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Abstract

In this paper, we consider the non-parametric, kernel estimate of the
density, f(x), for data drawn from stratified samples. Much of the data
used by social scientists is gathered in some type of complex survey vio-
lating the usual assumptions of independently and identically distributed
data. Such effects induced by the survey structure are rarely considered
in the literature on non-parametric density estimation, yet they may have
serious consequences for our analysis, as shown in this paper.

A weighted estimator is developed which provides asymptotically un-
biased density estimation for stratified samples. A data-based method for
choosing the optimal bandwidth is suggested, using information on within-
stratum variances and means. The weighted estimator and proposed
bandwidth are shown to give smaller mean squared error for stratified
samples than an un-weighted estimator and a commonly used method of
choosing the bandwidth. Surprisingly, the single bandwidth outperforms
optimally choosing stratum-specific bandwidths in some cases. Several il-
lustrations from simulation are provided. We also show that the optimal
sampling scheme in this case is always stratified sampling proportional to
size, irrespective of the stratum-specific densities.
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1 Introduction

The properties of kernel-based non-parametric density estimation are well-known

for independent and identically distributed (i.i.d.) data1. Their use has become

quite common in the social sciences for both descriptive and analytic purposes.

In economics, density estimation has become a common part of the tools that

analysts use to examine distributions of income, education, wages, consumption,

receipt of government benefits, and many other variables. The advantages of

using smooth non-parametric techniques over histrograms or parametric tech-

niques to describe such distributions have become widely accepted.

The standard approach to density estimation in applied work in economics

uses the i.i.d. assumption despite using survey data which violate that assump-

tion. The data sets which economists and other social scientists use are typically

generated using some type of complex sampling design.

Stratified sampling is probably the most commonly encountered sampling

design in data used by applied social scientists. (Details of stratified sampling

and more complex sampling schemes may be found in the econometric literature

in Pudney (1989), Deaton (1997), Breunig and Ullah (1998) or in one of the

traditional statistics texts such as Kish (1965) or Thompson (1992).) Though

stratified sampling may be quite complicated in application, the primary effect

of such sampling is that the population elements enter the sample with unequal

probabilities. Therefore, in order to estimate model parameters we need to

account for these unequal sampling probabilities.

The purpose of this paper is to begin the task of developing non-parametric

density estimation for stratified survey data. Breunig (2001) extends the non-

parametric kernel estimator to clustered data and demonstrates the large point-

wise bias which results from ignoring the clustering in the data. This paper

complements that work by considering stratified sampling.

In the case where large samples are available from each stratum, the natural

approach would be to estimate stratum-specific densities and sum those using

population proportions. We assume that it is not possible to do this in what

follows. (Although in the numerical illustrations below, we provide comparisons

1Rosenblatt (1956) and Parzen (1962) are generally cited as the initiators of nonpara-
metric density estimation. For summaries of the non-parametric literature and subsequent
developments, see Silverman (1986), Härdle (1990), and Pagan and Ullah (1999).
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to this ‘optimal’ approach.) Our approach is motivated by the fact that it is

often the case that some strata are represented by few observations and it is not

possible to efficiently estimate a separate density for those strata. In such cases,

the distribution in the separate strata are not of independent interest. What

is of interest is a population estimate of the density that uses the sampling

information. Another possibility, and one that economists frequently face, is

that of having some knowledge of the different strata from which the sample was

drawn but no knowledge of which observation comes from which strata. Due to

data confidentiality rules, analysts are not given such information, but are given

weights which, at least in part, arise from the stratification in sampling. The

approach suggested below allows for use of such weights even in the absence of

knowledge about which observations belong to which strata.

After developing the simple model, we proceed to the main results: devel-

opment of a weighted non-parametric density estimator which is asymptotically

unbiased for stratified samples. Incorporating the sampling information into

the choice of bandwidth selection, we provide the optimal bandwidth for the

case where the data in each stratum are normally distributed. We examine the

properties of the proposed bandwidth numerically and through simulation. We

then derive the optimal sampling allocation for the stratified density estimator.

Surprisingly, it differs from the optimal allocation for estimation of the mean.

2 Nonparametric Density Estimation: Strati-

fied Sampling

Let us consider density estimation for data chosen under stratified sampling.

Consider the following population model,

Yij , i = 1, . . .,M j = 1, . . ., Ni .

The total number of elements in the population is
∑
Ni = N and the proportion

of elements in each stratum, i, is θi = Ni

N . We treat the finite population

within each stratum as large enough to be well approximated by a continuous

distribution gi, with mean μi and variance σ2
i . We will only restrict these

densities by the requirement that the first two moments exist and are finite for

each stratum.
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The distribution of interest is that of the finite population given by

f(Y ) =
M∑
i=1

θigi.
2 (1)

Now consider a sample, where ni elements (labelled yij , j = 1, . . ., ni) are

drawn by simple random sampling with replacement independently from each

stratum (i.e. a stratified sample). The total sample size is
∑
ni = n. The ni

may or may not be equal. Since both the ni and the θi may vary, the sample

inclusion probabilities are not equal for all elements in the sample. They will

however, be equal for all elements in the same stratum. The probability that

the j-th element in the i-th stratum is included in the sample is πij = πi = ni

Ni
.

Rosenblatt’s (1956) kernel estimator for the density in the ith stratum, based

on the sample of size ni may be written as

ĝi(y) =
1
hni

ni∑
j=1

Kj (2)

where Kj = K(yij−y
h ) is a kernel function. In what follows, we assume that it

is not possible or practical to generate a separate estimate of the distribution

in each stratum. This may be because some strata have very small sample

sizes or it may be that while sampling weights are available to the practitioner,

information about which observation belongs to which strata is not.

Using the sample data from all strata the usual estimator for the density at

a point y is

f̂(y) =
1
nh

M∑
i=1

ni∑
j=1

K

(
yij − y

h

)
=

M∑
i=1

ni
n
ĝi(y) (3)

where h is the window width, and the kernelK (·) is a symmetric function which

satisfies:

(A1) (i)
∫
K(ψ)dψ = 1

(ii)
∫
ψK(ψ)dψ = 0

(iii)
∫
ψ2K(ψ)dψ = γ2 <∞

2Another way of thinking of this is that each stratum is an i.i.d. draw from a different
superpopulation and that characteristics of the finite population are of interest for analy-
sis. In this case, combining the super-population parameters using the stratum population
proportions produces an overall density estimate of interest.
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The estimator (3) of the population density, f(y), is thus a sample-weighted

average of the density estimates for each stratum. This estimator will not be

unbiased for the parameter of interest. To see this, we write

Ef̂(y) =
M∑
i=1

ni
n
Eĝi(y) (4)

and by Taylor’s series expansion

Eĝi(y) = gi(y) + biasi(h) (5)

where biasi(h) represents bias terms which will depend upon h. This provides

Ef̂(y) =
M∑
i=1

ni
n
gi(y) +

M∑
i=1

ni
n
biasi(h). (6)

Usually we choose h such that h → 0 as ni → ∞, therefore the biasi(h) terms

will become small as the ni become large. Even then, however, we still have

bias arising from the fact that we are implicitly weighting the stratum-specific

densities by the sample proportions.

It is thus clear that the density estimate, f̂(y), will only be asymptotically

unbiased for (1) when

(i)
ni
Ni

=
n

N

or

(ii) gi = g ∀i. (7)

These conditions are unlikely to be met in most surveys. It is a common feature

of surveys that sampling is disproportionate, violating condition (i). Even when

the original survey design is such that the sample inclusion probabilities are

equal in all strata, varying rates of non-response and other factors usually make

the sampling disproportionate. This is often a desired trait when particular

populations of interest are sampled more heavily relative to the rest of the

population (Survey of Income and Program Participation (1991) for example)

or when cost restricts sampling. (i.e. the case of Living Standards Measurement

Study data from the World Bank where lower cost of sampling in urban areas

leads to higher sampling proportions in these areas.) Though we are interested

in an overall estimate of the density, it is problematic to assume that variables
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of interest will be identically distributed in different strata. Ignoring either

this dis-proportionality in the survey design or the differences between strata

will lead to biased estimation, even in the simple case of non-parametric kernel

density estimation.

The solution is a weighted estimator

f̂w(y) =
1

h
∑
wi

M∑
i=1

ni∑
j=1

wiK

(
yij − y

h

)
(8)

where wiαNi

ni
. We set the weights proportional to the inverse of the selection

probabilities. If we further require that
∑
wi = 1, then wi = Ni

Nni
. Then

f̂w(y) =
M∑
i=1

Ni
N
ĝi(y) =

M∑
i=1

θiĝi(y) (9)

As noted above, however, this is not unbiased for (1) since ĝi(y) is

not unbiased for gi. This bias will depend upon the choice of window width,h.

Writing biasi for biasi(h), we can write

f̂w(y) =
M∑
i=1

θi(gi + biasi) (10)

and

bias
(
f̂w(y)

)
=

M∑
i=1

θibiasi (11)

where the typical bias term upto O(h2)will depend on the second derivative of

the true underlying density

biasi =
h2

2
g′′i γ2. (12)

Assuming that the sampling is independent between strata (which is usually the

case), we can also write

V ar
(
f̂w(y)

)
= θ21var (ĝ1) + θ22var (ĝ2) + ...+ θ2Mvar (ĝM ) (13)

and upto O( 1
nh )∫

V ar
(
f̂w(y)

)
dy =

1
h

[∫
(K(ψ))2 dψ

] M∑
i=1

θ2i
ni
. (14)

Silverman (1986) provides details of the non-stratified case for sampling with

replacement. If we consider each stratum as such a sample, it is then straight-

forward to work out (10) through (14).
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Proposition 1: If the densities of strata 1 through M are given as g1

through gM , the population density f(y) is estimated using a kernel density

satisfying (A1), and a stratified sample of data is drawn independently in each

stratum, then the window width which minimizes the mean-squared error of

f̂w(y) will be

hst =
(
γ2
2

)− 1
5

⎛⎜⎝
⎡⎢⎣∫
ψ

(K(ψ))2 dψ

⎤⎥⎦
⎞⎟⎠

1
5 (

M∑
i=1

θ2i
ni

) 1
5
⎛⎝∫

y

[
M∑
i=1

θi (g′′i )

]2

dy

⎞⎠− 1
5

.

(15)

Proof: using (10) through (14) we write the mean squared error of f̂w(y) as

V ar
(
f̂w(y)

)
+
(
bias

(
f̂w(y)

))2

. The integrated mean squared error is then∫
y

{
V ar

(
f̂w(y)

)
+
(
bias

(
f̂w(y)

))2
}
dy.

We minimize this expression with respect to h to get the result in Proposition

1.♦
In order to implement this result, we need to know the second derivative

of the true underlying density. Of course, this will normally not be available.

One solution to this problem is to specify a family of distributions which will

allow a value to be assigned to the term
∫
y

[∑M
i=1 θi (g

′′
i )
]2
dy in (15). For the

i.i.d. case, it has been shown that when f(y) is normally distributed that the

optimal window width will be h∗=1.06σn−1
5 where σ is the standard deviation

of y. This choice of window width is commonly employed in econometrics soft-

ware packages (Stata Corporation (2005), for example) and is a frequently used

starting point for other bandwidth selection techniques such as cross-validation.

Here it is natural to ask whether a similar reference window width can be de-

rived based upon underlying normal distributions in all of the strata. Corollary

1 gives the value of that reference window width.

Corollary 1: If g1 through gM are normally distributed with mean μi and

variance σ2
i and the density is estimated using a standard normal kernel, then

the optimal window width (in the mean squared error sense) will be

hst = 0.87

(
M∑
i=1

θ2i
ni

) 1
5

(λ1 + λ2)
− 1

5 (16)
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where λ1 is a weighted sum of stratum-specific standard deviations

λ1 =
3
8

M∑
i=1

θ2i σ
−5
i

and λ2 is a weighted sum of a function of the distance between stratum means

λ2 =
M∑
i=1

M∑
l �=i

θiθl

(
σ2
i + σ2

l

)− 5
2

√
2

{
3 − 6

(μi − μl)
2

(σ2
i + σ2

l )
+

(μi − μl)
4

(σ2
i + σ2

l )
2

}
e
− 1

2
(μi−μl)

2

(σ2
i
+σ2

l )

Proof: For the case of a standard normal kernel γ2
2 = 1 and

∫
ψ

(K(ψ))2 dψ = 1
2
√
π
.

We can write∫
y

[
M∑
i=1

θi (g′′i )

]2

dy =
∫
y

M∑
i=1

θ2i (g′′i )
2
dy +

∫
y

M∑
i=1

M∑
l �=i

θlθi (g′′i ) (g′′l ) dy

and for normal densities replace g′′i with 1
σ3

i

√
2π

[
1 −

(
y−μi

σi

)2
]
e
− 1

2

“
y−μi

σi

”2

. Then

the first term,
∫
y

∑M
i=1 θ

2
i (g′′i )

2, becomes 3
8
√
π

∑M
i=1 σ

−5
i θ2i . The second term can

be calculated by integrating the product of g′′i and g′′j . Using these results,

calculate λ1 and λ2 and replace in the formula for hst.♦
We note that the optimal window width is inversely proportional to a weighted

sum of the strata sample sizes, ni. In the case where ni = n
M and θi = 1

M , then∑M
i=1

θ2i
ni

= n and the window width will be proportional to n− 1
5 as in the non-

stratified case, but the proportionality constant will differ from the usual 1.06σ.

When strata share common means and variances, and the population and sam-

ple proportions are equal in all strata, this result collapses to the usual optimal

window width for normal density: h∗ = 1.06σn− 1
5 . Note that however if σi = σ

for all strata, that the population standard deviation may still differ from σ and

hst �=1.06σn− 1
5 .

When strata share common means and variances, hst = 1.06σ
(∑M

i=1
θ2i
ni

) 1
5
.

Thus even in the case of homogeneous populations in all strata, the optimal

window width is different than the usual h∗ unless θi = ni

n . This is analagous

to the case of estimation of the mean, where even when all strata have identical

means, the variance of the estimator y is different for a stratified sample than

for a simple random sample.

In practice we can replace σi with some consistent estimator like
√
s2i and

μi with its estimate, y.
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2.0.1 Numerical Properties

In this section, we compare the integrated mean squared error under different

choices for the window width. For the case where we use only one window

width and estimate the density using the entire sample of data, we compare

the optimally chosen window width, hst, derived above and h∗, the standard

reference window width for the i.i.d. case. We consider the simplest case of

two strata, both of which are normally distributed. We also consider separate

estimation of the two strata using an optimally chosen window width for the

j − th strata (h∗j = 1.06 ∗ σjn−1/5
j ) and combining the stratum-specific density

estimates using (9). This exercise is meant to be an illustration of the trade-

offs involved in these options rather than a compelling practical example. In

practice, the more interesting case is that of many strata with very small sample

sizes in each stratum.

Let the two strata populations be normally distributed with means μ1 and

μ2 and standard deviations σ1 and σ2. In Figure 1a, we see the effects on the

window width as we vary the means of the two strata, holding the standard devi-

ations constant. Figure1b shows the effect on the various window width choices

when we hold the stratum means constant and allow the standard deviations of

the two strata to become increasingly different.

For the case of two strata, we can write the window width in (16) as a

function of the difference in means, φ = μ2 − μ1 and the difference in standard

deviations, γ = σ2
σ1

. In that case, λ1 and λ2 become

λ1 =
3

8σ5
1

[
θ21 + γ−5θ22

]
and

λ2 =
√

2θ1θ2
(
σ2

1

(
1 + γ2

))− 5
2

{
3 − 6

φ2

σ2
1 (1 + γ2)

+
φ4

(σ2
1 (1 + γ2))2

}
e
− 1

2
φ2

σ2
1(1+γ2)

For the purpose of the illustration, we fix θ1 = θ2 = 1
2 , n1 = n2 = 50, and

σ2
1 = 1. In Figure 1a, we can see that as the difference between strata means

increases, h∗ grows without bound. hst on the other hand, increases for a period,

but will asymptotically approach .4848. (The value of h∗1 and h∗2, 1.06n−1/5, is

lim
φ→∞

hst for this set of parameter values.) Intuitively, the optimal estimator,

hst, increases when the combined strata are unimodal, but once the means are
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far enough apart for the density to exhibit bi-modality, hst begins to decrease.

The effect of this is that the density estimation is essentially being conducted

separately on each stratum, the small window width giving near zero weight to

comparisons between elements in different strata. The stratum-specific window

widths are equal since they only depend upon the (identical) stratum-specific

variances. Figure 1b provides the same illustration for strata with identical

means, but increasingly different standard deviations. Again, hst, is not going

to grow without bound because it takes into account the fact that the increas-

ing sample variation is the result of two strata with two different underlying

distributions. (It is possible to show that lim
γ→∞ hst ≈ .556.)

Table 1 presents the values of h∗ and hst at various points from Figure 1.

The second last column of Table 1 gives the ratio of the approximate IMSE

(upto O( 1
nh )) of f̂w (y) using a standard normal kernel and employing both h∗

and hst. We compare their ratio as a measure of the efficiency loss of using h∗.

The last column compares the ‘ideal’ approach of using stratum-specific window

widths and a weighted combination of stratum-specific densities as in (9). Here

the integrated mean squared error is numerically calculated using

IMSE
[
f̂w (y)

]
=

∫
x

{
V ar

(
f̂w(y)

)
+
(
bias

(
f̂w(y)

))2
}
dx

=
∫
x

⎧⎨⎩ 1
h

[∫
(K(ψ))2 dψ

] M∑
i=1

θ2i
ni

+
h4

4
γ2
2

[
M∑
i=1

θig
′′
i

]2
⎫⎬⎭ dx

and the appropriate values for h and the other variables based upon a standard

normal kernel, and two normal densities with μ1 = 0, σ1 = 1, and mean and

standard deviation of the second stratum as specified. We calculate the variance

and mean of the mixture of normals for h∗ using standard formulas such as found

in Behboodian (1970). Table 1a compares the loss of efficiency for two strata

with equal standard deviations as the difference between strata means increases.

In Table 1b, the means are held constant while strata standard deviations vary.

Given the use of the weighted estimator for the density, using the proper win-

dow width gives large improvements in mean squared error over the standard

reference window width. This is true even when the sampling is proportional

(to stratum size). As the two stratums become increasingly different (either

in mean or in standard deviation) the gains in integrated mean squared error
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become quite large. When we compare the optimal (under the constraint of

using only one parameter) window width hst with the ‘ideal’ approach of sep-

arate strata-specific density estimation, we see that there is little loss in mean

squared error from using one window width in the case where the different strata

have identical standard deviations. As the distance between the strata increases

(where μ2 − μ1 is between 1 and 3.5), using hst actually provides superior in-

tegrated mean squared error, but the gains are small. The improvement in

variance from a larger window width under hst must dominate any bias penalty

in these cases. Examining the point-wise data, the larger window width of hst

does a better job of estimating the density between the two modes where there

is mixing of the two distributions. In the case where stratum-specific standard

deviations differ, however, the constraint of using only one window width, even

when chosen optimally, comes at fairly high penalty in terms of integrated mean

squared error.

When the difference between means is greater than 2, using h∗ results in very

large efficiency losses compared to using hst. This corresponends to the results

presented in the simulation below. For the case of dis-proportionate sampling,

the relative loss of IMSE is not much different than in the case of proportional

sampling. As we will see from the simulation, however, the bias is much greater

using h∗. Since the efficiency measure considered here includes integrated bias,

it is perhaps not a good measure of the pointwise bias from using h∗. However,

it is quite clear from the figures presented in the simulation exercise below that

this pointwise bias will be unacceptably large.

Figures 2 and 3 provide a graphical depiction of the ratio of integrated mean

squared errors from the last two columns of Table 1a and Table 1b.

2.0.2 Simulation study

In a simulation study using a similar simple set-up, we consider the proposed

optimal window width, hst versus h∗ = 1.06σn− 1
5 and

ha = .9Min(σ, inter−quartile range1.34 )n−1/5. We also include comparison with esti-

mation of stratum-specific densities which are then combined using (9), as de-

scribed above. ha has been shown to be superior to h∗ for mixtures of normals
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and bimodal densities, see Silverman (1986). For clarity, we consider sampling

from two strata, where the population in each strata is equal and the under-

lying densities are normal with mean μi and standard deviation σi. For the

simulation, we fix n1 = 50, μ1 = 0 and σ1 = 1 while varying the sample size,

the mean, and the standard deviation of stratum 2 only. Proportional sampling

thus implies n2
n1

= 1, otherwise the sampling is disproportionate.

For proportional sampling, we consider the benchmark case when there is

no difference in mean or standard deviation between the two strata. We then

consider how estimation changes using the proposed hst as the difference be-

tween the two strata means increases, as the difference between the standard

deviations increases, and as both change. We then consider the same cases for

disproportionate sampling.

We conduct 1000 repetitions for each case. Each repetition involves drawing

a sample from the two strata, estimating the five candidate window widths (h∗,

ha, h
∗
1, h

∗
2 and hst) based upon the formulas above (with σ replaced by s, and

μ by y), and estimating the non-parametric density at 800 points. The figures

give the average estimate of the density over the 1000 repetitions. Tables 2

presents the average calculated window widths and the various combinations

which have been considered in the simulation exercise. Table 3 presents our

numerically estimated value of the integrated mean squared error. These differ

from the theoretical ones above because of the order of approximation used in

the theoretical calculations.

We first consider the case of proportional sampling (n1 = n2 = 50) when

both strata have mean zero and variance one. The average hst is the same as

the average h∗ and the two average density estimates are identical. This is as

expected given the discussion above. In this case, the stratification is spurious

since the two strata are exactly identical. Note that in practice, however, the

density estimate using h∗ will be superior to that using hst since calculation

of hst involves computing two strata means and two strata standard deviations

instead of one total sample standard deviation. The estimation of four quantities

instead of one introduces more variability into the estimate of hst than h∗.

The improvement provided by using hst as opposed to h∗ or ha is dramatic

when the difference between the strata means grows and the overall density
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becomes bi-modal. As can be seen in Figure 3, h∗ tends to oversmooth the

peaks. ha gives improved performance and reduces this over-smoothing, but

hst can be seen to match the peaks even better than either h∗ or ha. When

means between strata are equal, but variances differ, the same results hold: ha

improves performance over h∗, but hst matches the density better than either.

As noted above, proportional sampling will tend to be the exception in most

cross-sectional data sets used by economists. The proposed optimal window

width, hst combined with the weighted density estimator of (8), proves to be

a very powerful tool for non-proportional sampling. This is examined in the

remaining figures.

When the sampling is not proportionate and the strata differ in either means

or variances, the unweighted estimator will be biased as discussed above. This

is clear from Figures 9 and 10 where we compare density estimation for two

strata with equal standard deviations but different means. In both cases, the

weighted estimator using hst clearly outperforms unweighted estimation with

any (unique) window width. (We present, therefore, only the comparison be-

tween weighted estimation using hst and unweighted density estimation using

h∗.) Here stratum 2 is sampled twice as intensively as stratum 1, thus the ele-

ments from stratum 2 receive a weight that is half that of elements in stratum

1. We would point out that this is not a particularly large difference in weights.

In many of the data sets used in applied economic work, the sampling dispro-

portion is greater than 10 between certain strata, so the results from ignoring

the weighting in this case will be even more dramatic with even larger resulting

bias.

Figures 11 and 12 illustrate the case of equal strata means and different

variances and the case of variation between strata of both means and standard

deviations. Again, the same results hold. Large bias is incurred by ignoring the

structure of the sampling.

2.0.3 Optimal allocation

If we have some information about the means and standard deviations in the

various strata (perhaps from a previous survey), can we use that information
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to construct an optimal sampling allocation to minimize the integrated mean

squared error of the estimator of f(y)? We know that in the case of stratified

sampling for mean estimation that oversampling (relative to population propor-

tions) strata with higher variance can give a more precise estimate of the mean.

Does a similar result hold here?

Curiously, it turns out that proportional sampling will be the optimal allo-

cation in all cases, given that we are optimally choosing hst.

Proposition 2: If the densities of strata 1 through M are given as g1

through gM , the population density f(y) is estimated using a kernel density

satisfying (A1), and the window width is chosen as (15), then the sampling allo-

cation which minimizes the integrated mean squared error of f̂w(y) is sampling

proportional to stratum size,

ni = nθi.

Proof: The integrated mean squared error of f̂w(y) is

1
h

[∫
(K(ψ))2 dψ

] M∑
i=1

θ2i
ni

+
h4

4
γ2
2

∫
y

[
M∑
i=1

θig
′′
i

]2

dy

Replacing h with hst yields

IMSE(f̂w(y)) =
5
4
γ

2
5
2

[∫
(K(ψ))2 dψ

] 4
5

⎛⎝∫
y

[
M∑
i=1

θig
′′
i

]2

dy

⎞⎠
1
5 ( M∑

i=1

θ2i
ni

) 4
5

= k∗.

(
M∑
i=1

θ2i
ni

) 4
5

If we minimize this quantity with respect to n1, ..., nM constrained by
∑
ni = n,

a typical equation will be

∂IMSE

∂nj
= −4

5
k∗
(

M∑
i=1

θ2i
ni

)− 1
5
θ2j
n2
j

+ λ = 0

where λ is the Lagrange multiplier. If we solve for λ, multiply both sides of the

equation by n2
j , take the square root of both sides of the equation, and solve for

√
λ
∑
nj =

√
λn =

(
4
5k

∗) 1
2
(∑M

i=1
θ2i
ni

)− 1
10
. Replacing λ in the above equation

then provides
θ2j
n2

j
= 1

n2 and nj = nθj . ♦
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This is a somewhat surprising result given the intuition from the mean esti-

mation problem. However, in this case, we are not estimating any single point

from each stratum, but instead the entire distribution. Even from a stratum

whose distribution has a small variance we will need a sample size sufficiently

large to estimate the contribution of that stratum to the overall population

density.

3 Concluding Remarks

This paper is an attempt to begin unifying the literatures on survey design and

nonparametric density estimation. As such we begin by analyzing the plug-

in window width for normal data, the point of departure for most theoretical

considerations of nonparametric density estimation as well as a useful bandwidth

to generate a first guess at the distribution or for use as a starting point for

other data-driven bandwidth selection techniques such as nearest neighbor and

cross-validation. It is instructive to see how the standard results change when

stratification is introduced.

The framework here is general and does not depend upon any minimal strata

sample sizes. For the simple examples considered in the simulations, it may

be that using a different bandwidth for each stratum, estimating individual

stratum-specific densities and then combining them using (9) will provide an

adequate alternative. However for cases where there are many strata, some

with only a handful of elements, such a technique is not feasible. The technique

presented in this paper, to choose one bandwidth for all the data which takes into

account the strata differences, will work in this case. Of course, knowledge of

stratum-specific means and variances (or access to reasonable estimates thereof)

is necessary. This is a problem which is frequently faced by survey statisticians

in designing an optimal allocation. Using pretests, previous survey samples,

or simple aggregation rules to combine similar strata are all ways around this

problem, though all are imperfect. The technique does not relieve the researcher

of the need to make intelligent choices according to the particular application.

Many problems remain to be addressed. One problem for economists is the

dearth of information on the survey design behind the data. Occasionally we
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know something about survey weights, rarely do we know which observations

come from which particular strata or clusters. The technique presented here

may be used in that case, provided some other source of information about

stratum-specific means and variances is available. Lack of survey information

remains an impediment to improving our analytical techniques and we need to

make a more concerted effort to have such information included with data.
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Table 1a: Comparison of window widths and integrated mean squared errors
(IMSE) from weighted and unweighted estimation

Identical Standard Deviations
μ2−μ1 h∗ hst IMSE(h∗) IMSE(hst)

IMSE(hst)
IMSE(h∗)

IMSE(hst)
IMSE(h∗

1 ,h
∗
2)

Proportional Sampling: n2=n1
0.0 0.42199 0.42168 0.00836 0.00836 1.00000 1.14870
0.5 0.43498 0.43513 0.00810 0.00810 1.00000 1.11319
1.0 0.47180 0.47833 0.00737 0.00737 0.99963 1.01265
1.5 0.52749 0.55035 0.00643 0.00641 0.99656 0.88014
2.0 0.59679 0.58571 0.00602 0.00602 0.99928 0.82701
2.5 0.67552 0.53979 0.00738 0.00653 0.88512 0.89736
3.0 0.76076 0.49827 0.01140 0.00708 0.62081 0.97214
3.5 0.85056 0.47889 0.01797 0.00736 0.40974 1.01147
4.0 0.94361 0.47387 0.02639 0.00744 0.28199 1.02219
4.5 1.03904 0.47572 0.03645 0.00741 0.20335 1.01821
5.0 1.13625 0.47930 0.04896 0.00736 0.15028 1.01061

Non-proportional Sampling: n2 = 2 ∗ n1
0.0 0.38912 0.39811 0.00665 0.00664 0.99898 1.15927
0.5 0.40110 0.41080 0.00644 0.00644 0.99888 1.12344
1.0 0.43505 0.45159 0.00587 0.00586 0.99732 1.02197
1.5 0.48640 0.51958 0.00513 0.00509 0.99189 0.88824
2.0 0.55030 0.55296 0.00478 0.00478 0.99995 0.83462
2.5 0.62290 0.50961 0.00571 0.00519 0.90833 0.90561
3.0 0.70150 0.47041 0.00858 0.00562 0.65550 0.98108
3.5 0.78430 0.45212 0.01329 0.00585 0.44007 1.02078
4.0 0.87011 0.44738 0.01935 0.00591 0.30553 1.03160
4.5 0.95811 0.44912 0.02660 0.00589 0.22138 1.02758
5.0 1.04775 0.45250 0.03562 0.00584 0.16409 1.01991
IMSE(h∗1, h

∗
2) = .00728 for all rows in the top panel.

IMSE(h∗1, h
∗
2) = .00573 for all rows in the bottom panel.
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Table 1b: Comparison of window widths and integrated mean squared errors
(IMSE) from weighted and unweighted estimation

Identical Means
σ2/σ1 h∗ hst IMSE(h∗) IMSE(hst)

IMSE(hst)
IMSE(h∗)

IMSE(hst)
IMSE(h∗

1 ,h
∗
2)

Proportional Sampling: n2=n1
1.0 0.42199 0.42168 0.00836 0.00836 1.00000 1.14870
1.5 0.53794 0.49888 0.00716 0.00707 0.98786 1.16513
2.0 0.66723 0.53353 0.00746 0.00661 0.88582 1.21051
2.5 0.80345 0.54689 0.00952 0.00645 0.67740 1.26530
3.0 0.94361 0.55208 0.01389 0.00639 0.45980 1.31608
3.5 1.08617 0.55426 0.02136 0.00636 0.29781 1.35946
4.0 1.23031 0.55526 0.03291 0.00635 0.19298 1.39578
4.5 1.37553 0.55575 0.04967 0.00634 0.12773 1.42623
5.0 1.52152 0.55602 0.07298 0.00634 0.08690 1.45196
5.5 1.66808 0.55616 0.10430 0.00634 0.06079 1.47391
6.0 1.81506 0.55625 0.14528 0.00634 0.04363 1.49281

Non-proportional Sampling: n2 = 2 ∗ n1
1.0 0.38912 0.39811 0.00665 0.00664 0.99898 1.15927
1.5 0.49604 0.47099 0.00565 0.00562 0.99437 1.11553
2.0 0.61526 0.50370 0.00578 0.00525 0.90896 1.12066
2.5 0.74087 0.51631 0.00720 0.00512 0.71153 1.14435
3.0 0.87011 0.52121 0.01031 0.00507 0.49199 1.17002
3.5 1.00157 0.52327 0.01568 0.00505 0.32233 1.19280
4.0 1.13448 0.52421 0.02400 0.00504 0.21022 1.21202
4.5 1.26839 0.52468 0.03610 0.00504 0.13963 1.22807
5.0 1.40301 0.52493 0.05293 0.00504 0.09519 1.24154
5.5 1.53815 0.52507 0.07556 0.00504 0.06666 1.25295
6.0 1.67368 0.52515 0.10518 0.00504 0.04788 1.26270
IMSE(h∗1, h

∗
2) = .00728 for first row of the top panel and decreases to .00425

in the last row of the top panel.
IMSE(h∗1, h

∗
2) = .00573 for first row of the bottom panel and decreases to

.00399 in the last row of the bottom panel.
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Table 2: Results of simulation exercise
Weighted Non-Parametric Density Estimation for Stratified Samples

Average window width values for simulations

μ2 σ2 n2 hst ha h∗ h∗1 h∗2 Figure
0 1 50 0.41844 0.34562 0.42070 0.48247 0.48151 4
2 1 50 0.55608 0.50341 0.59581 0.48382 0.48444 5
3 1 50 0.48845 0.64586 0.76067 0.48140 0.48047 6
0 3 50 0.54803 0.57818 0.93639 0.48199 1.44148 7
3 3 50 0.55413 0.86537 1.13040 0.48174 1.44263 8
2 1 100 0.52969 0.45116 0.53613 0.48345 0.42115 9
3 1 100 0.46465 0.57394 0.67604 0.48102 0.42221 10
0 3 100 0.51793 0.65675 0.97623 0.48228 1.26164 11
3 3 100 0.52446 0.94106 1.12422 0.48304 1.26402 12

Table contains average results over 1000 simulations
Stratum 1 values are fixed at n1 = 50, σ1 = 1, and μ1 = 0.

Table 3: Results of simulation exercise
Weighted Non-Parametric Density Estimation for Stratified Samples

Average integrated mean squared error from the simulations

Integrated Mean Squared Error
μ2 σ2 n2 hst ha h∗ h∗1 and h∗2
0 1 50 0.00571 0.00648 0.00570 0.00575
2 1 50 0.00353 0.00374 0.00334 0.00419
3 1 50 0.00433 0.00419 0.00486 0.00453
0 3 50 0.00453 0.00460 0.00653 0.00328
3 3 50 0.00447 0.00562 0.00835 0.00315
2 1 100 0.00282 0.01085 0.00994 0.00329
3 1 100 0.00356 0.01430 0.01394 0.00366
0 3 100 0.00351 0.00911 0.01269 0.00302
3 3 100 0.00349 0.01401 0.01621 0.00280

Table contains average results over 1000 simulations
Stratum 1 values are fixed at n1 = 50, σ1 = 1, and μ1 = 0.
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