1 = 0, z ≥ t, E = 0] · Pr(z ≥ t, w1 = 0, E = 0|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 1, E = 1|v = u) . . .

+K1 · Pr(z < t|v = u).
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Next, using Assumption 4 in the last equation yields

E[y(t)|v = u] ≤

E[y|v = u,w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 0, E = 1|v = u) . . .

+ E[y|v = u,w1 = 1, z ≥ t, E = 1] . . .

×
„

Pr(z ≥ t, w1 = 0, E = 0|v = u) + Pr(z ≥ t, w1 = 1, E = 1|v = u)

«
. . .

+K1 · Pr(z < t|v = u).

Introducing the MIV Assumption 7 the upper bound becomes

E[y(t)|v = u] ≤

inf
ũ≥u


E[y|v = ũ, w1 = 0, z ≥ t, E = 1] · Pr(z ≥ t, w1 = 0, E = 1|v = ũ) . . .

+ E[y|v = ũ, w1 = 1, z ≥ t, E = 1] . . .

×
„

Pr(z ≥ t, w1 = 0, E = 0|v = ũ) + Pr(z ≥ t, w1 = 1, E = 1|v = ũ)

«
. . .

+K1 · Pr(z < t|v1 = ũ)

ff
.

Next, applying the MTS Assumption 2 and realizing that v = z we can define three cases around the latent variable t

as follows:

u < t⇒ E[y(t)|z = u] ≤ inf
ũ≥t


E[y|z = ũ, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = ũ, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´ff
u = t⇒ E[y(t)|z = u] ≤ inf

ũ≥t


E[y|z = ũ, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = ũ, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´ff
u > t⇒ E[y(t)|z = u] ≤ inf

ũ≥u


E[y|z = ũ, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = ũ, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´ff
.

Next, note that

u1 ≤ u2 ⇒ E[y|z = u1, w1 = 1, E = 1] :=E[y(u1)|z = u1, w1 = 1, E = 1] (definition)

≤E[y(u2)|z = u1, w1 = 1, E = 1] (by MTR)

≤E[y(u2)|z = u2, w1 = 1, E = 1] (by MTS)

≤E[y|z = u2, w1 = 1, E = 1] (definition).

Therefore,

u < t⇒ E[y(t)|z = u] ≤ E[y|z = t, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = t, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´
u = t⇒ E[y(t)|z = u] ≤ E[y|z = t, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = t, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´
u > t⇒ E[y(t)|z = u] ≤ E[y|z = u,w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = u,w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´
.
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Integrating out over U results in

E[y(t)] ≤
X
u>t

Pr(z = u) ·
„
E[y|z = u,w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = u,w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´«
. . .

+ Pr(z ≤ t) ·
„
E[y|z = t, w1 = 0, E = 1] · Pr(w1 = 0, E = 1) . . .

+ E[y|z = t, w1 = 1, E = 1] ·
`
Pr(w1 = 0, E = 0) + Pr(w1 = 1, E = 1)

´«
.(C.2)

This establishes the upper bound on E[y(t)] in Proposition 3.

C.2. Lower Bound on E[y(s)]

The next step in deriving nonparametric bounds that deal with endogenous sample selection is the MTR lower bound

from equation (B.5). Recall that we obtained as the lower bound

E[y(s)|v = u] ≥ E[y|v = u, z ≤ s] · Pr(z ≤ s|v = u) +K0 · Pr(z > s|v = u).

The conditioning variable v now has two dimensions and we make this explicit by by defining the vectors v := (v w2)′

and u := (u ω2)′ and rewriting

E[y(s)|v = u,w2 = ω2] ≥ E[y|v = u,w2 = ω2, z ≤ s] · Pr(z ≤ s|v = u,w2 = ω2) . . .

+K0 · Pr(z > s|v = u,w2 = ω2).

The last inequality holds for all ordered pairs (u, ω2) ∈ (U,W2). By the law of total probability we can now expand

E[y(s)|v = u,w2 = ω2] ≥

E[y|v = u,w2 = ω2, z ≤ s, E = 1] · Pr(z ≤ s, E = 1|v = u,w2 = ω2) . . .

+ E[y|v = u,w2 = ω2, z ≤ s, E = 0] · Pr(z ≤ s, E = 0|v = u,w2 = ω2) . . .

+K0 · Pr(z > s|v = u,w2 = ω2).

Analogous to the previous subsection, the main identification problem is created by the term E[y|v = u,w2 = ω2, z ≤

s, E = 0] which cannot be estimated from the data. There are two crude ways of circumventing this counterfactual

expectation. A bounded support assumption in the spirit of Manski’s worst–case bounds would solve this problem via

E[y|v = u,w2 = ω2, z ≤ s, E = 0] ≥ K0. In many applications this is likely to be uninformative. Alternatively, we could

assume negative selection into work, for example: E[y|v = u,w2 = ω2, z ≤ s, E = 0] ≥ E[y|v = u,w2 = ω2, z ≤ s, E = 1].

This assumption is very counter–intuitive.

A weaker set of assumptions is centered around the variable w2 which we restrict to be binary. In the case of binary w2

we can integrate out to obtain

E[y(s)|v = u] ≥

Pr(w2 = 0|v)

„
E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, E = 1|v = u,w2 = 0) . . .

+ E[y|v = u,w2 = 0, z ≤ s, E = 0] · Pr(z ≤ s, E = 0|v = u,w2 = 0) . . .

+K0 · Pr(z > s|v = u,w2 = 0)

«
. . .

+ Pr(w2 = 1|v)

„
E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, E = 1|v = u,w2 = 1) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 0] · Pr(z ≤ s, E = 0|v = u,w2 = 1) . . .

+K0 · Pr(z > s|v = u,w2 = 1)

«
=: RHS.
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We get

RHS = E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = u) . . .

+ E[y|v = u,w2 = 0, z ≤ s, E = 0] · Pr(z ≤ s, w2 = 0, E = 0|v = u) . . .

+K0 · Pr(z > s,w2 = 0|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 1, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 0] · Pr(z ≤ s, w2 = 1, E = 0|v = u) . . .

+K0 · Pr(z > s,w2 = 1|v = u)

= E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = u) . . .

+ E[y|v = u,w2 = 0, z ≤ s, E = 0] · Pr(z ≤ s, w2 = 0, E = 0|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 1, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 0] · Pr(z ≤ s, w2 = 1, E = 0|v = u) . . .

+K0 · Pr(z > s|v = u).(C.3)

Plugging Assumption 5 into equation (C.3) gives

E[y(s)|v = u] ≥ E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 1, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 0] · Pr(z ≤ s, E = 0|v = u) . . .

+K0 · Pr(z > s|v = u).

Next, using Assumption 6 in the last equation yields

E[y(s)|v = u] ≥ E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 1, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] · Pr(z ≤ s, E = 0|v = u) . . .

+K0 · Pr(z > s|v = u)

= E[y|v = u,w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = u) . . .

+ E[y|v = u,w2 = 1, z ≤ s, E = 1] . . .

×
„

Pr(z ≤ s, w2 = 1, E = 1|v = u) + Pr(z ≤ s, E = 0|v = u)

«
. . .

+K0 · Pr(z > s|v = u).

Introducing the MIV Assumption 7 the lower bound becomes

E[y(s)|v = u] ≥

sup
ũ≤u


E[y|v = ũ, w2 = 0, z ≤ s, E = 1] · Pr(z ≤ s, w2 = 0, E = 1|v = ũ) . . .

+ E[y|v = ũ, w2 = 1, z ≤ s, E = 1] . . .

×
„

Pr(z ≤ s, w2 = 1, E = 1|v = ũ) + Pr(z ≤ s, E = 0|v = ũ)

«
. . .

+K0 · Pr(z > s|v = ũ)

ff
.

Next, applying the MTS Assumption 2 and realizing that v = z we can define three cases around the latent variable s
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as follows:

u < s⇒ E[y(s)|z = u] ≥ sup
ũ≤u


E[y|z = ũ, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = ũ, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´ff
u = s⇒ E[y(s)|z = u] ≥ sup

ũ≤s


E[y|z = ũ, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = ũ, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´ff
u > s⇒ E[y(s)|z = u] ≥ sup

ũ≤s


E[y|z = ũ, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = ũ, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´ff
.

Next, note that

u1 ≤ u2 ⇒ E[y|z = u1, w2 = 1, E = 1] :=E[y(u1)|z = u1, w2 = 1, E = 1] (definition)

≤E[y(u2)|z = u1, w2 = 1, E = 1] (by MTR)

≤E[y(u2)|z = u2, w2 = 1, E = 1] (by MTS)

≤E[y|z = u2, w2 = 1, E = 1] (definition).

Therefore,

u < s⇒ E[y(s)|z = u] ≥ E[y|z = u,w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = u,w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´
u = s⇒ E[y(s)|z = u] ≥ E[y|z = s, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = s, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´
u > s⇒ E[y(s)|z = u] ≥ E[y|z = s, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = s, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´
.

Integrating out over U results in

E[y(s)] ≥
X
u<s

Pr(z = u) ·
„
E[y|z = u,w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = u,w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´«
. . .

+ Pr(z ≥ s) ·
„
E[y|z = s, w2 = 0, E = 1] · Pr(w2 = 0, E = 1) . . .

+ E[y|z = s, w2 = 1, E = 1] ·
`
Pr(w2 = 1, E = 1) + Pr(E = 0)

´«
.(C.4)

This establishes the lower bound on E[y(t)] in Proposition 3.

C.3. Combining Upper Bound on E[y(t)] with Lower Bound on E[y(s)]

The last step in obtaining the average treatment effect from equation (4.2) in Corollary 4 is to subtract the lower

bound on E[y(s)] in equation (C.4) from the upper bound on E[y(t)] in equation (C.2).
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