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Multi-Item Contests

Alexander R.W. Robson∗

Abstract

Contests are games in which the players compete for a valuable prize by exerting
effort or using resources so as to increase their probability of winning. This paper
examines two player multi-item contests, a class of games in which players are faced
with a decision about how much of a given resource to devote to an entire collection
or sequence of different contests. Applications include multi-item rent-seeking behav-
ior, multi-good marketing and advertising, multi-jurisdictional political contests. In
these games, even when the (uncertain) outcomes in each contest are assumed to be
mutually statistically independent, equilibrium efforts can exhibit strong interdepen-
dencies. Changes in either the contest success function or value of the prize in one
contest usually alter the equilibrium amount of resources devoted to all contests by
both players. We unify and extend results from marketing and political science, and
also derive conditions under which both players exert zero effort in equilibrium in some
subset of contests.

1 Introduction

The properties of equilibrium behavior in single-item contests have been widely studied in
the literature, and the models and results have been put to work in many applied situations.
In all of these applications and examples players exert effort in order to obtain a single
valuable prize. But many interesting situations in economics and political science involve
instances in which players are faced with a decision about how much resources to devote to
a collection or sequence of different contests.
One example of a such a situation is a national political campaign, where funds are raised

by the central party political machine and then distributed across various physical locations
or issues. Another example occurs when two potential monopolists attempt to gain the
exclusive rights to sell two different goods. If each has identical resources and production
technologies, the remaining issue is to determine the efforts that each player puts in to
obtaining each license.
This paper relaxes the assumption of a single prize for which the players compete, and

instead studies a class of simple two player games in which players must decide how much
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effort to exert in trying to obtain many prizes. We call this class of games multi-item
contests.
The problem of multi-item contest becomes more interesting if one of the players has an

advantage over the other in one of the contests, in the sense that, with an equal amount of
resources, one player has a more than even chance of winning the contest. An even more
interesting situation is one where one or both of the players find it optimal, in equilibrium,
not to compete at all in a certain subset of the contests that are initially available to them. It
is easy to envisage political campaigns or marketing schemes where the players choose not to
participate at all in some contests, and instead focus their resources on other issues, products,
or jurisdictions where returns are greatest. In election campaigns one often observes this kind
of behavior — in many cases campaign strategists and candidates virtually ignore certain
jurisdictions or issues and focus on their strengths, even in the final days of the campaign.
To our knowledge, the earliest study of a situation similar to ours is Tukey (1949) and

the subsequent literature on “Blotto” games.1 In the marketing literature, Friedman (1958)
was the first to analyze market share attraction games in which firms use advertising ex-
penditures to attract customers. Friedman analyzes the optimal allocation of advertising
expenditures by two firms in different product markets, using strictly competitive game
theory and saddlepoint arguments. Friedman’s analysis has been widely adopted in the
subsequent marketing and advertising literature, most notably by Monahan (1987). 2

Another important paper which analyzes behavior in distinct but simultaneous political
contests is Snyder (1989), who models the behavior of two parties engaged in competition
over many legislative seats in fashion similar to ours.3 In Snyder’s model, all “prizes” are
legislative seats of the same value, and players are assumed to have either of the following two
objectives: they maximize the expected number of seats won, or maximize the probability
of winning a majority of seats. Under the first behavioral assumption, Snyder obtains the
result that players will put identical effort into each contest. This result is a function of his
assumptions about resource constraints (he does not explicitly allow for resource constraints,
but instead assumes that resources are available in any amount at constant marginal costs),
and about candidate behavior (players only care about the number of seats won, so that the
value of each “prize” is regarded as identical).
This paper develops a general model of multi-item contests and examines these and other

issues in detail. Section 2 develops a model of multi-item contests and analyzes equilibria
for the generalized Tullock (1980) functional form. We solve for an characterize the unique
pure strategy Nash equilibrium in effort profiles, and also provide some simple examples of
multi-item contests. Section 3 analyzes this special case further, by examining the sensitivity

1A general version of the Blotto game is described by Blackett (1954). For other analyses of Blotto
games, see Karlin (1959), Cooper and Restropo (1967) and Bellman (1968).

2Cooper (1993) provides an excellent summary of the market-share attraction literature. Friedman’s
basic model and approach is also briefly discussed in Luenberger (1968) and Ordeshook (1986). Interestingly,
Friedman and later marketing scholars use the simple ratio functional form popularized much later by Tullock
(1980) in the rent seeking literature. However, Friedman’s paper and the marketing literature appears to
have been virtually ignored by researchers studying rent-seeking behavior. The exceptions are Nti (1997)
and Snyder (1989).

3Similar ideas are explored by Brams and Davis (1974) and Colantoni et al (1975).
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of the equilibrium efforts to changes in parameter values. Both sections illustrate one of the
main results of the paper — the equilibrium expenditures in multi-item contests exhibit strong
interdependence among the various contests, in the sense that changes in the value of the
prize or parameters in one contest alters the resources devoted to all contests. Section 4
introduces a more general functional form for the contest success function, which allows for
the possibility that both players might, in equilibrium, put no effort into a subset of contests.
We provide a set of sufficient conditions under which this outcome can occur, and present
an example to illustrate the main ideas behind these conditions. Section 5 concludes.

2 A General Model of Multi-Item Contests

Suppose that there are two players labelled x and y with resource endowments Rx > 0
and Ry > 0. There is a finite set I (where I is of size n ≥ 2) of contests. Label these
contests i = 1, . . . , n, and let the value of the prize in each contest i be Vi > 0 to both
players. Player x has the utility function ux and player y’s utility function is uy. Players
devote resources xi ≥ 0 and yi ≥ 0 to each contest i to influence the probability of obtaining
each prize. Resource endowments cannot be consumed. At the outset, we must make
some assumption about the probability of obtaining more than one prize. Let pi (xi, yi)
be the marginal probability of obtaining the prize in contest i, and let pS be the marginal
probability of obtaining all prizes in some subset S ⊆ I. We follow Snyder in assuming
that, for any allocations {(xi, yi) : i = 1, . . . , n} the winning probabilities for player x are
mutually statistically independent :

pS =
Y
i∈S
pi for any S ⊆ I

The assumption of mutual statistical independence means that player x’s probability of
winning in contest i, conditional on the outcome in other contests, does not depend directly
on the winning probabilities in other contests or efforts devoted to those other contests.
It is easy to imagine situations in which this assumption may not hold and where there
may be some correlation between success or failure in different contests. However, in what
follows, because both players face a resource constraint, devoting greater resources to other
contests j 6= i leaves fewer resources available for contest i, and so in equilibrium there will
be indirect effects between outcomes in different contests. In other words, in this paper
interdependence between contests works via the budget constraint and emerges as a result
of equilibrium behavior, rather than as a result of any assumption about the statistical
dependence of the contest probabilities.
Next, we assume a functional form for each pi. We follow most of the literature here

(and, in particular Skaperdas, 1996) and assume that the contest success functions (CSF) in
each contest i are:

pi(xi, yi) ≡
½

αix
ri
i /[αix

ri
i + y

ri ] if xi and yi > 0
αi/ (αi + 1) if xi + yi = 0

(1)
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where 0 < ri ≤ 1, and where αi > 0 is now a parameter reflecting the possibility that player
x has an advantage or disadvantage in particular contests or over a subset of contests.4 For
example, in political campaigns we often observe the phenomenon that parties have intrinsic
advantages in some geographical areas and disadvantages in others, or that for historical
reasons the parties’ platforms naturally appeal to certain classes of voters according to
economic status, union membership, gender, racial attributes and so on.
We assume that in the event a player is not successful in a particular contest, he receives

a payoff of zero. The expected utility of player x is then:

EUx =
nY
i=1

pi.ux

Ã
nX
i=1

Vi

!
+

nX
i=1

"
(1− pi)

nY
j 6=i
pjux

Ã
nX
j 6=i
Vj

!#

+
nX
i=1

nX
j=1

(1− pi) (1− pj)
nY

k 6=i,j
pk.ux

Ã
nX

k 6=i,j
Vk

!
+ . . .+

nY
i=1

(1− pi) .ux (0) (2)

and player y’s expected utility is:

EUy =
nY
i=1

pi.uy (0) +
nX
i=1

"
(1− pi) .

nY
j 6=i
pj.uy (Vi)

#

+
nX
i=1

nX
j=1

(1− pi) (1− pj)
nY

k 6=i,j
pk.uy (Vi + Vj) + . . .+

nY
i=1

(1− pi) .uy
Ã

nX
i=1

Vi

!
(3)

We further assume that the agents are risk neutral, leading to the following result, which
allows us to considerably simplify the payoff functions and the remaining analysis.

Proposition 1 If the contest probabilities are mutually statistically independent and if both
agents are risk neutral, the expected payoffs are:

EUx =
nX
i=1

piVi

for player x and

EUy =
nX
i=1

(1− pi)Vi

for player y.

Proof. All proofs are contained in the Appendix.

4Skaperdas (1996) shows that the functional form in equation (1) is satisfied if and only if certain behav-
ioral axioms hold. Interestingly, the “if” part of Skaperdas’ result was proved much earlier in the marketing
literature by Bell (1975).
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The resource constraints for each player are:

Rx =
nX
i=1

xi , Ry =
nX
i=1

yi (4)

An effort profile (x, y) ≡ {xi, yi}ni=1 is feasible if
Pn

i=1 xi = Rx and
Pn

i=1 yi = Ry. A feasible
pure strategy Nash equilibrium is a collection of feasible effort profiles (x∗, y∗) ≡ {x∗i , y∗i }ni=1
such that EUx (x

∗, y∗) ≥ EUx (x, y∗) for all x 6= x∗ and EUy (x∗, y∗) ≥ EUy (x, y∗) for all
y 6= y∗.5
In a feasible Nash equilibrium {x∗i , y∗i }ni=1, player x solves:

max
{xi}ni=1

nX
i=1

αix
ri
i

αix
ri
i + (y

∗
i )
ri Vi

subject to: Rx =
nX
i=1

xi

and player y solves:

max
{yi}ni=1

nX
i=1

yrii
αi (x∗i )

ri + yrii
Vi

subject to: Ry =
nX
i=1

yi

2.1 Equilibrium Conditions, Efforts and Payoffs

For player x, the first order conditions are:

αiri (x
∗
i )
ri−1 (y∗i )

ri Vi

[αi (x∗i )
ri + (y∗i )

ri ]
2 = λx ∀ i (5)

and for player y they are:
αiri (y

∗
i )
ri−1 (x∗i )

ri Vi

[αi (x∗i )
ri + (y∗i )

ri ]
2 = λy ∀ i (6)

where λx and λy are the multipliers on the resource constraints for each player. Dividing
equations (5) and (6) gives:

y∗i
x∗i
=

λx
λy

∀ i

or:

y∗i =
λx
λy
x∗i ∀ i

5It is straighforward to show that in this setup, players never leave any resources unused, so the assumption
that

Pn
i=1 xi = Rx and

Pn
i=1 yi = Ry involves no loss of generality.
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Summing over all i yields:

Ry =
λx
λy
Rx

or:
λx
λy
=
Ry

Rx

Substituting this into the first order conditions (5) for player x yields:

αiri (x
∗
i )
ri−1

µ
x∗iRy

Rx

¶ri
Vi·

αi (x∗i )
ri +

µ
x∗iRy

Rx

¶ri¸2 = λx ∀ i

This then gives us an expression for the effort xi of player x in contest i:

x∗i =
Viαiri

µRy

Rx

¶ri
λx

·
αi +

µRy

Rx

¶ri¸2 ∀ i (7)

Similarly, for player y we have:

y∗i =
Viαiri

µRy

Rx

¶ri
λy

·
αi +

µRy

Rx

¶ri¸2 ∀ i (8)

These expressions are incomplete, however, because we have not solved for the multipliers
λx and λy. To this end, adding up equations (7) and (8) over all i and using the resource
constraints, we have:

Rx =
nX
i=1

x∗i =
1

λx

nX
i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 (9)

and

Ry =
nX
i=1

y∗i =
1

λy

nX
i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 (10)

We can therefore solve for the multipliers to get:

λx =
1

Rx

nX
i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 (11)
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and:

λy =
1

Ry

nX
i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 (12)

We therefore have:

Proposition 2 Suppose that in the two-player, n item contest, each contest success function
i takes the functional form in equation (1). Then the feasible equilibrium efforts are:

x∗i = Rx

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2

Xn

i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


∀ i (13)

and

y∗i = Ry

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2

Xn

i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


∀ i (14)

Since y∗i =
Ry

Rx
x∗i for all i, we have that y

∗
i > x

∗
i for all i iff Ry > Rx.

6 An interesting
feature of the equilibrium expected payoffs is that, depending on the structure of the αi’s ,
ri’s and Vi’s, it is not necessarily the case that the player with the highest initial resources
has the highest equilibrium expected payoffs, even though he puts higher effort into every
contest. To see this, note that the equilibrium expected payoffs for each player are :

EUx =
nX
i=1

αi (Rx)
ri

αi (Rx)
ri + (Ry)

ri Vi and EUy =
nX
i=1

(Ry)
ri

αi (Rx)
ri + (Ry)

ri Vi (15)

Using the payoffs in equation (15), it is straightforward to derive examples in which this
occurs. In other words:

Proposition 3 There exist situations in which EUx < EUy, even though Rx > Ry and
x∗i > y

∗
i for all i.

6This is similar to the result obtained by Snyder (1989) at page 643.
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2.2 Some Examples

2.2.1 Example: A Two Player, Two Item Symmetric Contest

Consider the most basic example of a multi-item contest in which there are two players and
only two items, and suppose that the players have symmetric contest success functions, so
that αi = 1 = ri for all i. Then, the expression we derived above indicate that each player’s
effort on contest i is proportional to their resource endowment and the size of the prize in
contest i, relative to the aggregate prize V ≡ V1 + V2. More precisely, we have:

xi = Rx
Vi

V1 + V2
i = 1, 2 (16)

and

yi = Ry
Vi

V1 + V2
i = 1, 2 (17)

Using these equilibrium expenditures, we can find the equilibrium expected payoffs:

EUx =
Rx

Rx +Ry
(V1 + V2) (18)

and

EUy =
Ry

Rx +Ry
(V1 + V2) (19)

This example illustrates that in a two player, two item, symmetric contest, the player with the
most resources has a higher expected payoff (this is not true in the more general asymmetric
case). It is also straightforward to show that in the two player, two item symmetric contest,
a player’s equilibrium effort in contest i is increasing in the value of the prize in that contest,
and decreasing in the value of prizes in other contests.

2.2.2 Example: A Two Player n-Item Symmetric Contest

Using the expressions for the general case, it is also easy to see that multi-item contests (just
as we do with single item contests), players efforts in each contest will be proportional to
the prize in that contest, as well as depending on each player’s resources endowment and the
aggregate prize V ≡Pn

i=1 Vi. More precisely, if αi = ri = 1 for all i, we have:
7

x∗i = Rx
Vi
V

and y∗i = Ry
Vi
V

with:

EUx =
Rx

Rx +Ry
V

and:

EUy =
Ry

Rx +Ry
V

7This result is obtained by Friedman (1958), page 702.
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2.2.3 Example: A Simple Two Player n-item Asymmetric Contest

Consider the case where player x has an advantage (or disadvantage) in only one jurisdiction
i. That is, we allow player i to have an advantage or disadvantage in contest i by altering the
contest success function he faces in that contest, while specifying that the contest success
functions in all other contests j 6= i are identical and involve no advantages or disadvantages.
In other words, we have:

pi =
αxi

αxi + yi
and pj =

xj
xj + yj

for j 6= i (20)

where α > 1 indicates that player 1 has an advantage in contest i relative to contests j 6= i,
and α < 1 indicates that player 1 has a disadvantage in contest i. We again assume identical
resource endowments Rx = Ry = R and risk neutrality. In this case, we have:

x∗i = y
∗
i =

αViR
(α+ 1)2

³
V−Vi
4
+ αVi

(α+1)2

´ = 4αViR
(α+ 1)2V − Vi(α− 1)2

We also have:

x∗j = y
∗
j =

(α+ 1)2VjR
(α+ 1)2V − V i(α− 1)2 ∀ j 6= i

with:

EUx =
α

α+ 1
Vi +

1

2

X
j 6=i
Vj and EUy =

1

α+ 1
Vi +

1

2

X
j 6=i
Vj

3 Comparative Statics

In this section we investigate how changes in the parameters Vi, αi and ri alter equilibrium
efforts and payoffs.

3.1 Changes in the Values of Each Prize

Let us first examine how equilibrium effort levels vary with Vi, the value of the prize in
contest i. Intuition suggests that an increase in the value of the prize in contest i increases
the effort devoted to contest i, at the expense of efforts devoted to other contests j 6= i.
This is straightforward to confirm.
An additional interesting property of the response of equilibrium efforts to changes in

the values of other contests is that, in terms of elasticities, the ratio of effect of a change in
Vj on x

∗
i divided by effect of a change in Vi on x

∗
j is simply equal to the inverse of the ratio

of the original equilibrium efforts.

Proposition 4 Suppose that for every i, pi takes the functional form in equation (1). Then:
(i) Equilibrium efforts in contest i are increasing in Vi and decreasing in Vj. In other words,
ceteris paribus, both players devote greater effort to more valuable contests, and lower effort

9



to less valuable contests.
(ii) Let εij ≡ ∂x∗i

∂Vj
.
Vj
x∗i
. Then equilibrium efforts obey the following symmetry property:

εij
εji
=
x∗j
x∗i
for i 6= j

(iii) For any i, an increase in Vi always increases the expected payoff of both players.

3.2 Changes in αi

In the rent seeking literature, αi is regarded as a measure of the advantage or disadvantage
that a player has in a contest, in the following sense: if both players put in equal effort, the

equilibrium win probability for player x is
αi

αi + 1
and we say that if αi > 1, player x has a

natural advantage in that contest or that it is “biased” towards player x. A common result

in single item contests is that
∂xi
∂αi

> 0 iff αi < 1. However, in multi-item contests this result

only holds if the players have identical resource endowments. Otherwise, the sign of
∂xi
∂αi

depends on the ratio of the players’ resource endowments and on ri. On the other hand,
even though in some instances the equilibrium effort can decrease in a reponse to a marginal
increase in αi, it is clear from the payoffs in (15) that such a change always increases the
equilibrium payoff of player x and decreases the equilibrium payoff of player y. In other
words:

∂EUx
∂αi

=
(RxRy)

ri

[αi (Rx)
ri + (Ry)

ri ]
2Vi > 0 and

∂EUy
∂αi

= − (RxRy)
ri

[αi (Rx)
ri + (Ry)

ri ]
2Vi < 0 ∀ i

Summarizing, we have:

Proposition 5 Suppose that for every i, pi takes the functional form in equation (1). Then:
(i) Equilibrium efforts in contest i are increasing in αi for both players iff αi is sufficiently
small. That is :

∂xi
∂αi

> 0 and
∂yi
∂αi

> 0 iff αi < αi

where αi =

µRy

Rx

¶ri
. Conversely, equilibrium efforts for are decreasing in αi for both players

iff αi is sufficiently large. The critical value for changes in αi to have these effects depends
positively on Ry, negatively on Rx, and ambiguously on ri.
(ii) Equilibrium efforts in contest i are increasing in αj for both players iff αj is sufficiently
large. That is,

∂xi
∂αj

> 0 and
∂yi
∂αj

> 0 iff αj > αj

where where αj =

µRy

Rx

¶rj
.

(iii) For any contest i, an increase in αi always helps player x and hurts player y.
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3.3 Changes in ri

Changes in ri can also alter the equilibrium efforts and payoffs, although the effect is unclear
unless we make further assumptions.

Proposition 6 Suppose that for every i, pi takes the functional form in equation (1). Then

(i) In general, the signs of both
∂x∗i
∂ri

and
∂x∗i
∂rj

are indeterminate, and depend on the values of

Ry,Rx, αi and ri.
(ii)However, if the players have identical resource endowments, we always have:

∂xi
∂ri

=
∂yi
∂ri

= αi + 1 > 0

and:
∂xi
∂rj

=
∂yi
∂rj

= −αj − 1 < 0

(iii) For any contest i, a marginal increase in ri helps player x and hurts player y if and
only if Rx > Ry. If players have identical resource endowments, changes in ri alter the
equilibrium efforts in that and other contests, but have no effect on either player’s overall
expected payoff.

It is interesting to compare and contrast our results to those obtained by Snyder (1989),
who models the behavior of two parties engaged in competition over many legislative seats
in fashion slightly similar to ours. In Snyder’s model, players are assumed to maximize the
expected number of seats won, or maximize the probability of winning a majority of seats.
Under the first behavioral assumption, Snyder obtains the result that players will put iden-
tical effort into each contest. This result is a function of his assumptions about resource
constraints (he does not explicitly allow for resource constraints), and about candidate be-
havior (players only care about the number of seats won, so that the value of all seats can
be regarded as being identical).
Snyder’s results are therefore a special case of our more general results, where we have

allowed for the possibility that different contests may be regarded by the players as having
different values. This seems to be an attractive assumption in most multi-item contest
settings, but is also especially appealing in political contests, where we often observe contes-
tants placing more resources into electorates with greater returns in terms of political wealth,
or to issues which are regarded as more important in terms of aggregate outcomes, such as
purely economic issues, defense and foreign policy, or the environment. The result also im-
plies the obvious conclusion that participants in political contests will devote more campaign
resources to seats which are more politically prestigious, and which promise greater political
and financial wealth to the winner.

4 Non-Participation in Multi-Item Contests

The results of the previous sections were derived for the case where the players put strictly
positive effort into every contest; the primitives of our model and the functional form of the
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contest success function imposed this on our solution. In richer settings, strictly positive
effort may not be a satisfactory prediction. Therefore, in this section we examine possible
circumstances under which, in equilibrium, some players might not put any effort into a
particular contest.8

4.1 Modifying the CSF

We consider a simple modification of the contest success functions. Note that with the
functional form used in the previous section, the marginal benefit of effort for each player
becomes unbounded as xi goes to zero. That is, for every yi,

lim
xi→0

∂pi

∂xi
= lim

xi→0
αirix

ri−1
i yrii Vi

[αix
ri
i + y

ri ]2
= lim

xi→0
αiriViy

ri
i

xri−3ih
αi +

yri

x
ri
i

i2 =∞
since ri ≤ 1. Therefore, xi = 0 can never be an equilibrium strategy in this model, since,
for any fixed value of the opponent’s effort in a particular contest, the marginal return from
putting in the smallest effort is always positive and is unboundedly large for very small

efforts. Thus, to get equilibria with xi = 0, we need to make
∂pi

∂xi
bounded as xi −→ 0.

One functional form where this property holds is:

pi(xi, yi) ≡ (βi + αixi)
ri

[(βi + αixi)
ri + (δi + yi)

ri ]
(21)

where βi > 0, δi > 0, ri ∈ (0, 1] and αi > 0 for all i. This functional form has been used,
for example, by Skaperdas and Syropoulos (1998), in their study of complementarity on
contests.9

In what follows, we will restrict attention to symmetric non-participation equilibria, which
occur when both players either expend no effort in a contest, or they both put in strictly
positive effort. Depending on parameter values, other configurations may be possible, but
we focus on this class of equilibria to illustrate the main ideas.
Note that with the functional form in equation (21), we have:

∂pi

∂xi
=

αiri (βi + αixi)
ri−1 (δi + yi)

ri

[(βi + αixi)
ri + (δi + yi)

ri ]
2

and:

∂pi

∂xi

¯̄̄̄
xi=0

=
αiri (βi + αixi)

ri−1 (δi + yi)
ri

[(βi + αixi)
ri + (δi + yi)

ri ]
2

¯̄̄̄
¯
xi=0

=
αiriβ

ri−1
i (δi + yi)

ri

[βrii + (δi + yi)
ri ]
2

8Neither Snyder (1989) nor Monahan (1987) allow for the possibility that, in equilibrium, both players
might put zero effort into a particular contest or subset of contests.

9See Skaperdas and Syropoulos (1998), page 670.
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and:
∂pi

∂xi

¯̄̄̄
xi=yi=0

=
αiriβ

ri−1
i δrii

[βrii + δiri ]
2 <∞ (22)

Players again maximize their payoffs, subject to the resource constraints holding with equal-
ity. Let us adopt the following notation:

I+ ≡ {i ∈ I : x∗i > 0 and y∗i > 0}

That is, I+ is the set of contests in which both players put in strictly positive effort in
equilibrium. A symmetric non-participation equilibrium is one where I+ 6= I.
To find conditions under which a symmetric non-participation equilibrium might exist,

note that the expression
αiriβ

ri−1
i δ

ri
i

[βrii +δiri ]
2 Vi is the value marginal product of player x’s effort in

contest i when both his effort and y’s effort are zero. Similarly, for player y we have:

αiriβ
ri
i δ

ri−1
i

[βrii + δiri ]
2 Vi <∞ (23)

which is the value marginal product of player y’s effort in contest i when both his effort and
x’s effort are zero. Intuitively, if these are both sufficiently small, then neither player will be
able to profitably put positive effort into these contests, even when the other player is not
participating. In other words, both players putting no resources into these contests may be
an equilibrium.
This argument is incomplete, however, because interdependence among contests dictates

that we need to consider relative returns in other contests I+, where positive effort is ex-
pended in equilibrium. Suppose that there is a symmetric non-participation equilibrium,
and suppose we were to endow an additional marginal unit of resources on player x. Then,
player x will use these additional resources in I+ only if the marginal returns to contests in
I+ are larger than marginal returns to contests not in I+. But we know that for player x,
the marginal returns to contests in I+ are given by the Lagrange multipliers on the resource
constraints, while the marginal returns to contests not in I+ are given by equations (22) and
(23). The search for a sufficient condition for the existence of a symmetric non-participation
equilibrium boils down to imposing conditions on these marginal returns:

Proposition 7 Suppose that, in a two player contest with contest success function given by
equation (21), there exists a subset of contests I+ ⊂ I such that:

1

Rx + B+α
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
≥ max

j /∈I+
αjrjβ

rj−1
j δ

rj
j£

β
rj
j + δ

rj
j

¤2 Vj (24)

and
1

Ry +D+
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
≥ max

j /∈I+
rjβ

rj
j δ

rj−1
j£

β
rj
j + δ

rj
j

¤2Vj (25)
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where D+ ≡Pi∈I+ δi, B+α ≡
P

i∈I+
βi
αi
and R ≡ Rx + B+α

Ry +D+ .. Then, for all contests j /∈ I+
the Nash equilibrium effort levels are x∗j = y

∗
j = 0, and for all i ∈ I+, the Nash equilibrium

effort levels are strictly positive, with:

x∗i =
¡Rx + B+α

¢ αrii riRriVi

(αrii Rri + 1)2X
i∈I+

αrii riRriVi

(αrii Rri + 1)2

− βi
αi
> 0 (26)

and

y∗i =
¡Ry +D+

¢ αrii riRriVi

(αrii Rri + 1)2X
i∈I+

αrii riRriVi

(αrii Rri + 1)2

− δi > 0 (27)

This result immediately gives us:

Proposition 8 Assume the hypothesis of Proposition 7 holds. Then the equilibrium expected
payoffs are:

Ux =
X
i∈I+

αrii (Rx + B+α )ri
αrii (Rx + B+α )ri + (Ry +D+)ri Vi +

X
j /∈I+

β
rj
j

β
rj
j + δ

rj
j

Vj (28)

and

Uy =
X
i∈I+

(Ry +D+)ri
αrii (Rx + B+α )ri + (Ry +D+)ri Vi +

X
j /∈I+

δ
rj
j

β
rj
j + δ

rj
j

Vj (29)

Examination of the efforts and payoffs in a non-participation equilibrium reveals that
marginal changes in the parameters in the contests j /∈ I+ will have no effect on the efforts
of either player, although such parameter changes alter the equilibrium payoffs in a way that
does not depend on either player’s resource endowment. For example, if both players are
putting zero effort into contest i in equilibrium and there is a small increase in the value of
winning contest i, then both players expected payoff rises, even though both players continue
to devote no resources to that contest. On the other hand, if Vi takes a large enough discrete
“jump”, then both players will immediately devote resources to contest i.

4.1.1 Example: A Two Player, Two Item Symmetric Contest

Let us illustrate the above results with a straightforward example. Suppose that ri = 1,
αi = 1, and that βi = δi. Then the contest success functions take the form:

pi(xi, yi) ≡ βi + xi
βi + xi + βi + yi

=
βi + xi

2βi + xi + yi
(30)
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where βi > 0 ∀ i. We will call βi the upfront benefit to player x or y in contest i, the idea
being that if βi is large enough, then the players may not find it optimal to put in any
effort in that contest; in other words, βi is the automatic contribution that players make to
a contest i, without having to spend any resources. Consider first a two item contest, so
that I = {1, 2}. Suppose further that the resources of both players are identical, so that
Rx = Ry = R, and consider a candidate Nash equilibrium profile that has the players efforts
in contest 1 of (0, 0). Thus, in the terminology of the previous section, I+ = {2}. Then, the
resource constraints dictate that the effort in contest 2 must be x2 = y2 = R. The question
is: Is this candidate profile a Nash equilibrium, and under which conditions? We note that
the expected payoffs in this candidate equilibrium are:

1

2
V1 +

1

2
V2 (31)

Let us assume that the collection of profiles {(0, 0); (R,R)} is an equilibrium, and consider
a deviation by player y of 2dy resources from contest 2 into contest 1, where dy is small
relative to R. Then, under the assumption that player x sticks to his equilibrium strategy,
player y’s expected payoffs are now:

2dy + β1
2dy + 2β1

V1 +
R− 2dy + β2

R− 2dy +R+ 2β2
V2

Note that this deviation improves player y’s expected payoff iff:

2dy + β1
2dy + 2β1

V1 +
R− 2dy + β2

R− 2dy +R+ 2β2
V2 >

1

2
V1 +

1

2
V2

This inequality holds iff:

V1
2

µ
2dy + β1
dy + β1

− 1
¶
+
V2
2

µR− 2dy + β2
R− dy + β2

− 1
¶
> 0

Alternatively, we can write this inequality as:

V1

µ
dy

dy + β1

¶
+ V2

µ −dy
R− dy + β2

¶
> 0⇔ V1

µ
dy

dy + β1

¶
> V2

µ
dy

R− dy + β2

¶
Since this expression must hold for all dy > 0 we have, sending dy → 0, a condition on β1
for this deviation to be profitable:

V2
R+ β2

<
V1
β1

(32)

Similarly, for player x, (0,R) is a best response to y playing (0,R) if, for some deviation
2dx,

2dx+ β1
2dx+ 2β1

V1 +
R− 2dx+ β2

R− 2dx+R+ 2β2
V2 >

1

2
V1 +

1

2
V2 (33)

which gives us the same condition as equation (24). Therefore, we have proved the following
result, which is a special case of the more general result in Proposition 7:
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Proposition 9 In a two player, two item contest, with CSFs given by equation (30), iden-
tical resource constraints, and symmetric up front benefits, the effort profile {(0, 0); (R,R)}
is a Nash equilibrium if and only if:

V2
R+ β2

≥ V1
β1

(34)

More generally, in a two player, n ≥ 2 item contest with identical resource constraints and
symmetric up front benefits, the degenerate effort profile

{(0, 0); (0, 0); ...; (R,R); ...; (0, 0)}

where (R,R) is the effort in the ith contest, is an equilibrium iff:

Vi
R+ βi

≥ max
j 6=i

½
Vj
βj

¾
(35)

The intuition behind this result and Proposition 8 is straightforward: If the upfront
benefits in some collection of contests I0 are sufficiently large, or if the payoffs are sufficiently
small, then players do not participate in those contests, preferring to put effort into contests
with relatively larger prizes, or with lower upfront benefits, where effort is needed most.

5 Conclusion

This paper examined a class of games — multi-item contests — in which the players competed
for many prizes by exerting effort to increase their probability of winning, in contrast to the
usual applications and examples of contests players only seek to obtain a single valuable prize.
The key result in these games is that, even when outcomes in each contest are assumed to be
mutually statistically independent, equilibrium efforts can exhibit strong interdependencies.
In general, changes in the contest success function or value of the prize in one contest alters
the amount of resources devoted to other all other contests by both players.
In multi-item contests, intrinsic advantages and disadvantages can be altered if relative

resource endowments change. Changes in these intrinsic advantages in turn affect the
equilibrium allocations of resources in multi-item contests in ways that cannot be captured
by analysing each contest in isolation.
We derived further interesting results by altering the CSF, so that each player’s marginal

benefit of additional effort becomes bounded as effort approaches zero. Altering the CSF in
this way can lead to situations in which both candidates put in zero effort in some contests
in equilibrium, and where small changes in parameter values do not change this outcome in
terms of efforts, even though the expected payoffs change. These results have implications
for many situations in economics and political science that involve instances in which players
are faced with a decision about how much resources to devote to a collection or sequence of
different contests.
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Appendix: Proofs of Propositions

Proof of Proposition 1:. The assumption of risk neutrality and mutual statistical
independence plays a critical part in allowing us to express the payoffs in such a simple
fashion. For any non-empty disjoint subsets S and T , define:

pS,T ≡ Pr (player x wins all contests in S and wins all contests some other disjoint subset T )
By mutual independence, we have pS,T = pS.pT . Also, for any subset S of contests, define
VS ≡

P
i∈S Vi. To prove the result, we proceed by induction. First, note that the statement

is trivially true for n = 1. It is also true for n = 2, since in that case the expected payoffs
are:

EUx = p1p2 (V1 + V2) + p1 (1− p2)V1 + p2 (1− p1)V2 + (1− p1) (1− p2) .0 = p1V1 + p2V2
and:

EUy = p1p2.0+p1 (1− p2)V2+p2 (1− p1)V1+(1− p1) (1− p2) (V1 + V2) = (1− p1)V1+(1− p2)V2
Now assume that the statement is true for any n. We show that if this holds, it is also
true for n+ 1. Let I be a set of n contests, and, by the induction hypothesis, suppose thatP

S⊂I pSVS =
Pn

i=1 piVi. Now consider an additional contest, labelled n + 1. Let pn+1 be
the marginal probability that player x wins in contest n+1. The expected payoff for player
x is:

EUx =
X
S⊂I

pn+1.pS [Vn+1 + VS] +
X
S⊂I

(1− pn+1) .pSVS

+
X
S⊂I

pn+1. (1− pS) .Vn+1 +
X
S⊂I

(1− pn+1) . (1− pS) .0

= pn+1.Vn+1.
X
S⊂I

pS + pn+1.
X
S⊂I

pSVS +
X
S⊂I

pSVS

−pn+1.
X
S⊂I

pSVS +
X
S⊂I

pn+1. (1− pS) .Vn+1

= pn+1.Vn+1.
X
S⊂I

pS +
X
S⊂I

pSVS +
X
S⊂I

pn+1. (1− pS) .Vn+1

= pn+1.Vn+1 +
X
S⊂I

pSVS = pn+1.Vn+1 +
nX
i=1

piVi

where the last equality follows from the induction hypothesis. Therefore EUx =
Pn

i=1 piVi
for any n. The expression for EUy can be derived in a similar fashion.

Proof of Proposition 4:. For this and all subsequent proofs, let us define the
notation:

I =
nX
i=1


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 > 0
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and, for any i:

J =
X
j 6=i


Vjαjrj

µRy

Rx

¶rj
·
αj +

µRy

Rx

¶rj¸2
 > 0

Note that, for any i:

I−
Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 = J
Note that:

sgn
∂x∗i
∂Vi

= sgn


nX
j=1


Vjαjrj

µRy

Rx

¶rj
·
αj +

µRy

Rx

¶rj¸2
−

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


= sgn[J] > 0 ∀ i

Also, we have:

sgn
∂x∗i
∂Vj

= −
Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 . αjrj

µRy

Rx

¶rj
·
αj +

µRy

Rx

¶rj¸2 < 0
To prove the third part of the proposition, note that

∂x∗i
∂Vj

1

Vi
=

∂x∗j
∂Vi

1

Vj

so therefore:
εijx

∗
i = εjix

∗
j

Proof of Proposition 5:. First, note that:

∂

∂αi

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2

= Viri

µRy

Rx

¶ri ·αi +µRy

Rx

¶ri¸2
− 2αi

·
αi +

µRy

Rx

¶ri¸
·
αi +

µRy

Rx

¶ri¸4
18



Then:

∂xi
∂αi

=

∂

∂αi


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
 I−

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 ∂

∂αi


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


I2

so that

sgn
∂xi
∂αi

= sgn
∂

∂αi


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2

I−

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


= sgn
∂

∂αi


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
× J

= sgn
∂

∂αi


Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2


= sgn

·
αi +

µRy

Rx

¶ri¸2
− 2αi

·
αi +

µRy

Rx

¶ri¸
= sgn

·
αi +

µRy

Rx

¶ri¸
− 2αi = sgn

·µRy

Rx

¶ri
− αi

¸
The proof of the sign of

∂xi
∂αi

follows immediately from the derivatives found above. Clearly

the critical value

µRy

Rx

¶ri
depends positively on Ry and negatively on Rx. Finally, note

that:
∂

∂ri

µRy

Rx

¶ri
= log

µRy

Rx

¶µRy

Rx

¶ri
which is positive if Ry > Rx, and negative otherwise.
For part (ii) of the proposition, note that:

∂xi
∂αj

= sgn−
(·

αj +

µRy

Rx

¶rj¸2
− 2αj

·
αj +

µRy

Rx

¶rj¸)

= sgn

½
2αj −

·
αj +

µRy

Rx

¶rj¸¾
= sgn

½
αj −

µRy

Rx

¶rj¾
19



which gives us the required result.

Proof of Proposition 6:. We have:

∂xi
∂ri

= Rx

∂

∂ri

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 × I− Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 ∂

∂ri

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
I2

= Rx

∂

∂ri

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2 × J
I2

Then:

sgn
∂xi
∂ri

= sgn
∂

∂ri

Viαiri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2

= sgn
∂

∂ri

ri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
To find the sign of this derivative, note that:

∂

∂ri

ri

µRy

Rx

¶ri
·
αi +

µRy

Rx

¶ri¸2
=

·
αi +

µRy

Rx

¶ri¸−4
×
·µRy

Rx

¶ri
+ ri log

µRy

Rx

¶µRy

Rx

¶ri¸ ·
αi +

µRy

Rx

¶ri¸2
−
·
αi +

µRy

Rx

¶ri¸−4
× 2ri

µRy

Rx

¶ri ·
αi +

µRy

Rx

¶ri¸
log

µRy

Rx

¶µRy

Rx

¶ri
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Therefore,

sgn
∂xi
∂ri

= sgn

·µRy

Rx

¶ri
+ ri log

µRy

Rx

¶µRy

Rx

¶ri¸ ·
αi +

µRy

Rx

¶ri¸2
−2ri

µRy

Rx

¶ri ·
αi +

µRy

Rx

¶ri¸
log

µRy

Rx

¶µRy

Rx

¶ri
= sgn

½·
1 + ri log

µRy

Rx

¶¸·
αi +

µRy

Rx

¶ri¸
− 2ri log

µRy

Rx

¶µRy

Rx

¶ri¾
= sgn

½
αi

·
1 + ri log

µRy

Rx

¶¸
+

µRy

Rx

¶ri ·
1− ri log

µRy

Rx

¶¸¾
and:

∂x∗i
∂rj

= − sgn ∂

∂rj

rj

µRy

Rx

¶rj
·
αj +

µRy

Rx

¶rj¸2
= − sgn

½
αj

·
1 + rj log

µRy

Rx

¶¸
+

µRy

Rx

¶rj ·
1− rj log

µRy

Rx

¶¸¾
The second part of the proposition can be proved by substituting the condition Rx = Ry

into these two equations. To prove the third part of the proposition, note that we have:

∂EUx
∂ri

= αi (RxRy)
ri logRx − logRy

[αi (Rx)
ri + (Ry)

ri ]
2Vi

which is positive if and only if Rx > Ry and is zero if Rx = Ry.
Proof of Proposition 7:. In the subset I+ the necessary first order conditions are:

αiri (βi + αix
∗
i )
ri−1 (δi + y∗i )

ri

[(βi + αix∗i )
ri + (δi + y∗i )

ri ]
2 Vi = λx ∀ i ∈ I+ (36)

and
ri (βi + αix

∗
i )
ri (δi + y

∗
i )
ri−1

[(βi + αix∗i )
ri + (δi + y∗i )

ri ]
2Vi = λy ∀ i ∈ I+ (37)

Dividing these two conditions yields:

αi (δi + y
∗
i )

βi + αix∗i
=

λx
λy

or

αix
∗
i + βi = αi (δi + y

∗
i )

λy
λx

(38)

or

x∗i =
λy
λx
y∗i +

λy
λx

δi − βi
αi
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Then, adding up this condition over all contests in I+, we have:X
i∈I+

x∗i = Rx =
λy
λx
Ry +

λy
λx

X
i∈I+

δi −
X
i∈I+

βi
αi

(39)

Define:

D+ ≡
X
i∈I+

δi and B+α ≡
X
i∈I+

βi
αi

(40)

Then:

Rx =
λy
λx
D+ + λy

λx
Ry − B+α (41)

or:
λy
λx
=
Rx + B+α
Ry +D+ (42)

so then:

αixi + βi = αi (δi + yi)
Rx + B+α
Ry +D+ (43)

Define R ≡ Rx + B+α
Ry +D+ . Then substituting (3.45) back into the first order condition (3.37)

yields:
αiri [αiR (δi + y∗i )]ri−1 (δi + y∗i )ri
{[αiR (δi + y∗i )]ri + (δi + y∗i )ri}2

Vi = λx (44)

or:
αiri (αiR)ri−1 (δi + y∗i )2ri−1 Vi = λx (α

ri
i Rri + 1)2 (δi + y

∗
i )
2ri (45)

so that:

y∗i =
αiri (αiR)ri−1 Vi
λx (α

ri
i Rri + 1)2

− δi =
αrii riRriVi

Rλx (α
ri
i Rri + 1)2

− δi (46)

Again, summing over all i ∈ I+ yields:

Ry +D+ = 1

Rλx

X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
(47)

Therefore, the multipliers can be calculated as:

λx =
1

R
1

Ry +D+
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2

=
1

Rx + B+α
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
(48)

and:

λy =
1

Ry +D+
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
(49)
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Now, consider contests for which x∗j = y
∗
j = 0, with j /∈ I+. In these contests, the necessary

first-order Kuhn-Tucker conditions are:

αjrj
¡
βj + αjx

∗
j

¢rj−1 ¡δj + y∗j ¢rj£¡
βj + αjx∗j

¢rj + ¡δj + y∗j ¢rj¤2 Vj ≤ λx , x∗j = 0 (50)

and
rj
¡
βj + αjx

∗
j

¢rj ¡δj + y∗j ¢rj−1£¡
βj + αjx∗j

¢rj + ¡δj + y∗j ¢rj¤2Vj ≤ λy , y∗j = 0 (51)

where the multipliers λx and λy are given in equations (3.50) and (3.51). When these first
order conditions are evaluated at xi = yi = 0, they hold if and only if:

αjrjβ
rj−1
j δ

rj
j£

β
rj
j + δ

rj
j

¤2 Vj ≤ λx =
1

Rx + B+α
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
∀ j /∈ I+ (52)

and:
rjβ

rj
j δ

rj−1
j£

β
rj
j + δ

rj
j

¤2Vj ≤ λy =
1

Ry +D+
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
∀ j /∈ I+ (53)

so that:
1

Rx + B+α
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
≥ max

j /∈I+
αjrjβ

rj−1
j δ

rj
j£

β
rj
j + δ

rj
j

¤2 Vj (54)

and:
1

Ry +D+
X
i∈I+

αrii riRriVi

(αrii Rri + 1)2
≥ max

j /∈I+
rjβ

rj
j δ

rj−1
j£

β
rj
j + δ

rj
j

¤2Vj (55)
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Proof of Proposition 8:. Note that the expected payoffs can be calculated as follows:

Ux =
X
i∈I+

pi(xi, yi)Vi +
X
j /∈I+

pj (0, 0)Vj

≡
X
i∈I+

(βi + αixi)
ri

(βi + αixi)
ri + (δi + yi)

ri Vi +
X
j /∈I+

β
rj
j£

β
rj
j + δ

rj
j

¤Vj
=

X
i∈I+

(αi (δi + yi)R)ri
[αi (δi + yi)R]ri + (δi + yi)ri Vi +

X
j /∈I+

β
rj
j£

β
rj
j + δ

rj
j

¤Vj
=

X
i∈I+

(αiR)ri
(αiR)ri + 1Vi +

X
j /∈I+

β
rj
j£

β
rj
j + δ

rj
j

¤Vj
=

X
i∈I+

αrii

µRx + B+α
Ry +D+

¶ri
αrii

µRx + B+α
Ry +D+

¶ri
+ 1

Vi +
X
j /∈I+

β
rj
j£

β
rj
j + δ

rj
j

¤Vj
=

X
i∈I+

αrii (Rx + B+α )ri
αrii (Rx + B+α )ri + (Ry +D+)ri Vi +

X
j /∈I+

β
rj
j£

β
rj
j + δ

rj
j

¤Vj (56)

Similar calculations show that :

Uy =
X
i∈I+

(Ry +D+)ri
αrii (Rx + B+α )ri + (Ry +D+)ri Vi +

X
j /∈I+

δ
rj
j

β
rj
j + δ

rj
j

Vj (57)
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