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Abstract

This paper considers the problem of a consumer that cares about her health, which
we proxy by deviations from current weight to ideal weight, and derives utility from
eating and disutility from performing physical activity while taking into account the
uncertainty associated with calorie consumption and physical activity. Using U.S.
data, we find that uncertainty regarding the effectiveness of physical activity produces
a larger cautionary response. Moreover, it is harder to learn and is more important to
the agent than the uncertainty regarding the calorie content of food. These results can
help policymakers design more cost effective policies.
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1 Introduction

During the past twenty years there has been a dramatic increase in obesity rates in the

United States.1 According to the Center for Disease Control and Prevention (CDC) the

prevalence of obesity rates almost doubled from about 15% in 1980 to 27% in 1999. This

trend continues to grow with an estimated 66% of Americans being diagnosed as either

∗Corresponding author: Fidel Gonzalez, 232 Smith-Hutson Building, Sam Houston State University, 1821

Avenue I, Huntsville, Tx, 77382, USA., Email: fidel gonzalez@shsu.edu, Ph: (936) 294-4796, Fax: (936) 294-

3488
1The standard definition of obesity is a body mass index or BMI (weight divided by height squared) over

30 kg/m2. BMI is a routinely used indirect measure for body fatness, specifically obesity, in epidemiological
research and is highly correlated with other direct measures like Dual-energy x-ray absorptiometry (DEXA)
for older populations.
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overweight or obese for the period 2003-2004.1 In 2008, only one state (Colorado) had a

prevalence of obesity less than 20%. Thirty-two states had a prevalence equal to or greater

than 25%; six of these states (Alabama, Mississippi, Oklahoma, South Carolina, Tennessee,

and West Virginia) had a prevalence of obesity equal to or greater than 30%.

Individual behaviours, environmental factors, and genetics all contribute to the complex-

ity of the obesity epidemic. Economics can shed light on how people make choices when

improving health outcomes is a main objective. This approach allows rational behaviour

to be brought into focus which can help understand the causes associated with the rise in

obesity.

The role of technological change in modifying individual eating and exercise patterns has

been the main channel used to explain the rise in obesity. In particular, the literature has

explored how technological change caused food prices to fall. Lower food prices increase

the consumption of food, which translates into higher calorie consumption.2 The literature

has also examined how technological change transformed the type of work people perform,

from physically demanding to sedentary jobs, and how affects the time devoted to cooking

activities. The increase in sedentary jobs implies a reduction in calories spent and less cooking

time. These factors further increase the consumption of food away from home which tends

to have more calories.3 Thus, understanding why economic agents make choices that result

in higher obesity rates is crucial in shaping policies to reverse the obesity epidemic.

In this paper we analyse an aspect of the obesity debate that has not been fully explored

by the literature. The role of information on obesity will be considered in light of how choices

regarding net calorie intake are affected by different types of uncertainty. The sources of

uncertainty that an economic agent faces when controlling her weight are biological (how

effective is physical activity in burning calories) and regulation (labelling policies regarding

the calorie content of food away from home). Given such an uncertain environment, the

goal herein is to determine the sources of uncertainty that most reduce the economic welfare

of agents. This in turn, will help identify policy actions, labelling policies or campaigns

promoting exercise, that are more valuable.

Regarding calorie intake uncertainty, in 1994 the National Labelling and Education Act

(NLEA) required manufacturers to include a nutrition information panel on the label of

almost all packaged foods, however this policy did not require any disclosure for foods pur-

chased at restaurants. Refer as food away from home herein. The current NLEA imposed

significant changes in the information about calories and nutrients that manufacturers of

packaged foods must provide to consumers. This change in regulation could affect health
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outcomes. In this spirit, Variyam and Cawley (2006) find that the NLEA labels had a

beneficial impact on health outcomes. The authors find that as a result of the new labels

introduced by the NLEA, the BMI and probability of obesity among white female label users

were significantly lower than they would have been in the absence of the new labels.4

Given that the current NLEA does not require nutrition information for foods away from

home, consumers may increase the chances of misjudging the nutrient content of meals eaten

out, inadvertently consuming more calories.5 This lack of calorie information in foods away

from home is quite relevant to the obesity epidemic since these types of foods represent a

large and increasing share of total food expenditures. Americans spent about 46% of their

total food budget on food away from home in 2002, compared to 27% in 1962. Moreover,

USDA’s food intake surveys show that between 1977-78 and 1994-96, the share of daily

caloric intake from food away from home increased from 18% to 32%. These are important

factors to consider when studying obesity issues and motivates our work.

With respect to the biological uncertainty, the amount of calories spent while exercis-

ing varies depending on the activity undertaken, the intensity level and individual specific

characteristics. The two different sources of uncertainty we consider in this paper can yield

significant different calorie expenditures across activities and intensity levels. The goal of

this paper is to determine which source of uncertainty has the greater impact.

The analytical framework we consider is based on a representative consumer that cares

about her health, which we proxy by minimizing the deviations from what is considered a

healthy weight and her actual weight, and derives utility from eating and disutility from ex-

ercising.6 We analyse a modified version of the traditional Linear Quadratic Tracking model

with one control and two state variables while facing two different sources of uncertainty.

Thus, in order to maximize utility, the representative agent chooses: the amount of exercise

and calories to consume, which are the controls of the problem. Finally, a situation where

the agent can learn something regarding the underlying sources of uncertainty is considered.

The model is calibrated to U.S. data.

In this paper we find that biological uncertainty produces a larger cautionary reaction in

physical activity and food consumption than uncertainty due to regulation. Thus, our results

suggest that it may be more beneficial to implement policy that provides more information

regarding the amount of calorie expenditure from physical activity rather than a labelling

policy for foods away from home. In terms of welfare, eliminating small levels of biological

uncertainty represents a utility gain equivalent to 9% more food intake or 36% less exercise.

Similarly, eliminating small degrees of calorie intake uncertainty represents a utility gain
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equal to 8% more food intake or 35% less physical activity. These results provide estimates

that reflect the willingness of the representative agent to pay to implement policies that

reduce uncertainty.

When learning is introduced into this proposed framework, our results show that the

representative agent obtains higher welfare when learning about biological uncertainty than

when learning about calorie intake. However, learning about calorie intake is easier. These

results suggest that information policies regarding calories burnt during physical activity

may be more useful and valued by consumers than a labelling policy.

The following section presents a formal model of weight control, the analytical solution

and the calibration of the parameters. Section III calibrates the parameters in the model.

Section IV provides the optimal response to changes in each type of uncertainty. Section V

analyses the cost of the different types of uncertainty while Section VI incorporates learning

into the framework. Finally, Section VII offers some concluding remarks.

2 A Formal Framework

While genes are important in determining a person’s susceptibility to weight gain, from an

accounting point of view, people gain weight if calories consumed are greater than calories

expended. Thus, being overweight is a result of energy imbalance for a given period of time.

Body weight is measured in pounds and evolves according to the following transition

equation:

xk+1 = xk − γBMRk + γck (1)

where xk denotes actual weight in period k, BMR is the basal metabolic rate, which rep-

resents the amount of calories used in supporting the essential human activities, such as

breathing and heart movements, and ck is the net added calories in period k. Finally, the

parameter γ is a conversion factor that translates calories into pounds.

Following Ladkawalla and Philipson (2003), we assume that BMR is a linear function of

the weight which is given by: BMR=λxk + µk; where µ is an additive noise that captures

the approximation error as well as the uncertainty about the relation between the basal

metabolic rate and actual weight, and λ is the fraction of actual weight required for agents

to satisfy the basic metabolic functions. Hence, Eqn. (1) can be written as follows:

xk+1 = αxk + γck − γµk; (2)

where α ≡ (1−γλ) ∈ (0, 1) denotes the effective fraction of weight an individual carries over
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from the previous period. Moreover, net calorie intake, ck, can be defined as follows:

ck = πZk − Ek; (3)

where Zk is the gross intake of calories through food consumption during period k, π∈(0, 1)

represents the fraction of calories consumed during digestion and Ek is the amount of calories

spent during physical activity. Following Cutler, Glaeser and Shapiro (2003), Ek is a function

of weight and amount of time devoted to physical activity, which is given by:

Ek = τ〈x〉uk + ψk; (4)

where 〈x〉 is the average weight of the agent, uk is the number of hours of physical activity,

τ measures the average effectiveness of physical activity in burning calories and ψk is the

error term that captures the non-linearities between weight and physical activity as well as

any uncertainty.

Finally, we assume that there is some measurement error when accounting for the actual

amount of calories consumed.7 In particular, we define Zk as the actual amount of calories

consumed and Fk as the assumed amount of calories consumed. The following equation

shows their relationship:

Zk = HFk + θk (5)

where H is the measurement parameter and θk denotes the measurement error. The pa-

rameter H is unknown to the consumer. Hence, H and θk represent the uncertainty that is

related and unrelated to the actual amount of calorie content of food, respectively. Eqn. (5)

explicitly reflects the fact that the agent imperfectly accounts the total amount of calories

consumed. Substituting Eqns. (3)-(5) into Eqn. (2), we obtain the following transition

equation:

xk+1 = αxk + βuk + φFk + εk (6)

where β ≡−γτ〈x〉, φ ≡ γπH and εk ≡γπθk − γ(µ + ψ).

An important feature that has not been fully explored so far in the literature is the role

of uncertainty on weight control. In order to do so, we let β and φ be stochastic to consider

the biological and labelling sources of uncertainty, respectively. This approach allows clear

identification of the underlying uncertain parameters of the model, τ in β (in the case of

burning calories), and H in φ (in the case of consuming calories) which allows for the study

of their impact on the eating and physical activity decision of agents.8 These two different

sources of uncertainty can potentially yield different calorie expenditures across activities.
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The goal of this paper is to determine which source of uncertainty has the greater impact

on welfare.

Given the evolution of body weight, the problem of a representative consumer that cares

about her health and derives utility from eating and disutility from performing physical ac-

tivity while taking into account net calorie uncertainty will now be considered. In particular,

the consumer problem can be expressed as minimizing the difference between the observed

and desired weight, which is a proxy for health, as well as maximizing the utility gains from

eating and disutility from exercising subject to the transition weight equation. The rep-

resentative agent chooses a strictly positive sequence of exercise and calories, {uk, Fk}N−1
k=0

knowing the mean and variance of the stochastic terms, when making her net calorie decision.

Moreover, since the Riccati equations for the Linear Quadratic Problem emerges from the

first-order conditions alone, then this problem can also be expressed as finding the controls

{uk, Fk}N−1
k=0 that minimize the objective function J of the form:

min
{uk,Fk}N−1

k=0

J = E

{
δN WN

2
[xN − x#

N ]2 +
N−1∑

k=0

δk
{Wk

2
[xk − x#

k ]2 + aF 2
k + b[D − uk]

2
}}

(7)

subject to

xk+1 = αxk + βuk + φFk + εk (8)

ε ∼ (0, σ) , β ∼ (〈β〉, σβ) , φ ∼ (〈φ〉, σφ) ;

where x#
k is the desired weight, Wk represents the penalty matrices for period k for deviations

between the actual and desired weight, and δ denotes the discount factor. a and b are

positive constants that denote the relative importance of the utility gains from eating food

and disutility from exercising, respectively, and D represents the total number of minutes

available to exercise. Note that Wk also denotes the importance of good health relative to

food consumption and exercise. The initial condition x0 is given and represents the initial

weight of the agent. Finally, since xk cannot take negative values, the distribution of the

uncertain parameters and the additive noise are restricted to be non-asymptotic.

2.1 Analytical Solution.

The solution to representative agent’s problem, Eqns. (7) and (8), is given by the following

feedback rule:9 (
uk

Fk

)
= Gkxk + gk (9)
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where Gk and gk are the feedback matrices given by the following equations:

Gk =

(
Guk

GFk

)
= − 1

det

(
α〈β〉kk+1(δkk+1σ

2
φ + a)

α〈φ〉kk+1(δkk+1σ
2
β + b)

)
(10)

gk =

(
guk

gFk

)
= − 1

det

(
〈β〉ρk+1(a + δkk+1σ

2
φ)− 2bD(a + δkk+1(σ

2
φ + 〈φ〉2)

〈φ〉ρk+1(b + δkk+1σ
2
β) + 2δbD〈β〉〈φ〉kk+1

)
(11)

where 〈β〉 and 〈φ〉 are the expected values of β and φ, kk+1 and ρk+1 are the corresponding

Riccati matrices of the control problem and det is the determinant of the following matrix.

Θ =

[
δkk+1[σ

2
β + 〈β〉2] + b δkk+1〈β〉〈φ〉

δkk+1〈β〉〈φ〉 δkk+1[σ
2
φ + 〈φ〉2] + a

]

which is part of the solution of Gk and gk. The analytical solution to the Riccati matrices,

kk+1 and ρk+1, are shown in Appendix A and the value of the determinant is given by the

following expression:

det = δkk+1{δkk+1(σ
2
βσ2

φ + σ2
β〈φ〉2 + σ2

φ〈β〉2) + (σ2
β + 〈β〉2)a + (σ2

φ + 〈φ〉2)b}+ ba. (12)

The complexity of the analytical solution does not allow us to make conclusive predic-

tions regarding the optimal decisions since they depend on underlying parameter values of

the model. Thus, in order to have sharper predictions regarding the optimal strategy for

representative consumer the model needs to be parameterized.

3 Calibration of the Model

We calibrate the model by matching the observables derived from the model to the corre-

sponding U.S. data counterparts. Hence, the number of calories per pound of weight is 3,500,

which implies γ = 1/3500 = 0.0002857.

We simplify the calibration by normalizing the “nutritional” parameters and set H = 1.

Regarding net calories, Burke and Heiland (2004) report values of π=0.9, λ=3.19 and µ=844.

This allows us to compute φ=0.0002571, α=0.999089 and BMR=1450.8. Moreover, we

assume the traditional discount rate of 3% per year which implies the following daily discount

factor: δ=exp(−0.03/365)=0.999918. Thus, in our model k represents one day and N=365.10

Metabolic differences between males and females exist. Thus, given the information

available we decide to calibrate our model to a representative female. The average weight of

a woman in the U.S. in 2004 was 164 pounds according to the CDC. This weight is used as

the initial value of the control variable and 〈x〉 in Eqn. (4). Dong, Block and Mandel (2004)
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report an average energy expenditure of 37.8 calories per day per kilogram for women in

the U.S. According to the average weight of 164 pounds, this corresponds to a total energy

expenditure of 2,812 calories per day. Nevertheless, this last estimate includes the energy

expenditure through the BMR. In order to calibrate τ〈x〉 we subtract the BMR to the

total energy expenditure and divide it by the total number of minutes in a day. Hence, we

obtain τ〈x〉 = 0.94527778 which implies that β=−0.0002700794.

The desired weight target in pounds assumes a BMI of 22, which is the mean of what

is considered healthy. Given that the average height of women is 5 feet and 4 inches, the

resulting target weight is then 128 pounds. That is, a weight loss of 36 pounds or 22% in

a year. A linear path is set for the desired weight from 164 to 128 in a year. This implies

that the individual looses about 0.0987 pounds per day or 0.7 pounds per week. This level

of weight loss is below the maximum safe value of two pounds per week, according to the

Food an Drug Administration.11

Since there are no direct estimates of a and b, we calibrate them so that the initial

values of calorie intake and energy expenditure match the values reported or implied in

the literature. We find that a=7.5E-07 and b=9.8E-07, in the absence of any uncertainty,

produce an initial value of Fk equal to 1747 calories per day and an energy expenditure above

BMR of 1476 calories per day.12 The energy expenditure for the initial condition of 1476

calories per day is consistent with the calorie expenditure of physical activity above BMR

implied by the values reported on Burke and Heiland (2004) and Dong, Block and Mandel

(2004).

All parameter values used in our numerical examples are given by Table 1.

Table 1: Parameter Values
δ 0.9988 α 0.99894

a 8.1E-07 β -0.00027

b 1.1E-06 φ 0.000257

D 1440 x0 164

Finally, the penalty matrices Wk represent the value of health to the individual relative to

consuming food and exercising. Moreover, the evolution over time of these matrices can also

be interpreted as some sort of commitment that the individual has toward losing weight and

improving her health. In this paper, we confine the analysis to cases where the individual is

committed to losing weight.13

We choose values of Wk that produce an optimal weight close to the desired level and

at the same time, rule out unhealthy or unfeasible levels of calorie intake and exercise,

8



particularly in the first and last period. That is, we dismiss values of Wk that generate

trajectories where the weight loss occurs in the first and last couple of days by starvation

and/or amounts of exercise that are not feasible. Hence, we first choose a value of WN that

does not produce an unhealthy decrease of calorie intake and an unattainable increase in

exercise in the last period. The rest of the trajectory is obtained by smoothly decreasing WN

until W0. The increasing value of Wk as k → N reflects the commitment of the individual

to achieve the desired weight loss. Thus, we use the following sequence for the penalties:

Wk = 40 ∗ (k + 1) for k = 0, ..., N .

The difference in the magnitude of Wk with respect to a and b is explained by the units

of the variables that each of them multiplies in the utility function. The values of Wk are

much larger than a and b. However, the deviations between the actual and the target weight

are close to zero, whereas the values of calorie consumption (Fk) and minutes of exercise over

1440 (D− uk) are significantly greater than zero. Expanding the quadratic term on exercise

in Eqn. (7) we obtain that in terms of utility the effect of exercise is given by −2bDuk + bu2
k.

Thus, using the suggested parameter values, the effect of calorie consumption on utility in

steady state for the certainty equivalence case is 31% greater than the effect of physical

activity.14

4 Results

Given our calibration strategy, we can interpret our problem as having a representative agent

in the year 2004 that tries to control her weight over one year by choosing the amount of

food and the time devoted to physical activities.

In this section we explore the role of different sources of uncertainty. Our benchmark

model considers the case when there is no uncertainty in β or φ; that is, the certainty

equivalence solution (CE). We then compare how the different sources of uncertainty affect

the optimal behaviour of the representative agent. Moreover, since the additive noise does

not impact the optimal policy rule (as shown in Section 2.1) and its mean value is zero, we

set it equal to zero in the numerical results with exception to the solution to the Kalman

filter in Section 5.

To simplify notation throughout the rest of the paper we normalize uk by the total number

of minutes in a day, un = uk/1440. Hence, un
k represents the amount of physical activity

with respect to a maximum of physical activity. Thus, changes in un
k represent changes in

either intensity or time devoted to physical activity or both.
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4.1 Certainty Equivalence Results.

In this section, we consider a situation where the expected values of the state variables of the

economy are given and the optimal policy is independent of all higher moments. That is, in

the certainty equivalence case we consider an environment where the underlying variance of

the uncertain processes do not matter; i.e, we set σ2
β= σ2

φ= 0. Hence, the values of physical

activity and food intake in the certainty equivalence results are defined as follows:

un∗
k = (uk|σ2

β=σ2
φ=0)/1440 F ∗

k = Fk|σ2
β=σ2

φ=0 x∗k = xk|σ2
β=σ2

φ=0 (13)

Figure 1 depicts the optimal trajectory of weight, normalized physical activity and gross

calories intake through food consumption in this environment.

Figure 1: Certainty Equivalence Weight, Calorie intake and Physical Activity
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Figure 1 shows that physical activity increases while food consumption decreases. The

combination of lower calorie intake and higher physical activity allows the agent to reach the

desired weight daily.

Since our representative agent is far from her ideal body weight, it is optimal to lower

her calorie intake and increase her physical activity. In particular, the disutility she derives

from actually “being” unhealthy is much larger than the disutility she obtains by eating

fewer calories and exercising more. Thus, the agent increases daily physical activity by 3.6%

during the entire year which corresponds to an increase in daily calories burnt of 52.6 from

the first to the last day of the year. On the other hand, the amount of daily calorie intake

decreases monotonically 69.2 calories or 4.1% from beginning to end.

While changes in both physical activity and calorie intake achieve the desired weight and

maximize overall utility, a more substantial adjustment comes from the calorie intake when

the initial condition is far from her ideal weight. As our results indicate, the representative
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agent has an asymmetric response in her optimal decisions when higher moments of the un-

derlying uncertainty are ignored. In particular, the representative agent decides to consume

less calories rather than exercise more in order to achieve her ideal weight.

The next section examines the robustness of these results once higher moments of the

different sources of uncertainty are considered.

4.2 Multiplicative Uncertainty Results.

In this subsection the role of multiplicative uncertainty is considered. In particular, we ex-

amine how different types of uncertainty due to the current labelling policies, φ, or biological,

β, impact the optimal level of physical activity and food consumption of the representative

consumer. We note than when there is uncertainty in the environment the overall utility of

the agent will decrease relative to the CE solution.

We introduce the importance of higher moments in the different sources of uncertainty

by finding the appropriate variance values for φ and β so that we obtain 1%, 0.95% and

0.90% for the coefficient of variation (CV ). Since β is negative we define CV as follows:

CVβ = σβ/|β| and CVφ = σφ/|φ|. (14)

By forcing the CV to a certain value across both types of uncertainty, the impact on

welfare with similar magnitudes of uncertainty due to labelling policies or biological factors

can be compared.

4.2.1 Multiplicative Uncertainty in Calorie Intake.

In this subsection we study the effects of higher uncertainty in the calorie intake, which is

captured by φ, on the optimal response of the representative agent. Relative to the CE

this new environment attempts to capture the effects of the current NLEA that do not

require nutritional information for foods away from home. Thus consumers may misjudge

the nutrient content of meals eaten out, inadvertently consuming more calories.

In order to perform this experiment, we set σ2
β=0 and choose values of σφ that yield a

CVφ of 1%, 0.95% and 0.90%.15 The resulting values for optimal food consumption and

physical activity are given by Fφ,k and uφ,k:

un
φ,k = un

k |σ2
φ>0,σ2

β=0 Fφ,k = Fk|σ2
φ>0,σ2

β=0 (15)

To quantify the impact of the different sources of uncertainty, we compute the percentage

change in un
φ,k, Fφ,k and xφ,k relative to the corresponding values in certainty equivalence
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case. Thus we define the following relative measures:

u′φ,k =
(
un

φ,k/u
n,∗
k − 1

)
F ′

φ,k =
(
Fφ,k/F

∗
k − 1

)
(16)

A positive value of u′φ,k or F ′
φ,k implies that higher uncertainty in φ increases the amount

of physical activity or food intake. Therefore, in this case, higher uncertainty in the calorie

content of food would produce an aggressive response of physical activity and food intake.

Similarly, negative values would imply a precautionary response relative to the CE case.

The results of our experiments are summarized in Figure 2 which displays the values for

u′φ,k, and F ′
φ,k when CVφ = 1%, 0.95% and 0.90%. Since we do not find any significant effect

in the optimal weight with respect to its CE value, we do not report it in Figure 2.

Figure 2: Effect of σ2
φ on physical activity and food consumption.
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Figure 2 shows that u′φ,k <0 and F ′
φ,k <0 for all the three degrees of uncertainty con-

sidered. Moreover, the decrease in both variables is monotone throughout the year. When

CV = 1%, physical activity and calorie intake at the last day of the year decrease by ap-

proximately 14% in relation to the case when there is no uncertainty. Physical activity and

calorie intake at the end of the year is 11% and 17% lower respectively, than in the first

period.

In addition, Figure 2 indicates that higher degrees of uncertainty in φ produce higher

reductions on the level of physical activity and food intake. This cautionary response is

driven by the risk aversion of the representative agent. These results echo the traditional

cautionary results of Brainard (1967). Note that relative to the CE, when there is uncertainty

in the calorie content of food, the agent faces a higher variance in her body weight. A risk
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averse agent will reduce food consumption to decrease the variance in body weight, the

precautionary response. However, this decrease in calorie consumption has also the effect of

reducing the amount of physical activity required to achieve the same weight target. Notice

that by lowering physical activity, the individual can attain the desired weight and also

decrease the disutility from exercising.

Finally, we note that even though the source of uncertainty arises from the calorie content

of food, the representative agent has almost symmetric responses, in terms of magnitude,

for calorie consumption and physical activity. This experiment then suggests that a compre-

hensive labelling policy that removes most of the nutritional uncertainty of food away from

home, would result in less calories consumed and an increase in physical activity relative to

the full information and certain case. In other words, dieting would be more effective which

in turn would provide more incentives to exercise in order to achieve the healthy weight.

4.2.2 Multiplicative Uncertainty in Biological Factors.

In order to analyse the biological uncertainty we set σ2
β 6=0 and σ2

φ=0. We then follow a

similar procedure as in the previous case and examine the effect on optimal physical activity,

food consumption and weight.

Figure 3 shows the results for u′β,k and F ′
β,k when CVβ = 1%, 0.95% and 0.90%. Again,

since we find that the optimal weight does not change with respect to its CE solution, we

do not report it in Figure 3.

Figure 3: Effect of σ2
β on physical activity and food consumption.
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In general, the results in Figure 3 for higher uncertainty in β are similar to those of
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the uncertainty stemming from φ; i.e, u′β,k<0 and F ′
β,k<0. Thus, higher uncertainty in the

effectiveness of physical activity to burn calories reduces the amount of food consumption

and physical activity. In particular, when CV = 1% the difference in physical activity with

respect to the corresponding values in the certainty equivalence case increases close to zero

in the first period to 16% at the end of the year. Similarly, food consumption decreases from

almost zero in the first period to 15% in the last period with respect to the corresponding

values in the certainty equivalence case. Thus, relative to the beginning of the year, calorie

consumption and physical activity in the last period are 19% and 12% lower, respectively.

This precautionary response of physical activity and food consumption is also a result

of the risk aversion of the representative agent. Higher uncertainty in β makes the effect of

physical activity on the weight more uncertain. A risk averse agent will lower the amount of

physical activity to reduce the variance of the weight. Given that the representative agent

is experiencing a large disutility from being away from her ideal body weight, lower physical

activity requires lower food consumption. The decrease in physical activity and achieving

the desired weight increases utility, whereas higher food consumption reduces utility.

Summarizing, when the source of uncertainty arises from biological factors, the represen-

tative agent has asymmetric responses, in terms of magnitude, for calorie consumption and

physical activity. In particular, when faced with biological uncertainty the representative

agent has a much stronger response to physical activity than in her calorie intake decision.

From the two previous experiments we can conclude that the two different sources of

uncertainty are not symmetric. Decisions regarding the reduction in calorie consumption

and an increase in exercise crucially depend not only on the magnitude of that uncertainty

but also its source.

4.3 Relative Response to Multiplicative Uncertainty.

In this subsection, we further formalize the results of the preceding sections. In particular,

we identify what type of multiplicative uncertainty biological (β) or due to labelling laws

(φ) produces a larger precautionary response. This exercise puts forward policy actions,

labelling policies or campaigns promoting exercise, that may increase welfare.

In order to identify possible actions, we compare the magnitudes of the precautionary

responses to changes in σ2
β and σ2

φ for the same level of uncertainty (i.e. same coefficient of

variation). To simplify exposition we define the following relative measures:

u◦k = (uβ,k/uφ,k − 1) F ◦
k = (Fβ,k/Fφ,k − 1) where CVβ = CVφ (17)
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If a variable in Eqn. (17) is positive (negative) then the response is more (less) cautionary

to changes in σ2
β than to σ2

φ (for the same relative level of uncertainty in β and φ). This

implies that for such a variable the uncertainty in β is more (less) important, in terms of the

reaction, than the uncertainty in φ.

Figure 4 shows u◦k and F ◦
k for CVβ = CVφ = 1%, 0.95% and 0.90%. The results in Figure

4 are the implied ratios of the results shown in Figure 2 and 3. Since the optimal weight is

almost unchanged when β and φ are uncertain, we do not include it in Figure 4.

Figure 4: Relative response of uk and Fk to uncertainty in β and φ.
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Figure 4 shows that the physical activity and food consumption responses are more

cautious when the source of uncertainty is due to biological factors rather than labelling.

That is, uncertainty about the effectiveness of physical activity to burn calories produces a

larger cautionary reaction in physical activity and food consumption than the uncertainty

about the calorie content of food.

Figure 4 also shows that the difference in physical activity and food consumption in the

case of CVβ = 1% compared to CVφ = 1% is almost zero in the first period. This difference

increases at a decreasing rate until the last period where uβ,k is 1.5% lower than uk,φ and

Fβ,k is 1.4% lower than Fφ,k. The two lines above the case where CVβ = CVφ = 1% indicate

two interesting results. First, the difference in the amount of physical activity and food

consumption increase with higher degrees of uncertainty. Second, the disparity between the

different degrees of uncertainty is lower for the initial periods than for the later periods.

These results highlight the fact that the agent responds asymmetrically to the different

sources of uncertainty. This in turn suggests that it may be more beneficial to have a policy

that provides more information regarding the amount of calorie expenditure when exercising
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than a labelling policy for foods away from home. In order to precisely determine which

type of policy would be more valued for consumers it is important to know how much agents

are willing to give up in terms of calorie consumption when faced with different sources of

uncertainty.

5 Cost of Uncertainty

Taking into account the resources required to reduce uncertainty, it is important to estimate

the benefit of reducing the different sources of uncertainty in terms of food consumption or

physical activity. This consideration allows policy makers to compare the benefits and costs

of potential information policies.

In this section, we obtain the cost of multiplicative uncertainty for the consumer in

terms of food consumption and physical activity. In particular, we compute the additional

amount of calorie intake the individual has to consume, in the presence of multiplicative

uncertainty, to achieve the same level of utility as in the case where there is no uncertainty

(i.e. the certainty equivalence case). Similarly, in a separate experiment, we compute the

additional amount of physical activity that the individual has to undertake in the presence of

multiplicative uncertainty to achieve the same level of utility as in the certainty equivalence

case.

5.1 Cost of Uncertainty in Calorie Intake.

In this subsection we want to compute how much it would cost to have a comprehensive

labelling policy. In other words, what would be the cost to expand the current NLEA so that

nutritional information requirements for foods away from home are also included. Rather

than computing this cost in terms of welfare we compute it in terms of calories consumed or

burnt through exercise.

In order to do so, we undertake the following steps. First, we obtain the utility level for

each period in the certainty equivalence case, (Jce,k). Second, we introduce uncertainty in φ

and obtain the corresponding level of weight (xφ,k), physical activity (uφ,k) and calorie intake

(Fφ,k) for each period. Third, we set the utility in the certainty equivalence equal to the

expression of the utility in the multiplicative case plus the percentage change in either the

calorie intake or physical activity. The expression where the physical activity is the variable

allowed to adjust is the following:

Jce,k = βk(0.5(xφ,k − x#
k )2Wk + aF 2

φ,k + b(D − uφ,k(1−∆uφ,k))
2) (18)
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where ∆uφ,k is the percentage change in physical exercise that makes the utility when φ is

uncertain equal to the utility in the certainty equivalence case. Given that multiplicative

uncertainty reduces utility and physical activity generates disutility, the latter has to decrease

to increase utility, i.e. ∆uφ,k < 0. The expression where food consumption changes to equate

utility is given by the following:

Jce,k = βk(0.5(xφ,k − x#
k )2Wk + a(Fφ,k(1−∆Fφ,k))

2 + b(D − uφ,k)
2) (19)

where ∆Fφ,k is the percentage change in calorie intake that makes the utility when φ is

uncertain equal to the utility in the certainty equivalence case. Given that multiplicative

uncertainty reduces utility, food consumption has to increase to equate utilities, i.e. ∆Fφ,k >

0. Finally, we solve ∆uφ,k and ∆Fφ,k from Eqns. (18) and (19) which yield

∆uφ,k = D/uφ,k −
(
Jce,k/bβ

ku2
φ,k − (0.5(xφ,k − x#

k )2Wk + aF 2
φ,k)/bu

2
φ,k

)0.5 − 1 (20)

∆Fφ,k =
(
Jce,k/aβkF 2

φ,k − (0.5(xφ,k − x#
k )2Wk + b(D − uφ,k)

2)/aF 2
φ,k

)0.5 − 1. (21)

Thus, the uncertainty in biological factors costs the individual in terms of welfare the

equivalent of ∆uφ,k in physical activity or ∆Fφ,k in food consumption. We introduce uncer-

tainty levels in φ equal to CVφ = 1%, 0.9%, 0.95% and compute ∆uφ,k given by Eqn. (20). In

a separate experiment, we introduce the same levels of uncertainty in φ and compute ∆Fφ,k

given by Eqn. (21). The results are shown in Figure 5.

Figure 5: Percentage Change in uφ,k and Fφ,k.

(each graph corresponds to separate experiments)
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The left panel of Figure 5 shows the results when physical activity adjusts and food

consumption remains at the CE level. The right panel displays the results when food con-

sumption is the variable allowed to change and physical activity remains at the same value

as in the CE case.

The left panel of Figure 5 displays three important results. First, as expected the indi-

vidual needs to decrease physical activity to achieve the same level of utility as in the CE.

Second, higher levels of uncertainty in φ produce larger decreases in physical activity. Third,

the percentage change in physical activity decreases at a decreasing rate from the first to

the last day of the year. That is, when CVφ = 1% the individual is willing to exercise 8%

less in the first period in order to obtain the same level of utility as in the CE. In contrast,

the agent is willing to undertake around 50% less physical activity in the last period.

Similarly, the right panel of Figure 5 also highlights three crucial findings. First, in

contrast with physical activity, the representative agent increases calorie intake to obtain

the same level of utility when φ is uncertain as in the no-uncertainty case. Second, higher

levels of uncertainty in φ generate large increases in the cost of uncertainty in terms of

food consumption. Third, the amount of food consumption increases at a constant rate

throughout the year. That is, in the first period the agent does not increase food consumption

by a large amount. However, in the last period the agent increases food consumption by

about 15% when CVφ = 1%.

The first period shows an interesting contrast between food consumption and physical

activity. When physical activity is the variable allowed to vary higher uncertainty produces

an immediate change in this variable (around 8%). However, when food consumption is the

variable allowed to vary, the change in the first period is almost negligible.

This results show that, in terms of consumption, eliminating an uncertainty level of

CVφ = 1% is equivalent in terms of utility to an average 35% less physical activity or an

average increase in food consumption of around 8%. An agent is willing to reduce physical

activity by an average of 35% to obtain the same level of utility as in the certainty equivalence

case. This implies that the cost of the uncertainty in this case is the equivalent to 35% more

exercise as in the multiplicative uncertainty case. The equivalent cost in food consumption

is an increase of almost 8%.

The numerical results in this subsection indicate that in terms of physical activity and

food consumption the cost of misinformation about the precise calorie content of food can

be significant, especially in the last periods. Therefore, policies aimed to reduce this type of

uncertainty will certainly provide a benefit to the agent.
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5.2 Cost of Uncertainty in Biological Factors.

In the case of multiplicative uncertainty in β, we follow a similar procedure as in the case of

φ. We introduce uncertainty in β that corresponds CVβ = 1%, 0.95%, 0.90% and compute

the corresponding values of ∆uβ,k and ∆Fβ,k. The results are shown in Figure 6.

Figure 6: Percentage Change in uβ,k and Fβ,k.

(each graph corresponds to separate experiments)
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The left panel in Figure 6 shows what happens when physical activity adjusts and food

consumption remains at the CE level. On the other hand, the right panel displays the results

when food consumption is the variable allowed to change and physical activity remains at

the CE level.

Figure 6 shows similar patterns to those found when φ is uncertain. The left panel shows

three main results. First, the amount of physical activity decreases to achieve the same

level of utility as in the CE case. Second, higher degrees of uncertainty in β produce larger

decreases in physical activity. Third, the difference in physical activity in relation to the

corresponding value in the CE case increases from the first to the last period. For example,

at CVβ = 1%, physical activity decreases from 7% in the first day to almost 50% in the last

day of the year.

The right panel in Figure 6 shows also a similar pattern as when φ is uncertain. First,

the consumer increases food consumption relative to its CE value by a negligible amount in

the first periods. This is an important difference with physical activity where this variable

decreases by 7% in the first period. Second, higher degrees of β uncertainty produce larger

changes in food consumption when compared to the CE values. Third, the difference in
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the amount of food consumed relative to the CE value increases throughout the year at a

constant rate.

The results in this section show that, in terms of consumption, eliminating an uncertainty

level of CVβ = 1% is equivalent in terms of utility to an average 36% less physical activity

or an average increase in food consumption of around 9%. An agent is willing to reduce

physical activity by an average of 36% to obtain the same level of utility as in the certainty

equivalence case. This implies that the cost of the uncertainty in this case is the equivalent

to 36% more exercise as in the multiplicative uncertainty case. The equivalent cost in food

consumption is an increase of around 9%.

In order to compare the relative benefits of reducing one source of uncertainty while

keeping the other source fixed, we compute the relative adjustments in terms of calories and

physical activity as seen in Figure 7.

Figure 7: Difference in costs from β and φ (ratio of the previous two figures)

(each graph corresponds to separate experiments)
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Figure 7 shows that ∆uk and ∆Fk increase more when β is uncertain than when φ is the

uncertain variable. Thus, our results suggest that it may be more valuable for the individual

to have a policy that provides more information regarding the benefits of calorie expenditure

when exercising than a labelling policy that require nutritional information for foods away

from home. This phenomena is shown to be the case on the basis that the same amount

of resources are devoted to these two policies. Notice that implicitly here we are assuming

that effectiveness to reduce the uncertainty of these two policies would be the same. We

assume this to be the case as there is no evidence regarding this point. Finally, we note
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that, however, our methodology could easily incorporate the relative effectiveness of these

two different policies when assessing the underlying costs.

6 Learning

In this section we consider the possibility that the representative agent learns about: i) the

true amount of calories consumed in food, and ii) the effectiveness of physical activity to

burn calories. That is, we let the agent improve her knowledge about the true value of β

and φ. The possibility of learning is incorporated by assuming that the learning process of

the agent follows a Kalman filter. This means that new data are collected each time period

and the value of the uncertain parameters is updated. The advantage of the Kalman filter

is that combines all the available information with knowledge about the system to produce

an estimate of the variables that statistically minimizes error, see Maybeck (1979).

The learning procedure under the Kalman filter consists of two parts: prediction and

correction. At each period, the agent arrives with a priori estimate of the variables, uncertain

parameters, and covariances. In the prediction phase the agent uses these a priori values

to predict the value of the variables. The update phase consists of improving the predicted

values using the actual measurements. This generates a posteriori estimates used to generate

the a priori estimates for the following period. In order to isolate the effect of learning about

each parameter, our experiments assume that the agent learns only about one parameter,

either β or φ and perform 1000 monte carlo runs for each experiment. We describe below

the Kalman filter procedure when the agent learns only about β. The procedure when the

agent learns only about φ is obtained by substituting β for φ and Fk for uk.

First, we generate the random vector ε that contains an additive noise for each period. A

different random vector is generated for each monte carlo run. Since, as mentioned in Section

2, the distribution of εk cannot be asymptotic, we assume that εk is uniformly distributed

with support (−0.5, 0.5). The support of εk implies that the highest daily additive shock is

plus/minus half a pound.16 Second, we solve the problem from period k onward as shown

in the analytical solution subsection and obtain the value of the weight and for that period,

xk. Third, we obtain the a priori value for the next period of the weight and the covariance

matrices using the following equations:

xp
k|k−1 = αxp

k−1|k−1 + βk−1|k−1uk−1 + φFk−1 (22)

σ2
x,k|k−1 = uk−1(σ

2
β,k−1|k−1)uk−1 + σ2 (23)

σ2
xβ,k|k−1 = σ2

β,k−1|k−1uk−1 and σ2
β,k|k−1 = σ2

β,k−1|k−1 (24)
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where the superscript p denotes the predicted value of the weight. The subscript k|k − 1

represents the a priori value, that is the value at the beginning of period k. Moreover,

k−1|k−1 is the a posteriori value from previous period.17 Fourth, we correct the estimated

values of the weight, β and σ2
β from the previous step using the following equations:

σ2
β,k|k = σ2

β,k|k−1 − σ2
xβ,k|k−1(σ

2
x,k|k−1)

−1σ2
xβ,k|k−1 (25)

xp
k|k = xp

k|k−1 + (xk − xp
k|k−1) (26)

βk|k = βk|k−1 + [σ2
xβ,k|k−1σ

2
x,k|k−1](xk − xp

k|k−1) (27)

The values of σ2
β,k|k, xp

k|k and βk|k are then used as the initial values for the next period

and this process continues until k = N , upon which time a new monte carlo run can be

started. The prediction part of the Kalman filter is given by Eqns. (22)-(24) whereas the

correction phase is represented by Eqns. (25)-(27).

The Kalman filter procedure outlined above produces a linear, unbiased and minimum

error algorithm, see Maybeck (1979). This generates, at time k, an optimal estimate of the

weight. It is optimal in that the spread of the estimate-error probability density is mini-

mized, see Zhang (1997). The term (xk−xp
k|k−1) in Eqns (26)-(27) is known as the innovation

and represents the difference between the predicted and the actual value of the weight. If

the innovation is zero then x and β are not updated. Another important term is given by

[σ2
xβ,k|k−1σ

2
x,k|k−1] in Eqn. (27). This term is known as the gain and reflects the importance

that is placed in the innovation. Appendix B shows that as variance of the uncertain param-

eter decreases (σ2
β → 0), the importance of the gain in updating the uncertain parameter

decreases and the predicted parameter value is trusted more. Conversely, when the variance

of the additive noise decreases the predicted value is less important and the gain is weighted

more heavily.

In the numerical experiments, we assume the initial variances to be σ2
β = 7.29E− 12 and

σ2
φ = 6.61E − 12 , which correspond to an initial coefficient of variation of 1%. Figure 8

shows the maximum, minimum, average and standard deviation of the uncertain parameters

for each time period and for both experiments.18

The left and right panel of Figure 8 show the maximum, minimum and average value

of β and φ, respectively, for each period over all the monte carlo runs. The shaded areas

represent one standard deviation of the updated parameter value across the monte carlo

runs. Notice that this standard deviation is different from the standard deviation of φ and

β (σβ and σφ) that the agent updates every period.19 In both cases, the average value of

β and φ remain roughly unchanged across time periods. However, the extreme values and
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Figure 8: Summary statistics of the updated values of βk and φk

(each graph corresponds to separate experiments)

Estimated Values of β

days
0 92 183 274 365

−2.73

−2.72

−2.71

−2.7

−2.69

−2.68

−2.67
x 10

−4
Estimated Values of φ

days
0 92 183 274 365

2.54

2.55

2.56

2.57

2.58

2.59

2.6
x 10

−4

the standard deviations across monte carlo runs increase in the later periods. This is not

surprising since the later periods estimates of β and φ are based on the estimates of the earlier

periods which tend to increase their variability across monte carlo runs. Thus, the last period

estimates incorporate learning from previous periods and therefore can be considered as the

final estimates of β and φ. Figure 9 shows the empirical cumulative distribution function

(CDF) across the monte carlo runs for the last period of β and φ.

Figure 9: Last period cumulative density function of βN and φN

(each graph corresponds to separate experiments)
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The CDF on the left panel of Figure 9 shows that the values of βN are concentrated

between -0.000272 and -0.000268. Similarly, the CDF on the left illustrates that the value
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of φN are located mostly between 0.000256 and 0.000258.

We also analyze the importance to the agent of learning about each parameter. In

particular, we determine if learning about φ is better than learning about β. Results from

Section 5 show that uncertainty about φ is more important than uncertainty about β. Thus,

we compare the utility when the agent learns about each parameter. We find that the

utility when agent learns only about φ is higher than the utility when learning only about

β in 72.5% of the 1000 monte carlo runs. Moreover, learning only about β produces higher

average utility and a lower utility variance than when learning only about β.

Finally, we address which type of uncertainty is easier to learn for the agent. One

possible way to measure this is by computing the change in the coefficient of variation of

each parameter. Learning using the Kalman filter allows the agent to update the parameter

estimates as well as their variance. Thus, we compute the new coefficient of variation by

obtaining the average value of the parameters and their standard deviation in the last period

βN , φN , σβ,N and σφ,N . The initial coefficient of variation for β and φ is 1% and we find that

the new coefficient of variation in the last period are 0.97% and 0.96%, respectively. This

indicates that it is easier for the agent to learn about the calorie content for food than about

the calories burnt during physical activity.

These results suggest that the agent values more learning and reducing the uncertainty

of the amount of calories burnt during physical activity. However, this type of uncertainty is

harder to learn than the uncertainty about the calorie content of food. Hence, policymakers

may observe more substantial benefits in developing policies that provide information about

the effectiveness of physical activity to achieve the desired weight.

7 Conclusions

The obesity epidemic in the U.S. of the last twenty years has drawn the attention of academics

and policymakers. In this paper, we develop an analytical model to analyze the effect of

information on weight control. We consider a representative agent model that is initially

overweight and because of health concerns desires to loose weight. In particular, the agent

chooses an amount of exercise and food intake that will minimize deviations between her

actual and healthy target weight, which proxies for health, and derives utility from eating and

disutility from exercising. Moreover, the agent faces uncertainty about the calorie content

of food and the amount of calories burnt during exercise. We also allow the agent to learn

about both types of uncertainty.
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We find that higher uncertainty produces a cautionary response of the representative

agent. Moreover, the agent is more sensitive to changes in the uncertainty of the effectiveness

of exercise to burn calories than variations in the uncertainty of the calorie content of food. In

addition, higher degrees of both types of uncertainty decrease the utility of the representative

agent. Finally, learning about the calories burnt from physical activity was found to be a

more difficult task than learning about calorie intake.

These results suggest that providing more information to households may prove useful in

controlling the obesity epidemic. In particular, it may be more beneficial to have a policy that

provides more information regarding the calorie expenditure when exercising than a labeling

policy that requires nutritional information for foods away from home. Thus, providing

agents with more information about the consequences of exercise may result in lower obesity

rates.

1See the National Health and Nutrition Examination Survey for more information on this issue.
2See Lakdawalla, Philipson and Bhattacharya (2005), Lakdawalla and Posner (2003), Burke and Heiland

(2007), and Cutler, Glaeser and Shapiro (2003) for more on this issue.
3See Lakdawalla, Philipson and Bhattacharya (2005), Lakdawalla and Posner (2003), Burke and Heiland

(2007), and Cutler, Glaeser and Shapiro (2003) and Gomis-Porqueras and Peralta-Alva (2008) for more on
these issues.

4The authors estimate that the total monetary benefit due to lower mortality, reduced medical expendi-
tures, declining absenteeism, and increased productivity associated with this reduction in body weight to be
about $166 billion (1991 dollars) over a 20-year period.

5For example, though savvy consumers may be able to infer that a dessert without a “heart healthy” logo
has more cholesterol or saturated fat than one with the logo, they cannot infer any information about sugar
or calorie content.

6Within the medical literature there is a clear standard regarding a person’s healthy weight according to
gender and age. For adults, a body mass index or (BMI) over 30 is considered obese, between 25 and 29.9 is
considered overweight, between 18.5 and 24.9 is considered healthy and under 18.5 is consider underweight.
This BMI is a measure of body fat that applies to all adults.

7This measurement error captures the self reporting biased typically found whe agents report the amount
of calories consumed through out the day, as reported by the nutrition literature.

8The additive uncertainty in Eqn. (5), θk, is part of the additive noise of the final transition equation
and consequently will not affect the optimal policy rule of the agent.

9 See Kendrick (1981) and Ljungqvist and Sargent (2000) for more on this issue.
10The model can also be calibrated using k as one week and all results will be unchanged. However, the

parameters in this section would need to be adjusted.
11Different desired weight paths can be considered. For example, a constant percentage weight loss of

0.068% per day will achieve the desired weight loss in our problem. In the numerical experiments we choose

25



the linear desired path but the utilization of other nonlinear desired weight paths are possible and the main
results are not affected.

12The value of 1747 calorie intake per day for the initial day is between the values obtained by Cuttler,
Glaesler and Shapiro (2003) of 1658 and 1877 (with an standard error of 23.5) reported by the CDC (2004b).

13We experimented with cases where the individual has a medium a low level of commitment and none of
the main results in this paper change.

14In steady state (0.5Wk[x− x#]2)/(1− δ) = 0, aF 2/(1− δ) = 32536, (−2bDu + bu2)/(1− δ) = −24713,
(bD2)/(1− δ) = 2 and J = 7823.

15We also performed a grid for values of σφ that produce CV ∈ (0, 20%) and the qualitative aspect of the
results are unchanged.

16The assumption of the uniform distribution of εk is not essential as other non-asymptotic distributions
can be considered in this framework.

17In the initial period, Eqns. (22)-(24) are modified in that xp
k−1|k−1 = x0 = 164 and uk−1 is equal to the

value of u0 in the non-learning solution.
18In order to obtain comparable solutions, we use the same additive noise when learning only about β as

when learning only about φ.
19Learning reduces the average variance of β and φ from 7.29E-12 to 6.83E-12 and from 6.61E-12 to

6.10E-12, respectively.
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Appendix A

In this Appendix we show the form of the Riccati equations mentioned in the analytical

solution subsection. Following Kendrick (1981) and Ljungqvist and Sargent (2000) and

substituting the parameters in our problem the solution to the Ricatti equations can be

expressed as follows:

kk = Wk + α2kk+1 − (α2k2
k+1)/(det)

(
δkk+1(〈β〉2σ2

φ + 〈φ〉σ2
β) + a〈β〉2 + b〈φ〉2

)
(A-1)

ρk = αρk+1 −Wkx
#
k − (δ2kk+1)/(det)

(
〈β〉(δkk+1σ

2
φ + a)(〈β〉ρk+1 − 2bDα)

+α〈φ〉2ρk+1(δkk+1σ
2
β + b)

)
(A-2)

where det is shown in Eqn. (12) and it is given by the following

det = δkk+1{δkk+1(σ
2
βσ2

φ + σ2
β〈φ〉2 + σ2

φ〈β〉2) + (σ2
β + 〈β〉2)a + (σ2

φ + 〈φ〉2)b}+ ba. (A-3)

with kN = WN and ρN = −WNx#
N .

Appendix B

In this section we show some of the characteristics of the Kalman filter mentioned in Section 6.

Substituting Eqns. (23)-(24) into the square bracket expression of Eqn. (27) and rearranging

we obtain the following expression:

[σ2
xβ,k|k−1σ

2
x,k|k−1] = (σ2

β,k−1|k−1uk−1)/(uk−1(σ
2
β,k−1|k−1)uk−1 + σ2) (B-1)
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Taking the limit when σ2
β,k−1|k−1 → 0 of the previous expression, we obtain the following

lim
σ2

β,k−1|k−1
→0

(σ2
β,k−1|k−1uk−1)/(uk−1(σ

2
β,k−1|k−1)uk−1 + σ2) = 0 (B-2)

Hence, when σ2
β,k−1|k−1 → 0 Eqn. (27) can be simplified to βk|k = βk|k−1 and the predicted

value of β is not corrected by the gain. That is, the predicted value is trusted more as

σ2
β,k−1|k−1 → 0.

Taking the limit when σ2 → 0 and σ2 →∞, we obtain the following expressions:

lim
σ2→0

(σ2
β,k−1|k−1uk−1)/(uk−1(σ

2
β,k−1|k−1)uk−1 + σ2) = 1/uk−1 (B-3)

lim
σ2→∞

(σ2
β,k−1|k−1uk−1)/(uk−1(σ

2
β,k−1|k−1)uk−1 + σ2) = 0 (B-4)

This implies that the gain is weighted more heavily in Eqn. (27) as the value of σ2

decreases, i.e. the predicted value is trusted less.
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