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Abstract

We study optimal capital income taxation with a Ramsey problem and relate this optimal

taxation problem to the question that has been asked in the asset pricing literature, which

is why the risk free interest rate is too low. We show that the Ramsey planner chooses the

optimal level of capital stock to be one that satisfies the modified golden rule in the steady

state under some conditions. The conditions include sufficient government tax instruments and

ability to issue bonds. We argue that the optimal capital level is different from that chosen in

a competitive equilibrium unless the competitive equilibrium risk free interest rate is same as

the time discount rate in the steady state. This difference in the choice of capital motivates

imposing a positive capital income tax (or subsidy) on households to induce them to invest

at the socially optimal amount. As examples, we investigate optimal capital taxation in a

decentralized economy with limited commitment and one with private information. However,

the result still holds in various types of economies with risk free interest rate that is too low.
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1 Introduction

In the Ramsey literature on capital taxation, Chamley (1986) and Judd (1985) were the first to

analytically argue for zero capital taxation in the long run. Subsequently, Chari and Kehoe (1999)

have shown that the capital tax rate should be high initially and decrease to zero, and Atkeson,

Chari and Kehoe (1999) show that the zero capital taxation result is robust to a wide range of the

model assumptions. Finally, Lucas (1990) argues that for the U.S. economy there is a significant

welfare gain to be realized in switching to this policy. In sum, the zero capital taxation argument

suggests that the current capital stock in the U.S. economy is too low since the capital tax rate is

too high, and that decreasing the tax rate can lead to large welfare gains.

We study optimal capital income taxation within a Ramsey model. As the above zero capital

taxation papers showed, the Ramsey planner always chooses the optimal level of capital stock to

be one that satisfies the following modified golden rule in the steady state,

1 = β [MPK∗ + 1− δ] ,

where β is a time discount factor and MPK is a marginal product of capital.

However, in a competitive equilibrium of this model, where an agent takes the prices and the

government’s policies as given and makes a decision on capital investment, the level of capital stock

in the steady state satisfies the standard intertemporal euler equation:

1 =
1

R
[MPK + 1− δ] ,

where R is a gross risk free interest rate. Hence, the optimal capital level is different from that

chosen by households unless the competitive equilibrium risk free interest rate is same as the time

discount rate in the steady state. This difference in the choice of capital motivates imposing a

positive capital income tax(or subsidy) on households to induce them to invest at the socially

optimal amount.

1 =
1

R
[(1− τK) (MPK∗ − δ) + 1]

This paper provides a generalized framework under which taxing capital income is optimal: any

endogenous discrepancy between the government’s discount factor and that of the private sector will

support such a result. A subsequent work by Albanesi and Armenter (2007) also studies optimal

taxation in various environments by using Ramsey problems.

We relate the question why tax capital to the question that the asset pricing literature has asked,

which is why market risk-free interest rate is too low. Those asset pricing models that provide too
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low a risk-free market interest rate would imply a positive optimal capital tax. In Section 6 and 7,

we provide two example economies where the risk-free interest rate is too low and hence, the capital

income should be taxed in the steady state.

This paper is organized as follows. Section 2 describes the model economy. Section 3 character-

izes and define the competitive equilibrium. Section 4 solves a Ramsey problem. Section 5 discuss

the optimal capital income tax in steady state. In Section 6 and 7, we show that in both economy

with limited commitment and with private information, our result holds. Section 8 concludes.

2 Environment

Time is discrete. There is a continuum of agents of measure one. Each agent starts off with

an initial asset holding, a0, and an initial idiosyncratic shock, s0. The initial joint distribution over

(a0, s0) is given by Φ0. In this paper, we do not consider the aggregate shock. The only event that

each household faces is an idiosyncratic stochastic shock. When we consider the specific example

of the model, the actual idiosyncratic stochastic shock will be specified. Each event si takes values

on a discrete grid S ≡ {s1, ..., si, ..., sI}. The shock {s} follows a Markov process, with a transition

probability π (s′|s). We denote st as a history of realization of the shock:

st = (s0, s1, ..., st−1, st)

There is a single, non-storable, consumption good. A household’s preferences are described by

the expected value of the sum of discounted utilities of consumption and labor streams:

∞∑
t=0

∑
st

βtπ
(
st
∣∣ s0

)
U (ct, lt)

where ct, lt denote consumption and labor respectively. β is the discount factor. The functions U (·)
is assumed to be bounded, continuously differentiable, strictly increasing, and strictly concave.

The output Yt is produced by aggregate labor and capital input with a single technology that

exhibits constant returns to scale:

Yt = F (Kt, Lt)

where F (·, ·) is the market production function, and Kt and Lt denote aggregate capital and

aggregate labor inputs respectively. Assume that F (·, ·) is homogeneous of degree one, and twice
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continuously differentiable.

The output can be used in consumption, government spending or capital investment. The

resource constraint is

Ct +Gt +Kt+1 = Yt + (1− δ)Kt

3 Competitive Equilibrium

3.1 Household’s Problem

At this stage of the model, we will leave the specific details of the household problem aside.

In period zero, taking the sequence of after-tax wages wt and market interest rates Rt as given, a

household chooses consumption and labor sequences {ct, lt}∞t=0 that maximize the agent’s life time

utility subject to her constraints 1. Once we solve this household’s maximization problem, then the

indirect utility function of a household with initial states (a0, s0) can be written as

W0 (a0, s0, {wt}∞t=0 , {Rt}∞t=0) , (1)

which is a function of the initial state, and sequences of prices.

3.2 Firms’ Problem

Firms operate market production technology through a market production function, F (Kt, Lt).

At period 0, taking a sequence of pre-tax wage rates {wt} , market interest rates {Rt}, and corporate

profit taxes τK as given, a firm chooses a sequence of capital stocks Kt+1 and labor demand Lt in

order to maximize the discounted after-tax profit function:

max
{Kt+1,Lt}

∑
t

t∏
s=1

1

Rs−1

[(1− τK,t)ϕt − It + δτK,tKt]

subject to

ϕt = F (Kt, Lt)− wtLt
Kt+1 = (1− δ)Kt + It

1One of the example could be the budget constraint and households might also have constraints on asset trading

which depending on the market structure.
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where ϕt is a corporate profit. Note that it is firms that must pay the capital income tax, which is

imposed on the income paid to the physical capital.

The firms’ problem yields the following first order conditions:

wt = FL,t

1 = qt [(FK,t+1 − δ) (1− τK,t+1) + 1] (2)

where qt ≡ 1
Rt

is an intertemporal price. Based on these optimal conditions, firms make decisions

on labor demand and capital investment.

3.3 The Government

As in standard Ramsey problems, we assume that the government levies linear tax on capital

and labor and issues new government bonds in order to finance an endogenous government spending

and an outstanding government debt.2

Government expenditure is composed of government consumption Gt and debt payments (rbt +

1)Bt. r
b
t is the return of one period bond held from period t−1 to t. Government revenue consists of

taxes on market labor income and capital income, respectively labeled τK,t and τL,t. Additionally,

the government can finance its expenditures by issuing new debt Bt+1. Hence, the government

constraint is as follows:

τK,trtKt + τL,twtLt +Bt+1 = (rbt + 1)Bt +Gt

3.4 Competitive Equilibrium

Definition 1 A competitive equilibrium is a given initial condition K0, a sequence of allocations

{ct (a0, s
t) , lt (a0, s

t) , Kt}, a sequence of prices {wt, Rt}, and a sequence of policies {τL,t, τK,t, Bt, Gt}
2We can introduce an exogenous government spending, eg,t in our economy with following government budget

constraint,

τK,trtKt + τL,twtLt +Bt+1 = (rb
t + 1)Bt +Gt + eg,t

,and the following resource constraint,

Ct +Kt+1 +Gt + eg,t = F (Kt, Lt) + (1− δ)Kt

.
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such that the household problem is solved for each (a0, s0) , the firm problem is solved, the government

budget constraint is satisfied for all periods and the markets clear.

4 Ramsey Problem

Definition 2 Given K0, the Ramsey problem is to choose a competitive equilibrium that maximizes

following social welfare function:∫
W0 (a0, s0, {wt}∞t=0 , {Rt}∞t=0) dΦ0 +

∞∑
t=0

βtU (Gt)

Following Aiyagari (1996), we formulate a dual approach Ramsey problem as if the government

can pick the sequences of {wt, Rt, Gt, Kt+1} . First, the social welfare function is the sum of the

integration of all household’s life time utility over the initial distribution Φ0 and the discounted

utility from government consumptions, so this social welfare function depends on the sequence of

{wt, Rt, Gt}. Second, by choosing the sequence of Rt, Gt and Kt+1 together with equation (2),

the capital tax sequence can be decided. In addition, the labor tax sequence is decided by wt =

(1 − τL,t)wt. Note that the optimal choices of consumption, labor and the household’s budget

constraint have embedded in the indirect utility function expressed in equation (1). Hence, the

government’s optimal tax problem is to choose sequences of {wt, Gt, Kt+1} and a sequence {Rt}
that is consistent with the competitive equilibrium such that social welfare is maximized.

max
{wt,Rt,Gt,Kt+1}

∫
W0 (a0, s0, {wt}∞t=0 , {Rt}∞t=0) dΦ0 +

∞∑
t=0

βtU (Gt)

subject to

Ct +Kt+1 +Gt = F (Kt, Lt) + (1− δ)Kt (3)

Equation (3) is the resource constraint and must hold for all periods. Notice that as is gener-

ally the case in Ramsey problems we exclude the government budget constraint, since household

consumption choices satisfy the household’s budget constraints, which together with the resource

constraints imply the government budget constraints.

The Lagrangian is written as
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LG = min
λt

max
{wt,Rt,Gt,Kt+1}

∫
W0 (s0, {wt}∞t=0 , {Rt}∞t=0) dΦ0 +

∞∑
t=0

βtU (Gt)

+
∞∑
t=0

βtλt (F (Kt, Lt) + (1− δ)Kt − Ct −Kt+1 −Gt)

where λt is the Lagrange multiplier for the resource constraints.

Then, first order conditions with respect to Gt and Kt+1 implies

U ′ (Gt) = βU ′ (Gt+1) [MPK,t+1 + 1− δ] (4)

Proposition 1 1
β

= MPK + 1− δ in steady state.

Proof. The result follows directly from the steady-state version of the following Euler equation in

the Ramsey planner’s problem.

−U ′ (Gt) + βU ′ (Gt+1) [MPK,t+1 + 1− δ] = 0

Proposition 1 states that in the steady state pre-tax capital return, MPK−δ, must equal the rate

of time preference, 1
β
− 1, and it characterizes the optimal level of capital stock in the economy. It

shows that the Ramsey government would like to implement the capital stock that satisfies equation

(4) regardless of the market structures. The key elements we required here are as follows. First,

there should be a competitive equilibrium such that the household’s life time indirect utility is a

function of all future after-tax prices. Second, the government has the ability to issue bond and

choose the whole sequences of after-tax prices by levying tax on each market every period. Third,

there has to be an endogenous component in the government expenditure. Lastly, we need to assume

that there exists a steady state. In the next section, we show that as long as the pre-tax capital

return is different from the time preference rate, then there is a room for capital tax or subsidy.

5 Optimal Capital Tax

This section explains how we compute the steady state capital tax rate. Proposition 1 provides

the planner’s Euler equation, based on which the planner chooses the optimal level of capital.
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Equation (2) is the firm’s Euler equation, based on which firms make the capital investment decisions

in competitive equilibrium.

We choose the steady state capital tax rate such that these two equations are consistent and

equivalent to each other.

1 = q [(1− τK) (MPK − δ) + 1]

≡ β [MPK + 1− δ]

For the private sector to achieve the optimal capital level in the competitive equilibrium, the optimal

capital tax rate should be the following:

τK = 1− 1/q − 1

1/β − 1
(5)

Proposition 2 Positive capital tax is optimal if and only if β < q in steady state.

Proof. The result follows directly from Equation (5)

Recall the dual approach in the Ramsey problem. The government chooses the after-tax wage

rate and the interest rate. As long as the government chooses an interest rate that is consistent

with the competitive equilibrium, it will always result in the modified golden rule in steady state,

regardless of frictions in the competitive equilibrium.

Proposition 2 shows that this Ramsey problem yields the same outcome (5) of positive capital

taxation as long as the market interest rate is lower than time preference rate in steady state.

This result is general: as long as a risk-free market interest rate is too low compared to the time

discount rate, then the optimal capital taxation in steady state is positive and could be high. Now

the question we ask why tax capital is actually equivalent to the question that the asset pricing

literature has asked and tried to answer, which is why risk-free interest rate is too low. In the next

section, we have two example economies where the risk-free interest rate is too low, and hence the

capital income should be taxed in the steady state.

6 Economy with Limited Commitment

In this section, we study a decentralized economy with limited commitment. And we show the

market risk-free interest rate is lower than time discount rate in the steady state and hence the

optimal capital tax rate is positive in the steady state.
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The basic economic environment is same as we introduced before in the earlier section. We will

be more specific in a stochastic structure and we add some features if needed.

In each period, each agent is endowed with one unit of time and derives a utility from con-

sumption, ct, and leisure, 1− lt, where lt is a labor supply. We assume that the utility function is

separable in consumption and leisure:

U (ct, lt) = u (ct) + v (1− lt)

where u (·) and v (·) are assumed to be bounded, continuously differentiable, strictly increasing and

strictly concave.

6.1 Enforcement Technology

Following Kehoe and Levine (1993) and Kocherlakota (1996), this literature commonly assumes

that when households default on their existing debts, they are excluded from financial markets

forever, and have their assets seized at the time of default. This punishment forces households to

consume only their wage income forever, which implies, in turn, that the per-period utility that a

household obtains after default is

Uaut (st, wt) ≡ max
lt

u (wtstlt) + v (1− lt) ,

where wt is an after-tax wage rate. We can thus define an autarky value at period t as

Vaut,t(st, {wτ}∞τ=t) ≡
∞∑
τ=t

βτ−t
∑
sτ�st

π
(
sτ | st

)
Uaut (st, wt) .

This is the autarky value that a household receives from period t afterward if it defaults at period

t.

To keep households from defaulting, we need to ensure that the expected utility of staying in

the risk-sharing pool is greater than or equal to the value of defaulting for each possible st. Hence,

the enforcement constraints can be written as follows:

∞∑
τ=t

∑
sτ�st

βτ−tπ
(
sτ | st

)
[u (cτ ) + v (1− lτ )] ≥

∞∑
τ=t

∑
sτ�st

βτ−tπ
(
sτ | st

)
Uaut (st, wt) for ∀st

In other words, if this constraints are satisfied in all states and all periods, households do not wish

to exercise their default option.

9



6.2 Competitive Equilibrium

In this section, we describe details of the household’s problem. Firm’s problem, financial inter-

mediaries and government are the same as in Section 3. We will define this competitive equilibrium

and characterize it.

6.2.1 Household (a0, s0)’s Problem

Taking the sequence of after-tax wages wt and market interest rates Rt as given, a household

trades history-contingent consumption claims {ct} and makes labor allocation decisions {lt} subject

to both a lifetime budget constraint and a sequence of enforcement constraints, one for each history:

W0 (a0, s0, {wt}∞t=0 , {Rt}∞t=0) ≡ max
{ct,lt}

∞∑
t=0

∑
st

βtπ
(
st
)

[u (ct) + v (1− lt)] ,

subject to

∞∑
t=0

∑
st

t∏
s=0

1

Rs−1

π
(
st
∣∣ s0

)
[wtstlt − ct] ≥ −a0 (6)

∞∑
τ=t

∑
sτ�st

βτ−tπ
(
sτ | st

)
[u (cτ ) + v (1− lτ )]−

∞∑
τ=t

∑
sτ�st

βτ−tπ
(
sτ | st

)
Uaut (st, wt) ≥ 0 for ∀ st, t ≥ 0,

(7)

where 1
R−1

= 1. The equation (6) is the present value life time budget constraint and the equation

(7) is the enforcement constraint.

6.2.2 Characterizing Equilibrium Prices and Allocations

Household (a0, s0) Let the Lagrangian multipliers for constraints (6) and (7) be θ and βtπ (st)µt (st)

respectively. Cumulative multipliers3, ζt (st) , can be defined to make the problem recursive:

ζt
(
st
)

= 1+
∑
sr�st

µr (sr) ,

where sr is a subsequent history of st. Rewriting cumulative multipliers recursively yields:

ζt
(
st
)

= ζt−1

(
st−1

)
+ µt

(
st
)
,

ζ0 (s0) = 1

3We formulate the Lagrangian by using the cumulative multiplier as in Marcet and Marimon (1999)
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Note that {ζt (st)} is a non-decreasing stochastic process.

The Lagrangian can be written as:

L (a0, s0, {wt}∞t=0 , {Rt}
∞
t=0) = min

θ,ξt
max
ct,lt

∑
t

∑
st

βtπ
(
st
) [
ζt
(
a0, s

t
)

[u (ct) + v (1− lt)] +
(
1− ζt

(
a0, s

t
))
Uaut (wt, st)

]
+ θ

(
a0, s

t
) [∑

t

∑
st

t∏
s=1

1
Rs−1

π
(
st
)

[wtstlt − ct]− a0

]

The first-order condition with respect to ct is

βtζt
(
a0, s

t
)
uc,t = θ

(
a0, s

t
) t∏
s=1

1

Rs−1

βtξt
(
a0, s

t
)
uc,t =

t∏
s=1

1

Rs−1

(8)

where ξt (a0, s
t) ≡ ζt(a0,st)

θ(a0,st)
. Rt is the market interest rate faced by all households. ξt is a summary

statistic of a household’s history. It measures how severely and how many times the household has

been constrained in history. Therefore, the equation (8) implies that a household’s consumption is

history dependent, and that a household should have a higher consumption level if it has a higher

ξt.

The first-order condition implies that the ratio of marginal utilities in consecutive nodes (st, st+1)

satisfies the following restriction:

1

Rt

= qt

= β
uc,t+1

uc,t

ξt+1

ξt

= max
i
β
uc,t+1

uc,t

The intertemporal price, qt, is equal to the maximum intertemporal marginal rate of substitution

(IMRS) across all households. This can be clearly seen by the fact that only an unconstrained

household can engage in arbitrage when its IMRS is smaller than the state price of consumption in

a particular state of the world. If the price of consumption in that state were larger than IMRS,

the household can short a contract that delivers one unit of consumption in that state, or sell a

contingent claim, at a price qt that would increase its overall utility.

The first-order condition with respect to lt is as usual:

vl,t = uc,twtst, for ∀ t.
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This first-order condition implies that the marginal disutility from supplying labor is equal to the

marginal utility from the effective wage income.

In addition, aggregate consumption Ct, aggregate market efficient labor supply Lt, and aggregate

home production output Ht can be written as follows:

Ct =
∑
st

∫
π
(
st
∣∣ s0

)
ct
(
a0, s

t
)
dΦ0

Lt =
∑
st

∫
π
(
st
∣∣ s0

)
stl
(
a0, s

t
)
dΦ0

The resource constraint for this economy can now be written as

Ct +Gt +Kt+1 = F (Kt, Lt) + (1− δ)Kt, for ∀t ≥ 0.

6.2.3 Competitive Equilibrium

Definition 3 A competitive equilibrium is a given initial condition K0, a sequence of allocations

{ct (a0, s
t) , lt (a0, s

t) , Kt}, a sequence of prices {wt, Rt}, and a sequence of policies {τL,t, τK,t, Bt, Gt}
such that the household problem is solved for each (a0, s0) , the firm problem is solved, the government

budget constraint is satisfied for all periods and the markets clear.

6.3 Steady State Analysis

Aggregate Consumption Allocation The aggregate steady state consumption C can be de-

rived from the steady state resource constraint:

C = F (K,L)− δK −G (9)

while aggregate consumption is allocated across agents:

C =
∑
st

∫
π
(
st
)
ct
(
a0, s

t
)
dΦ0 (10)

Household Consumption Allocation From the equation (8), the steady state intertemporal

price can be obtained as follows;

q = β
uc,t+1 (a0, s

t+1)

uc,t (a0, st)

ξt+1 (a0, s
t+1)

ξt (a0, st)
(11)
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When a household does not switch to a state with a binding enforcement constraint, i.e.,

ξt+1 (a0, s
t+1) = ξt (a0, s

t) + µt (a0, s
t) = ξt (a0, s

t), the equation (11) becomes

βGUN
MU,t = q (12)

where GUN
MU,t+1 is the growth rate of the unconstrained household’s marginal utility from period t

to period t+ 1.

On the other hands, a household does switch to a state with a binding enforcement constraint,

i.e.,ξt+1 (a0, s
t+1) ≥ ξt (a0, s

t), the equation (11) becomes

βGCON
MU,t < q (13)

where GCON
MU,t is the growth rate of the constrained household’s marginal utility from period t to

period t+ 1.

The equations (12) and (13) imply that the growth rate of the constrained household’s consump-

tion is higher than the growth rate of the unconstrained consumption, together with the assumption

that utility function is strictly concave.

Proposition 3 β < q in steady state, if and only if full-risk sharing is not feasible.

Proof.

The equations (12) and (13) show that

GCON
MU,t < GUN

MU,t,

and this implies that

GCON
c,t > GUN

c,t ,

where GCON
c,t , GUN

c,t are the growth rate of the constrained household’s consumption from period t to

period t + 1 and that of the unconstrained household’s consumption from period t to period t + 1

respectively.

In steady state, the average growth rate of consumption is constant at 1 as in equation (10).

Therefore it must be the case that

GCON
c,t > 1, and GUN

c,t < 1

This suggest that the growth rate of the unconstrained household’s marginal utility is greater than

1.

GUN
MU,t > 1
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Along with the equation (12), this prove that the time discount factor is smaller than the intertem-

poral price in the steady state.

β < q

Optimal Capital Tax Rate Proposition 2 implies that the optimal capital tax rate in the long

run should be positive in the decentralized economy with limited commitment. The tax rate can

be obtained:

τK = 1− 1/q − 1

1/β − 1
> 0

7 Economy with Private Information

In this section, we study a decentralized economy with a private information. We closely follow

an economy in Atkeson and Lucas (1995). Each period, each household finds a job opportunity with

a positive probability and fails to find such an opportunity. In order to insure against unemployment

risk, the risk-averse households sign an insurance contract with a zero profit insurance company.

Each period, each household has a job experience denoted as st ∈ {0, 1}. We use st = 0 to

indicate no job opportunity at period t and st = 1 to indicate his having a job opportunity at

period t. The probability of having a job opportunity is given by π (1) and this probability follows

an i.i.d. A household who find a job can work lt ∈ [0, 1] units of time. We assume that this job

opportunity st is private information and so is household’s labor supply of a household, lt. We only

observe household’s report about his job experience zt ∈ {0, 1}. We denote their history of reported

job opportunity as zt = (z0, z1, . . . , zt).

We assume that the utility function is separable in consumption and labor supply and linear in

labor supply.

U (ct, lt) = u (ct)− vlt

where v is a constant and the assumptions for the utility function are the same as in the previous

section. Let C (u) be the inverse of the flow utility function u (c). We assume that C is continuously

differentiable, strictly increasing, and strictly convex.
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The insurance contract is an allocation sequence specifying each household’s labor supply and

consumption for each period t ≥ 1. The contract offered by an insurance company to a household

with an initial asset holding, a0 is

σ = {xt
(
a0, z

t
)
, lt
(
a0, z

t
)
}∞t=1, (14)

where xt (a0, z
t) is a level of current flow utility from consumption.

Given an allocation σ, a household chooses a strategy for reporting job opportunities to maximize

the discounted expected utility he obtains under that allocation. This strategy is denoted as z =

{zt (st)}∞t=1, where st = (s1, . . . , st), st ∈ {0, 1} for all t ≥ 1, denotes the household’s true job

experience.

A household’s initial discount utility can be written as a function of a0, σ, and z as

U (a0, σ, z) =
∞∑
t=1

∑
st

π
(
st
) [
xt
(
a0, z

t
)
− vlt

(
a0, z

t
)]
.

Let z∗ = {z∗t (st)}∞t=1, where z∗t (st) = st for all t ≥ 1, denote the truthful reporting strategy. We

use the notation Ut (a0, σ, z
∗, st−1) to denote the discounted utility from period t on received under

the allocation σ by a household who had his initial asset holding a0, who has reported employment

history st−1 up to period t, and who uses the truthful reporting strategy z∗.

We impose constraints on allocations. The first is incentive compatibility:

U (a0, σ, z
∗) ≥ U (a0, σ, z) , (15)

for all a0 and all reporting strategies z. The second is a lower bound on the discounted expected

utility that a household can receive after any history of shocks:

Ut
(
a0, σ, z

∗, st−1
)
≥ ω (16)

for all t ≥ 1, all st−1. We need this lower bound constraint in order to guarantee a non-degenerate

stationary distribution. Green (1987), Thomas and Worrall (1990) and Atkeson and Lucas (1995)

showed that without an exogenously imposed lower bound, the promised utility would spread out

forever over time and no long run stationary distribution exists.

7.1 Competitive Equilibrium

In this section, we formulate optimal contract problem and define an competitive equilibrium

since the details about firm’s problem, and government are the same as in the previous section.
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7.1.1 Optimal Insurance Contract Problem

We assume that there is a perfect competition among insurance companies. The best contract

that insurance companies can offer is chosen to maximize the household’s expected life time utility.

W0 (a0, {wt}∞t=1, {Rt}∞t=1) ≡ max
σ

∞∑
t=1

∑
st

βtπ
(
st
) [
xt
(
a0, z

t
)
− vlt

(
a0, z

t
)]

subject to

∞∑
t=1

∑
st

t∏
r=1

1

Rr−1

π
(
st
) [
wtztlt

(
a0, z

t
)
− C

(
xt
(
a0, z

t
))]

≥ −a0,

U (a0, σ, z
∗) ≥ U (a0, σ, z) ,

Ut
(
a0, σ, z

∗, st−1
)
≥ ω,

where wt is an after-tax wage rate, (1− τL,t)wt.

7.1.2 Characterizing Equilibrium prices and Allocations

In order to characterize the optimal contract, we formulate a dual problem with a promise

keeping constraint which requires that σ delivers the promised expected utility for period t + 1

onward. First, we define an initial promised utility as

ω0 = U (a0, σ, z
∗) , (17)

and then the promise keeping constraint can be written as

ωt−1

(
a0, z

t−1
)

=
∑
st

π (st)
[
xt
(
a0, z

t−1, zt
)
− vlt

(
a0, z

t−1, zt
)

+ βωt
(
a0, z

t−1, zt
)]

(18)

for all a0 and all t, where ωt−1 (a0, z
t−1) is the promised expected utility for period t onward.

The incentive constraint can be written with the promised expected utility as follows;

xt
(
a0, z

t−1, 1
)
− vlt

(
a0, z

t−1, 1
)

+ βωt
(
a0, z

t−1, 1
)
≥ xt

(
a0, z

t−1, 0
)

+ βωt
(
a0, z

t−1, 0
)

(19)

for all t and for all zt−1.

The lower bound constraint becomes

ωt
(
a0, z

t
)
≥ ω for all zt. (20)
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The dual problem can be written as

V (a0, {wt}∞t=1, {Rt}∞t=1) ≡ min
{lt(a0,zt),xt(a0,zt),ωt(a0,zt)}∞t=1

∞∑
t=1

∑
st

t∏
r=1

1

Rr−1

π
(
st
) [
C
(
xt
(
a0, z

t
))
− wtztlt

(
a0, z

t
)]

subject to (18), (19) and (20).

For simplicity, we rewrite the dual problem in terms of the following Bellman equation.

V (ωt−1, {Rτ}∞τ=t, {wτ}∞τ=t) = min
xt,lt,ωt

Et

[
C (xt (ωt−1, zt))− wtztlt (ωt−1, zt) +

1

Rt

V
(
ωt, {Rτ}∞τ=t+1, {wτ}∞τ=t+1

)]
subject to

ωt−1 = Et [xt (ωt−1, zt)− vlt (ωt−1, zt) + βωt (ωt−1, zt)] , (21)

xt (ωt−1, 1)− vlt (ωt−1, 1) + βωt (ωt−1, 1) ≥ xt (ωt−1, 0) + βωt (ωt−1, 0) , (22)

ωt (ωt−1, zt) ≥ ω, for ∀ zt, (23)

w0 given,

for all t ≥ 1.

Lemma 1 Incentive compatibility constraint (22) have to hold in equality at optimum.

Proof. Suppose it is not the case, we can always increase lt (ωt−1, 1) to lower the value of the the

objective function.

By using Lemma 1, the two constraints (18) and (19) can be replaced by the equalities

xt (ωt−1, 0) = ωt−1 − βωt (ωt−1, 0) (24)

xt (ωt−1, 1) = ωt−1 − βωt (ωt−1, 1) + vlt (ωt−1, 1) (25)

Using the equations (24) and (25), we can derive the first order conditions. The first order

condition with respect to ωt (ωt−1, st) is given as

C ′ (xt (ωt−1, st)) β ≤
1

Rt

V ′
(
ωt (ωt−1, st) , {Rτ}∞τ=t+1, {wτ}∞τ=t+1

)
, for all t and all st, (26)

where (26) holds with equality when ωt (ωt−1, zt) ≥ ω. The envelope condition is given by

dV ′ (ωt−1, {Rτ}∞τ=t, {wτ}∞τ=t)
dωt−1

= Et [C ′ (xt (ωt−1, st))] , for all t (27)
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And the first order condition with respect to lt (ωt−1, 1) can be obtained as follows:

C ′ (xt (ωt−1, 1)) =
wt
v
, if lt (ωt−1, 1) ∈ (0, 1) ,

C ′ (xt (ωt−1, 1)) ≤ wt
v
, if lt (ωt−1, 1) = 1,

C ′ (xt (ωt−1, 1)) ≥ wt
v
, if lt (ωt−1, 1) = 0. (28)

Then the first order condition (26) together with the envelope condition (27) implies

V ′ (ωt−1) ≤
qt
β
Et [V ′ (ωt)] . (29)

where (29) holds with equality when ωt (ωt−1, zt) ≥ ω.

7.1.3 Competitive Equilibrium

Definition 4 A competitive equilibrium is a given initial condition K0, a sequence of allocations

{ct (a0, s
t) , lt (a0, s

t) , Kt}, a sequence of prices {wt, Rt}, and a sequence of policies {τL,t, τK,t, Bt, Gt}
such that the optimal contract problem is solved for each ω0 (a0) , the firm problem is solved, the

government budget constraint is satisfied for all periods and the markets clear.

7.2 Steady State Analysis

We again assume that there exists the steady state, in which all the aggregate variables stay

constant. We characterize household’s utility entitlement and his labor supply in steady state. Then

we show that the market risk-free interest rate is lower than the time discount factor in steady state.

Lemma 2 Define ω0 ∈ [ω,∞) to be such that C ′ (ω0 − βωt (ω0, 1)) = w
v

and suppose ωt (ωt−1, st) ≥
ω, Then

i) ωt (ωt−1, 1) > ωt (ωt−1, 0) , for all t and all ωt−1 ∈ [ω, ω0), and

ii) ωt (ωt−1, 1) = ωt (ωt−1, 0), for all t and all ωt−1 ∈ [ω0,∞) .

Proof. We use a contradiction to prove the result i) in Lemma 2. Suppose ωt (ωt−1, 1) ≤ ωt (ωt−1, 0),

then since V ′ (·) is an increasing function,

V ′ (ωt (ωt−1, 1)) ≤ V ′ (ωt (ωt−1, 0)) .
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By the equation (26),

C ′ (ωt−1 − βωt (ωt−1, 1) + vlt (ωt−1, 1)) ≤ C ′ (ωt−1 − βωt (ωt−1, 0)) .

Since C ′ (·) is also strictly increasing,

βωt (ωt−1, 1)− vlt (ωt−1, 1) ≥ βωt (ωt−1, 0) .

Then since lt (ωt−1, 1) > 0 for ωt−1 ∈ [ω, ω0), this equation implies that

ωt (ωt−1, 1) > ωt (ωt−1, 0) .

It is a contradiction.

The result ii) in Lemma 2 follows from Lemma 4 in Atkeson and Lucas (1995). No one works,

lt (ωt−1, 1) = 0, if his utility entitlement is higher than or equal to a certain threshold, ωt−1 ≥ ω0.

Suppose ωt (ωt−1, 1) 6= ωt (ωt−1, 0), for all ωt−1 ≥ ω0, then equation (26) implies contradiction.

An optimal employment contract requires that the promised future utility that household re-

ceives when he reports the unemployment is lower than the utility that he receives when he reports

the employment if household’s utility entitlement ωt−1is lower than a certain threshold, ω0. We can

understand that the insurance company must spread out promises to future utility, since otherwise

it would be impossible to provide any insurance in the form of contingent payment today. The

equation (26), together with (27) shows how the insurance company balances the delivery of the

utility today as compared to future utilities.

Household’s labor supply decision is made based on equation (28). However, for household’s

utility entitlements ωt−1 ≥ ω0, the marginal disutility of work is larger than that household’s

after-tax wage income on the job measured in utility. Thus no household with such high utility

entitlements works and there is no incentive problem. Therefore the insurance company does not

spread our the promised future utility any more, i.e., ωt (ωt−1, 1) = ωt (ωt−1, 0).

Lemma 3 If q < β, there exists k > 0 such that ωt (ωt−1, 1) ≥ ωt−1 + k, for all ωt−1 ∈ [ω,∞).

Proof. If q < β, then the equation (29) implies that

V ′ (ωt−1) < π (1)V ′ (ωt (ωt−1, 1)) + (1− π (1))V ′ (ωt (ωt−1, 0)) . (30)

Suppose ωt (ωt−1, 1) ≤ ωt−1, then the equation (30) implies

V ′ (ωt−1) < π (1)V ′ (ωt−1) + (1− π (1))V ′ (ωt (ωt−1, 0)) .
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And we can obtain

ωt−1 ≤ ωt (ωt−1, 0) ,

since V ′ (·) is an increasing function. Lemma 2 implies the contradiction and this contradiction

suggests that

ωt−1 < ωt (ωt−1, 1) , for all ωt−1 ∈
[
ω, ω0

)
ωt−1 ≤ ωt (ωt−1, 1) , for all ωt−1 ∈

[
ω0,∞

)
. (31)

For ωt−1 ∈ [ω0,∞), if q < b,then by the equation (26), (27), and (31),

C ′ (ωt−1 − βωt (ωt−1, 1)) < C ′ (ωt (ωt−1, 1)− βωt+1 (ωt, 1)) ,

ωt−1 − βωt (ωt−1, 1) < ωt (ωt−1, 1)− βωt+1 (ωt, 1) ,

≤ ωt (ωt−1, 1)− βωt (ωt−1, 1) .

The last inequality follows the equation (31). Hence,

ωt−1 < ωt (ωt−1, 1) , for all ωt−1 ∈
[
ω0,∞

)
.

Proposition 4 In the steady state of this economy, β < q.

Proof. We use contradiction to prove this proposition and the proof is divided into two cases: q < β

and q = β. The proof is an application of Atkeson and Lucas (1995).

Part 1. We want to study the process generated by (π (1) , ωt (ωt−1, st)) on the set S = [ω, ω],

where ω ∈ [ω0,∞). Let λ be any probability measure on the Borel sets S of S, and define Markov

operator Pq by

(Pqλ) (A) = π (1)

∫
ωt(ωt−1,1)∈A

dλ+ (1− π (1))

∫
ωt(ωt−1,0)∈A

dλ,

for any A ∈ S.

Let λω be the probability measure that concentrates mass on the point ω. We show that if q < β,

there exist N ≥ 1 and ε > 0 such that
(
PN
q λω

)
(ω) ≥ ε, for all ω ∈ S. By Lemma 4, if we choose N

large enough so that ω+ (N − 1) k > ω, then the probability of passing from point ω to point ω is at
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least π (1)N . Since ωt (ωt−1, 1) is non-decreasing in ωt−1, this transition to ω is at least as probable

from any other point in S. Thus letting ε = π (1)N , this proves that the Markov process under

study satisfies the hypothesis of Theorem 11.12 in Stokey et al. (1989) is complete. The probability

of transiting from any other point in the state space to ω is strictly positive and the point ω is an

absorbing state. Since for ω ∈ [ω0,∞), no one works from equation (28) but a positive fraction of

them consumes, the steady state with q < β is not feasible.

Part 2. Suppose q = β, by Lemma 8 and the proof of Lemma 9, part 2 in Atkeson and Lucas

(1995), the point ω0 is an absorbing state and the unique invariant distribution is concentrated at

the point ω0. At this point, no one works but a positive fraction of them consumes. Therefore, the

steady state with q = β is not feasible.

Atkeson and Lucas (1995) provides the proof of existing an invariant distribution in this economy

when q > β. Bohacek (2005) also show that the risk-free market interest rate is lower than the

agent’s discount rate in the economy with private information.

Proposition 4 confirms that in a private information economy the market clearing risk-free

interest rate is less than the households’ time preference rate. We argue that the optimal tax rate

on capital income in the long run is positive together with Proposition 2.

τK = 1− 1/q − 1

1/β − 1
> 0.

8 Conclusion

We study optimal capital income taxation with a Ramsey problem. We show that Ramsey

planner chooses the optimal level of capital stock to be the one that satisfies the modified golden

rule in the steady state under some conditions. The conditions include sufficient government tax

instruments and ability to issue bonds. We argue that the optimal capital level is different from

that chosen in a competitive equilibrium unless the competitive equilibrium risk free interest rate is

same as the time discount rate in the steady state. This difference in the choice of capital motivates

imposing a positive capital income tax (or subsidy) on agents in the equilibrium to induce them to

invest at the socially optimal amount. As examples, we investigate the optimal capital taxation in

a decentralized economy with limited commitment and one with private information. However, the

result still holds in various types of economies with too low risk free interest rates.
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The key elements we require in this paper are as follows. First, there should be a competitive

equilibrium such that the household’s lifetime indirect utility is a function of all future after-tax

prices. Second, the government has the ability to issue bond and choose the whole sequences of

after-tax prices by levying tax on each market every period. Third, there has to be an endogenous

component in the government expenditure. Lastly, we need to assume that there exists a steady

state.

This paper provides a generalized framework under which taxing capital income is a good idea.

We relate this framework of optimal capital taxation to the asset pricing application. We show any

competitive equilibrium which yields too low market risk-free interest rate can support that taxing

capital income is a good idea.
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